Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.474
Filter
1.
New Phytol ; 242(6): 2604-2619, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38563391

ABSTRACT

Soil contamination with arsenic (As) can cause phytotoxicity and reduce crop yield. The mechanisms of As toxicity and tolerance are not fully understood. In this study, we used a forward genetics approach to isolate a rice mutant, ahs1, that exhibits hypersensitivity to both arsenate and arsenite. Through genomic resequencing and complementation tests, we identified OsLPD1 as the causal gene, which encodes a putative lipoamide dehydrogenase. OsLPD1 was expressed in the outer cell layer of roots, root meristem cells, and in the mesophyll and vascular tissues of leaves. Subcellular localization and immunoblot analysis demonstrated that OsLPD1 is localized in the stroma of plastids. In vitro assays showed that OsLPD1 exhibited lipoamide dehydrogenase (LPD) activity, which was strongly inhibited by arsenite, but not by arsenate. The ahs1 and OsLPD1 knockout mutants exhibited significantly reduced NADH/NAD+ and GSH/GSSG ratios, along with increased levels of reactive oxygen species and greater oxidative stress in the roots compared with wild-type (WT) plants under As treatment. Additionally, loss-of-function of OsLPD1 also resulted in decreased fatty acid concentrations in rice grain. Taken together, our finding reveals that OsLPD1 plays an important role for maintaining redox homeostasis, conferring tolerance to arsenic stress, and regulating fatty acid biosynthesis in rice.


Subject(s)
Arsenic , Fatty Acids , Gene Expression Regulation, Plant , Homeostasis , Oryza , Oxidation-Reduction , Plant Proteins , Plastids , Stress, Physiological , Oryza/genetics , Oryza/drug effects , Oryza/metabolism , Homeostasis/drug effects , Arsenic/toxicity , Oxidation-Reduction/drug effects , Fatty Acids/metabolism , Fatty Acids/biosynthesis , Plastids/metabolism , Plastids/drug effects , Plant Proteins/metabolism , Plant Proteins/genetics , Gene Expression Regulation, Plant/drug effects , Stress, Physiological/drug effects , Mutation/genetics , Dihydrolipoamide Dehydrogenase/metabolism , Dihydrolipoamide Dehydrogenase/genetics , Reactive Oxygen Species/metabolism , Plant Roots/drug effects , Plant Roots/metabolism , Adaptation, Physiological/drug effects , Adaptation, Physiological/genetics , Oxidative Stress/drug effects , Arsenites/toxicity
2.
Int J Biol Macromol ; 265(Pt 1): 130816, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38503371

ABSTRACT

Acetylation modification has a wide range of functional roles in almost all physiological processes, such as transcription and energy metabolism. Crotonylation modification is mainly involved in RNA processing, nucleic acid metabolism, chromosome assembly and gene expression, and it's found that there is a competitive relationship between crotonylation modification and acetylation modification. Previous study found that dihydrolipoyl dehydrogenase (DLD) was highly expressed in brown adipose tissue (BAT) of white adipose tissue browning model mice, suggesting that DLD is closely related to white fat browning. This study was performed by quantitative real-time PCR (qPCR), Western blotting (WB), Enzyme-linked immunosorbent assay (ELISA), Immunofluorescence staining, JC-1 staining, Mito-Tracker Red CMXRos staining, Oil red O staining, Bodipy staining, HE staining, and Blood lipid quadruple test. The assay revealed that DLD promotes browning of white adipose tissue in mice. Cellularly, DLD was found to promote white adipocytes browning by activating mitochondrial function through the RAS/ERK pathway. Further studies revealed that the crotonylation modification and acetylation modification of DLD had mutual inhibitory effects. Meanwhile, DLD crotonylation promoted white adipocytes browning, while DLD acetylation did the opposite. Finally, protein interaction analysis and Co-immunoprecipitation (Co-IP) assays identified Sirtuin3 (SIRT3) as a decrotonylation and deacetylation modification enzyme of regulates DLD. In conclusion, DLD promotes browning of white adipocytes by activating mitochondrial function through crotonylation modification and the RAS/ERK pathway, providing a theoretical basis for the control and treatment of obesity, which is of great significance for the treatment of obesity and obesity-related diseases in the future.


Subject(s)
Adipocytes, White , Dihydrolipoamide Dehydrogenase , Animals , Mice , Adipocytes, White/metabolism , Dihydrolipoamide Dehydrogenase/metabolism , MAP Kinase Signaling System , Adipose Tissue, White/metabolism , Obesity/metabolism , 3T3-L1 Cells
3.
Sci Adv ; 10(6): eadj6358, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38324697

ABSTRACT

The Escherichia coli pyruvate dehydrogenase complex (PDHc) is a ~5 MDa assembly of the catalytic subunits pyruvate dehydrogenase (E1), dihydrolipoamide acetyltransferase (E2), and dihydrolipoamide dehydrogenase (E3). The PDHc core is a cubic complex of eight E2 homotrimers. Homodimers of the peripheral subunits E1 and E3 associate with the core by binding to the peripheral subunit binding domain (PSBD) of E2. Previous reports indicated that 12 E1 dimers and 6 E3 dimers bind to the 24-meric E2 core. Using an assembly arrested E2 homotrimer (E23), we show that two of the three PSBDs in the E23 dimerize, that each PSBD dimer cooperatively binds two E1 dimers, and that E3 dimers only bind to the unpaired PSBD in E23. This mechanism is preserved in wild-type PDHc, with an E1 dimer:E2 monomer:E3 dimer stoichiometry of 16:24:8. The conserved PSBD dimer interface indicates that PSBD dimerization is the previously unrecognized architectural determinant of gammaproteobacterial PDHc megacomplexes.


Subject(s)
Dihydrolipoamide Dehydrogenase , Dihydrolipoyllysine-Residue Acetyltransferase , Escherichia coli , Pyruvate Dehydrogenase Complex , Dihydrolipoamide Dehydrogenase/genetics , Dihydrolipoamide Dehydrogenase/chemistry , Dihydrolipoamide Dehydrogenase/metabolism , Dihydrolipoyllysine-Residue Acetyltransferase/chemistry , Dihydrolipoyllysine-Residue Acetyltransferase/metabolism , Dimerization , Escherichia coli/enzymology , Escherichia coli/genetics , Escherichia coli/metabolism , Pyruvate Dehydrogenase Complex/chemistry , Pyruvate Dehydrogenase Complex/metabolism
4.
Cryobiology ; 114: 104791, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37956782

ABSTRACT

Mongolian sheep are a breed of sheep in China known for their excellent cold and drought resistance. Sperm from Mongolian sheep are often cryopreserved to improve breeding outcomes. However, cryopreservation of sperm often results in issues such as reduced vitality and altered morphology. Therefore, the objective of this study was to investigate the impact of the cryoprotectant resveratrol on frozen sperm from Mongolian sheep, specifically examining its effects on key proteins during cryopreservation. In this study, sperm samples were obtained from three adult Mongolian rams and processed through semen centrifugation. The sperm motility parameters of Fresh Sperm Group (FR), Resveratrol added before freezing group (FF-Res), Resveratrol-free frozen sperm group (FT), and Resveratrol added after freeze-thawing group (FA-Res) were determined. The tandem mass tags (TMT) peptide labeling combined with LC-MS/MS was used for proteomic analysis of the total proteins in FR and FT groups. A total of 2651 proteins were identified, among which 41 proteins were upregulated and 48 proteins were downregulated after freezing. In-depth bioinformatics analysis of differentially abundant proteins (DAPs) revealed their close association with the tricarboxylic acid cycle (TCA) and oxidative phosphorylation pathway. The energy-related protein dihydrolipoamide dehydrogenase (DLD) and the reactive oxygen species (ROS)-related protein NADH dehydrogenase 1 beta subcomplex subunit 9 (NDUFB9) exhibited significant decreases, indicating their potential role as key proteins contributing to reduced sperm vitality. The study demonstrated that the addition of resveratrol (RES) to semen could elevate the expression levels of DLD and NDUFB9 proteins. This study represents the pioneering proteomic analysis of Mongolian ram sperm before and after cryopreservation, establishing the significance of DLD and NDUFB9 as key proteins influencing the decline in vitality following cryopreservation of Mongolian ram sperm. These findings clarify that resveratrol can enhance the levels of DLD and NDUFB9 proteins in cryopreserved Mongolian ram sperm, consequently enhancing their vitality.


Subject(s)
Semen Preservation , Semen , Male , Sheep , Animals , Resveratrol/pharmacology , Semen Preservation/veterinary , Semen Preservation/methods , Dihydrolipoamide Dehydrogenase/pharmacology , Cryopreservation/methods , Proteomics , Chromatography, Liquid , Sperm Motility , Tandem Mass Spectrometry , Spermatozoa , Sheep, Domestic
5.
Mediators Inflamm ; 2023: 5533444, 2023.
Article in English | MEDLINE | ID: mdl-38077227

ABSTRACT

Background: Cancer affects millions of people each year and imposes a huge economic and social burden worldwide. Cuproptosis is a recently discovered novel mode of cell death. The exact function of the cuproptosis-related gene dihydrolipoamide dehydrogenase (DLD) and its role in pan-cancer is unknown. Methods: Data were retrieved from the GTEx, TCGA, and multiple online websites. These data were used to assess the expression, prognosis, and diagnostic value of DLD in various tumors. The relationship of DLD with immune microenvironment immunomodulators, immune checkpoints, tumor mutational load (TMB), microsatellite instability (MSI), and oncology drug sensitivity was explored by correlation analysis. Results: The mRNA and protein expression of DLD differs in most cancers. Survival analysis showed that DLD was associated with prognosis with KIRC, KIRP, KICH, and UCS. DLD had a strong diagnostic value in KIRC, GBM, PAAD, and LGG (AUC > 0.9). DLD promoter methylation affects the aberrant expression of LIHC, LUSC, PAAD, READ, and THCA. DLD was negatively correlated with stromal score, immune score, and ESTIMATE score in UCEC, TGCT, LUSC, and SARC. In UCS, resting memory CD4 T cells and activated NK cells were significantly correlated with DLD expression. Significant correlations were also observed between DLD expression and immunomodulators, immune checkpoints, TMB, and MSI in various cancers. Importantly, we also identified a number of potential drugs that may target DLD. Conclusion: DLD expression is associated with a variety of tumor prognoses and plays an integral role in tumorigenesis, tumor metabolism, and immunity.


Subject(s)
Dihydrolipoamide Dehydrogenase , Neoplasms , Humans , Neoplasms/genetics , Carcinogenesis , Adjuvants, Immunologic , Cell Death , Tumor Microenvironment/genetics
6.
Pestic Biochem Physiol ; 194: 105482, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37532347

ABSTRACT

Phosphine is the dominant chemical used in postharvest pest control. Widespread and highly frequent use of phosphine has been selected for pest insects, including Tribolium castaneum, which is highly resistant. Lipid peroxidation and reactive oxygen species (ROS) are two major factors determining phosphine toxicity; however, the mechanisms of production of these two factors in phosphine toxicity are still unknown. Here, we first determined the time course of phosphine-induced lipid peroxidation and ROS production in T. castaneum. Our results showed that lipid peroxidation occurs before ROS in the process of phosphine toxicity, and fumigated beetles with higher resistance levels were associated with weaker activity on lipid peroxidation and ROS. A significant decline in lipid peroxidation was observed in fumigated individuals after knockdown of cytochrome b5 fatty acid desaturase (Cyt-b5-r) via RNA interference (RNAi), indicating that Cyt-b5-r is critical for triggering phosphine-induced lipid peroxidation. Moreover, significant decreases in both ROS and mortality were detected in fumigated T. castaneum adults fed melatonin for 7 days, an inhibitor of lipid peroxidation. Cyt-b5-r RNAi also inhibited ROS production and mortality in phosphine-treated beetles. Meanwhile, a significant decrease in ROS production (68.4%) was detected in dihydrolipoamide dehydrogenase (DLD) knockdown individuals with phenotypes susceptible to phosphine, suggesting that lipid peroxidation initiates ROS with the expression of DLD. However, a significant increase in ROS (122.1%) was detected in the DLD knockdown beetles with strongly resistant phenotypes, indicating that the DLD-involved pathway may not be the only mechanism of ROS generation in phosphine toxicity and the existence of a moonlighting role in downregulating ROS in strongly resistant T. castaneum.


Subject(s)
Coleoptera , Tribolium , Animals , Coleoptera/genetics , Tribolium/genetics , Dihydrolipoamide Dehydrogenase/genetics , Cytochromes b5 , Fatty Acid Desaturases , Reactive Oxygen Species , Insecticide Resistance/genetics , Stearoyl-CoA Desaturase
7.
Int J Mol Sci ; 24(13)2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37446004

ABSTRACT

Clinically relevant disease-causing variants of the human dihydrolipoamide dehydrogenase (hLADH, hE3), a common component of the mitochondrial α-keto acid dehydrogenase complexes, were characterized using a multipronged approach to unravel the molecular pathomechanisms that underlie hLADH deficiency. The G101del and M326V substitutions both reduced the protein stability and triggered the disassembly of the functional/obligate hLADH homodimer and significant FAD losses, which altogether eventually manifested in a virtually undetectable catalytic activity in both cases. The I12T-hLADH variant proved also to be quite unstable, but managed to retain the dimeric enzyme form; the LADH activity, both in the forward and reverse catalytic directions and the affinity for the prosthetic group FAD were both significantly compromised. None of the above three variants lent themselves to an in-depth structural analysis via X-ray crystallography due to inherent protein instability. Crystal structures at 2.89 and 2.44 Å resolutions were determined for the I318T- and I358T-hLADH variants, respectively; structure analysis revealed minor conformational perturbations, which correlated well with the residual LADH activities, in both cases. For the dimer interface variants G426E-, I445M-, and R447G-hLADH, enzyme activities and FAD loss were determined and compared against the previously published structural data.


Subject(s)
Dihydrolipoamide Dehydrogenase , Humans , Dihydrolipoamide Dehydrogenase/genetics , Protein Conformation , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)
8.
Antioxid Redox Signal ; 39(10-12): 794-806, 2023 10.
Article in English | MEDLINE | ID: mdl-37276180

ABSTRACT

Significance: Dihydrolipoamide dehydrogenase (DLDH) is a flavin-dependent disulfide oxidoreductase. The active form of DLDH is a stable homodimer, and its deficiencies have been linked to numerous metabolic disorders. A better understanding of redox and nonredox features of DLDH may reveal druggable targets for disease interventions or preventions. Recent Advances: In this article, the authors review the different roles of DLDH in selected pathological conditions, including its deficiency in humans, its role in stroke and neuroprotection, skin photoaging, Alzheimer's disease, and DLDH as a nondehydrogenating protein, and construction of genetically modified DLDH animal models for further studying the role of DLDH in specific pathological conditions. DLDH is also vulnerable to oxidative modifications in pathological conditions. Critical Issues: Novel animal models need to be constructed using gene knockdown techniques to investigate the redox- and nonredox roles of DLDH in related metabolic diseases. Specific small-molecule DLDH inhibitors need to be discovered. The relationship between modifications of specific amino acid residues in DLDH and given pathological conditions is an interesting area that remains to be comprehensively evaluated. Future Directions: Cell-specific or tissue-specific knockdown of DLDH creating specific pathological conditions will provide more insights into the mechanisms, whereby DLDH may have therapeutic values under a variety of pathological conditions. Antioxid. Redox Signal. 39, 794-806.


Subject(s)
Dihydrolipoamide Dehydrogenase , Stroke , Animals , Humans , Dihydrolipoamide Dehydrogenase/genetics , Dihydrolipoamide Dehydrogenase/chemistry , Dihydrolipoamide Dehydrogenase/metabolism , Oxidation-Reduction
9.
PeerJ ; 11: e15196, 2023.
Article in English | MEDLINE | ID: mdl-37065703

ABSTRACT

Background: The orbital glands, viz. lacrimal gland, superficial and deep gland of third eyelid (LG, SGT and HG), are important for normal eye functions. These glands have different functions in various animals. The information about the enzyme histochemical nature of prenatal orbital glands in Indian buffalo seems to be unavailable. Therefore, the study was planned on orbital glands of six full term recently died fetuses from animals with dystocia. Methods: The frozen sections of all these glands were subjected to standard localization protocols for Alkaline Phosphatase (AKPase), Glucose 6 phosphatase (G-6-Pase), Lactate dehydrogenase (LDH), Succinate dehydrogenase (SDH), Glucose 6 phosphate dehydrogenase (G-6-PD), Nicotinamide Adenine Dinucleotide Hydrogen Diaphorase (NADHD), Nicotinamide Adenine Dinucleotide Phosphate Hydrogen diaphorase (NADPHD), Dihydroxy phenylalanine oxidase (DOPA-O), Tyrosinase, non-specific esterase (NSE) and Carbonic anhydrase (CAse). Results: The results revealed a mixed spectrum of reaction for the above enzymes in LG, SGT and HG which ranged from moderate (for LDH in SGT) to intense (for most of the enzymes in all three glands). However, DOPA-O, Tyrosinase and CAse did not show any reaction. From the present study, it can be postulated that the orbital glands of fetus have a high activity of metabolism as it has many developmental and functional activities which were mediated with the higher activity of the enzymes involved.


Subject(s)
Bison , Carbonic Anhydrases , Animals , Female , Pregnancy , Buffaloes/metabolism , Monophenol Monooxygenase , Alkaline Phosphatase/metabolism , Bison/metabolism , NADPH Dehydrogenase , L-Lactate Dehydrogenase , Dihydrolipoamide Dehydrogenase , Fetus/metabolism , Dihydroxyphenylalanine
10.
Biol Futur ; 74(1-2): 109-118, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36842090

ABSTRACT

(Dihydro)lipoamide dehydrogenase (LADH) deficiency is an autosomal recessive genetic metabolic disorder. It generally presents with an onset in the neonatal age and premature death. The clinical picture usually involves metabolic decompensation and lactic acidosis that lead to neurological, cardiological, and/or hepatological outcomes. Severity of the disease is due to the fact that LADH is a common E3 subunit to the pyruvate, alpha-ketoglutarate, alpha-ketoadipate, and branched-chain alpha-keto acid dehydrogenase complexes and is also part of the glycine cleavage system; hence, a loss in LADH activity adversely affects several central metabolic pathways simultaneously. The severe clinical manifestations, however, often do not parallel the LADH activity loss, which implies the existence of auxiliary pathological pathways; stimulated reactive oxygen species (ROS) production as well as dissociation from the relevant multienzyme complexes proved to be auxiliary exacerbating pathomechanisms for selected disease-causing LADH mutations. This review provides an overview on the therapeutic challenges of inherited metabolic diseases, structural and functional characteristics of the mitochondrial alpha-keto acid dehydrogenase complexes, molecular pathogenesis and structural basis of LADH deficiency, and relevant potential future medical perspectives.


Subject(s)
Dihydrolipoamide Dehydrogenase , Pyruvic Acid , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide) , Dihydrolipoamide Dehydrogenase/genetics , Dihydrolipoamide Dehydrogenase/chemistry , Dihydrolipoamide Dehydrogenase/metabolism , Ketoglutaric Acids , Reactive Oxygen Species/metabolism , Humans
11.
Biotechnol Prog ; 39(3): e3324, 2023.
Article in English | MEDLINE | ID: mdl-36651906

ABSTRACT

Bacterial small RNAs (sRNAs) that regulate gene expression have been engineered for uses in synthetic biology and metabolic engineering. Here, we designed a novel non-Hfq-dependent sRNA scaffold that uses a modifiable 20 nucleotide antisense binding region to target mRNAs selectively and influence protein expression. The system was developed for regulation of a fluorescent reporter in vivo using Escherichia coli, but the system was found to be more responsive and produced statistically significant results when applied to protein synthesis using in vitro cell-free systems (CFS). Antisense binding sequences were designed to target not only translation initiation regions but various secondary structures in the reporter mRNA. Targeting a high-energy stem loop structure and the 3' end of mRNA yielded protein expression knock-downs that approached 70%. Notably, targeting a low-energy stem structure near a potential RNase E binding site led to a statistically significant 65% increase in protein expression (p < 0.05). These results were not obtainable in vivo, and the underlying mechanism was translated from the reporter system to achieve better than 75% increase in recombinant diaphorase expression in a CFS. It is possible the designs developed here can be applied to improve/regulate expression of other proteins in a CFS.


Subject(s)
Cell-Free System , RNA , Synthetic Biology , Dihydrolipoamide Dehydrogenase/metabolism , Gene Expression Regulation , In Vitro Techniques , RNA/biosynthesis , RNA/metabolism , RNA Stability , Synthetic Biology/methods , Analysis of Variance
12.
Cell Death Dis ; 13(12): 1073, 2022 12 26.
Article in English | MEDLINE | ID: mdl-36572672

ABSTRACT

The failing heart is characterized by an increase in glucose uptake and glycolytic rates that is not accompanied by a concomitant increase in glucose oxidation. Lower coupling of glucose oxidation to glycolysis possibly owes to unchanged or reduced pyruvate oxidation in mitochondria. Therefore, increasing pyruvate oxidation may lead to new therapies for heart disease. Dihydrolipoamide dehydrogenase (DLD) is a component of the pyruvate dehydrogenase complex (PDH). DLD mutations or defects are closely associated with metabolic diseases. However, few studies explore the effects of DLD mutants or acylation status on PDH activity and pyruvate metabolism. P300 is protein 2-hydroxyisobutyryltransferases in cells, and P300-dependent lysine 2-hydroxyisobutyrylation of glycolytic enzymes affects glucose metabolism. However, there are no relevant reports on the effect of 2-hydroxyisobutyrylation on the energy metabolism of heart failure, and it is worth further in-depth study. In this study, we showed that 2-hydroxyisobutyrylation is an essential protein translational modification (PTM) that regulates the activity of pyruvate dehydrogenase complex (PDHc). In a mouse model of transverse aortic constriction (TAC)-induced cardiac hypertrophy, the 2-hydroxyisobutylation of DLD was significantly increased, related to the decrease in PDH activity. In addition, our data provide clear evidence that DLD is a direct substrate of P300. As one of the main active ingredients of ginseng, ginsenoside Rg3 (Rg3) can reduce the 2-hydroxyisobutylation levels of DLD and restore the PDH activity by inhibiting the acyltransferase activity of P300, thereby producing beneficial effects whenever the heart is injured. Therefore, this study suggests a novel strategy for reversing myocardial hypertrophy.


Subject(s)
Dihydrolipoamide Dehydrogenase , Pyruvic Acid , Mice , Animals , Dihydrolipoamide Dehydrogenase/genetics , Pyruvate Dehydrogenase Complex/metabolism , Cardiomegaly/genetics , Glucose/metabolism
13.
Molecules ; 27(22)2022 Nov 12.
Article in English | MEDLINE | ID: mdl-36431901

ABSTRACT

BACKGROUND: Despite recent improvements in therapy, the five-year survival rate for patients with advanced melanoma is poor, mainly due to the development of drug resistance. The aim of the present study was to investigate the mechanisms underlying this phenomenon, applying proteomics and structural approaches to models of melanoma cells. METHODS: Sublines from two human (A375 and SK-MEL-28) cells with acquired vemurafenib resistance were established, and their proteomic profiles when exposed to denaturation were identified through LC-MS/MS analysis. The pathways derived from bioinformatics analyses were validated by in silico and functional studies. RESULTS: The proteomic profiles of resistant melanoma cells were compared to parental counterparts by taking into account protein folding/unfolding behaviors. Several proteins were found to be involved, with dihydrolipoamide dehydrogenase (DLD) being the only one similarly affected by denaturation in all resistant cell sublines compared to parental ones. DLD expression was observed to be increased in resistant cells by Western blot analysis. Protein modeling analyses of DLD's catalytic site coupled to in vitro assays with CPI-613, a specific DLD inhibitor, highlighted the role of DLD enzymatic functions in the molecular mechanisms of BRAFi resistance. CONCLUSIONS: Our proteomic and structural investigations on resistant sublines indicate that DLD may represent a novel and potent target for overcoming vemurafenib resistance in melanoma cells.


Subject(s)
Dihydrolipoamide Dehydrogenase , Melanoma , Humans , Vemurafenib/pharmacology , Proto-Oncogene Proteins B-raf/metabolism , Proteomics , Chromatography, Liquid , Drug Resistance, Neoplasm , Cell Line, Tumor , Tandem Mass Spectrometry , Melanoma/drug therapy , Melanoma/metabolism
14.
Int J Mol Sci ; 23(19)2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36232722

ABSTRACT

Masson pine (Pinus massoniana L.) is one of the most important resin-producing tree species in southern China. However, the molecular regulatory mechanisms of resin yield are still unclear in masson pine. In this study, an integrated analysis of transcriptome, proteome, and biochemical characteristics from needles of masson pine with the high and common resin yield was investigated. The results showed that chlorophyll a (Chl a), chlorophyll b (Chl b), total chlorophyll (Chl C), carotenoids (Car), glucose (Glu), gibberellin A9 (GA9), gibberellin A15 (GA15), and gibberellin A53 (GA53) were significantly increased, whereas fructose (Fru), jasmonic acid (JA), jasmonoyl-L-isoleucine (JA-ILE), gibberellin A1 (GA1), gibberellin A3 (GA3), gibberellin A19 (GA19), and gibberellin A24 (GA24) were significantly decreased in the high resin yield in comparison with those in the common one. The integrated analysis of transcriptome and proteome showed that chlorophyll synthase (chlG), hexokinase (HXK), sucrose synthase (SUS), phosphoglycerate kinase (PGK), dihydrolipoamide dehydrogenase (PDH), dihydrolipoamide succinyltransferase (DLST), 12-oxophytodienoic acid reductase (OPR), and jasmonate O-methyltransferases (JMT) were consistent at the transcriptomic, proteomic, and biochemical levels. The pathways of carbohydrate metabolism, terpenoid biosynthesis, photosynthesis, and hormone biosynthesis may play crucial roles in the regulation of resin yield, and some key genes involved in these pathways may be candidates that influence the resin yield. These results provide insights into the molecular regulatory mechanisms of resin yield and also provide candidate genes that can be applied for the molecular-assisted selection and breeding of high resin-yielding masson pine.


Subject(s)
Gibberellins , Pinus , Carotenoids/metabolism , Chlorophyll A/metabolism , Cyclopentanes , Dihydrolipoamide Dehydrogenase/metabolism , Fructose/metabolism , Gibberellins/metabolism , Glucose/metabolism , Hexokinase/metabolism , Hormones/metabolism , Isoleucine/analogs & derivatives , Isoleucine/metabolism , Metabolic Networks and Pathways , Methyltransferases/metabolism , Oxylipins , Phosphoglycerate Kinase/metabolism , Pinus/genetics , Pinus/metabolism , Plant Breeding , Proteome/genetics , Proteome/metabolism , Proteomics , Resins, Plant , Transcriptome
15.
Folia Med Cracov ; 62(2): 27-35, 2022.
Article in English | MEDLINE | ID: mdl-36256893

ABSTRACT

5-fluorouracil (5-FU), which is a commonly used chemotherapy agent exerts undesired cardiac toxicity. Mitochondrial dysfunction is thought to be one of potentially important mechanisms of 5-FU- induced cardiotoxicity. α-ketoglutarate dehydrogenase (α-KGDHC) is the key regulatory enzyme of TCA cycle. The complex consists of multiple copies of three catalytic subunits: α-ketoglutarate dehydrogenase (E1), dihydrolipoamide succinyltransferase (E2) and dihydrolipoamide dehydrogenase (E3). α-KGDHC together with branched chain α-ketoacid dehydrogenase (BCKDH) and pyruvate dehydrogenase (PDH), are the members of 2-oxoacid dehydrogenases family that share some structural and functional similarities. Recently, it has been found that 5-FU stimulates BCKDH in rat's cardiac muscle. Therefore, we hypothesize that 5-FU modifies α-KGDHC activity and affects cardiac muscle metabolism. The aim of this study was to determine the effect of 5-FU on α-KGDHC activity and protein levels of E1 and E2 subunits of the complex in rat's cardiac muscle. Wistar male rats were administered with 4 doses of 5-FU, 150 mg/ kg b.wt. each (study group) or 0.3% methylcellulose (control group). α-KGDHC activity was assayed spectrophotometrically. The E1 and E2 proteins levels were quantified by Western blot. 5-FU administration resulted in stimulation of myocardial α-KGDHC activity in rats. In addition, E2 protein level increased in response to 5-FU treatment, while the E1 protein level remained unchanged. Up-regulation of α-KGDHC appears to result from change in E2 subunit protein level. However, the effect of 5-FU on factors modifying α-KGDHC activity at post-translational level cannot be excluded.


Subject(s)
Dihydrolipoamide Dehydrogenase , Ketoglutarate Dehydrogenase Complex , Animals , Rats , Male , Ketoglutarate Dehydrogenase Complex/chemistry , Ketoglutarate Dehydrogenase Complex/metabolism , Fluorouracil/pharmacology , Rats, Wistar , Myocardium/metabolism , Keto Acids , Methylcellulose , Pyruvates
16.
JCI Insight ; 7(20)2022 10 24.
Article in English | MEDLINE | ID: mdl-36278487

ABSTRACT

Dihydrolipoamide dehydrogenase (DLD) deficiency is a recessive mitochondrial disorder caused by depletion of DLD from α-ketoacid dehydrogenase complexes. Caenorhabditis elegans animal models of DLD deficiency generated by graded feeding of dld-1(RNAi) revealed that full or partial reduction of DLD-1 expression recapitulated increased pyruvate levels typical of pyruvate dehydrogenase complex deficiency and significantly altered animal survival and health, with reductions in brood size, adult length, and neuromuscular function. DLD-1 deficiency dramatically increased mitochondrial unfolded protein stress response induction and adaptive mitochondrial proliferation. While ATP levels were reduced, respiratory chain enzyme activities and in vivo mitochondrial membrane potential were not significantly altered. DLD-1 depletion directly correlated with the induction of mitochondrial stress and impairment of worm growth and neuromuscular function. The safety and efficacy of dichloroacetate, thiamine, riboflavin, 5-aminoimidazole-4-carboxamide-1-ß-d-ribofuranoside (AICAR), l-carnitine, and lipoic acid supplemental therapies empirically used for human DLD disease were objectively evaluated by life span and mitochondrial stress response studies. Only dichloroacetate and thiamine showed individual and synergistic therapeutic benefits. Collectively, these C. elegans dld-1(RNAi) animal model studies demonstrate the translational relevance of preclinical modeling of disease mechanisms and therapeutic candidates. Results suggest that clinical trials are warranted to evaluate the safety and efficacy of dichloroacetate and thiamine in human DLD disease.


Subject(s)
Thiamine , Thioctic Acid , Adult , Animals , Humans , Caenorhabditis elegans/metabolism , Dihydrolipoamide Dehydrogenase/genetics , Dihydrolipoamide Dehydrogenase/metabolism , Riboflavin , Carnitine , Pyruvates , Adenosine Triphosphate
17.
mBio ; 13(5): e0147222, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36135382

ABSTRACT

Staphylococcus aureus is a ubiquitous Gram-positive bacterium and an opportunistic human pathogen. S. aureus pathogenesis relies on a complex network of regulatory factors that adjust gene expression. Two important factors in this network are CodY, a repressor protein responsive to nutrient availability, and the SaeRS two-component system (TCS), which responds to neutrophil-produced factors. Our previous work revealed that CodY regulates the secretion of many toxins indirectly via Sae through an unknown mechanism. We report that disruption of codY results in increased levels of phosphorylated SaeR (SaeR~P) and that codY mutant cell membranes contain a higher percentage of branched-chain fatty acids (BCFAs) than do wild-type membranes, prompting us to hypothesize that changes to membrane composition modulate the activity of the SaeS sensor kinase. Disrupting the lpdA gene encoding dihydrolipoyl dehydrogenase, which is critical for BCFA synthesis, significantly reduced the abundance of SaeR, phosphorylated SaeR, and BCFAs in the membrane, resulting in reduced toxin production and attenuated virulence. Lower SaeR levels could be explained in part by reduced stability. Sae activity in the lpdA mutant could be complemented genetically and chemically with exogenous short- or full-length BCFAs. Intriguingly, lack of lpdA also alters the activity of other TCSs, suggesting a specific BCFA requirement managing the basal activity of multiple TCSs. These results reveal a novel method of posttranscriptional virulence regulation via BCFA synthesis, potentially linking CodY activity to multiple virulence regulators in S. aureus. IMPORTANCE Two-component systems (TCSs) are an essential way that bacteria sense and respond to their environment. These systems are usually composed of a membrane-bound histidine kinase that phosphorylates a cytoplasmic response regulator. Because most of the histidine kinases are embedded in the membrane, lipids can allosterically regulate the activity of these sensors. In this study, we reveal that branched-chain fatty acids (BCFAs) are required for the activation of multiple TCSs in Staphylococcus aureus. Using both genetic and biochemical data, we show that the activity of the virulence activator SaeS and the phosphorylation of its response regulator SaeR are reduced in a branched-chain keto-acid dehydrogenase complex mutant and that defects in BCFA synthesis have far-reaching consequences for exotoxin secretion and virulence. Finally, we show that mutation of the global nutritional regulator CodY alters BCFA content in the membrane, revealing a potential mechanism of posttranscriptional regulation of the Sae system by CodY.


Subject(s)
Staphylococcal Infections , Staphylococcus aureus , Humans , Staphylococcus aureus/metabolism , Gene Expression Regulation, Bacterial , Histidine Kinase/metabolism , Dihydrolipoamide Dehydrogenase/genetics , Dihydrolipoamide Dehydrogenase/metabolism , Histidine/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Staphylococcal Infections/microbiology , Fatty Acids/metabolism , Exotoxins/metabolism
18.
Pestic Biochem Physiol ; 187: 105181, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36127043

ABSTRACT

Resistance of Tribolium castaneum to phosphine is related to point mutations in DNA code corresponding to amino acid changes associated with a core metabolic enzyme dihydrolipoamide dehydrogenase (DLD), but the mutation patterns vary among different resistant populations. Thus, there is a great need to develop a cost-effective method to detect core mutations in T. castaneum, which would be the key factor to understand the molecular basis of phosphine resistance. Amplification refractory mutation system-based quantitative Real-Time PCR (ARMS-qPCR) is an ideal method that can rapidly detect point mutations. Here, the P45S and G131D mutations existed in the DLD of T. castaneum selected from strong Chinese resistance phenotypes, and the DLD P45S mutation, which represents a strong phosphine resistance allele, was confirmed as the most abundant mutation to determine strong resistance genotypes. Our study found that 85 out of 120 beetles carried the P45S resistance allele, including 51 homozygous and 34 heterozygous individuals. Moreover, there was a strong linear relationship (R2 = 0.917) between the resistance ratio and the resistance allele frequency among the strongly resistant populations. Our data showed that the ARMS-qPCR method that we developed could rapidly determine strong resistance phenotypes of T. castaneum to phosphine by detecting the DLD P45S mutation. These results not only provide a detailed example for developing an ARMS-qPCR-based method to characterize pesticide resistance, but also support further elucidation of the molecular basis of phosphine resistance.


Subject(s)
Insecticides , Tribolium , Amino Acids , Animals , Dihydrolipoamide Dehydrogenase/genetics , Dihydrolipoamide Dehydrogenase/metabolism , Insecticide Resistance/genetics , Insecticides/pharmacology , Mutation , Phosphines , Real-Time Polymerase Chain Reaction , Tribolium/genetics , Tribolium/metabolism
19.
Vet Microbiol ; 265: 109328, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35032790

ABSTRACT

Mycoplasma synoviae (M. synoviae) is an important avian pathogen that causes arthritis and airsacculitis in young chickens and turkeys. Infection by M. synoviae results in considerable economic losses to the poultry industry worldwide. Cytoadherence is a crucial stage during mycoplasma infection. Dihydrolipoamide dehydrogenase (PdhD) is a flavin-dependent enzyme that is critical for energy metabolism and redox balance. To date, its role in cytoadherence is poorly understood. In this study, recombinant PdhD from M. synoviae (rMSPdhD) was expressed in the supernatant component of E. coli BL21 and rabbit anti-rMSPdhD serum was prepared. rMSPdhD was shown to be an immunogenic protein by immunoblot assays, while the mycoplasmacidal assay revealed that the rabbit anti-rMSPdhD serum had a high complement-dependent mycoplasmacidal rate (88.5 %). Using a suspension immunofluorescence assay and subcellular localization analysis, MSPdhD was shown to be a surface-localized protein distributed in both the cytoplasm and cell membrane of M. synoviae. The enzymatic activity of rMSPdhD was determined by measuring its ability to reduce lipoamide to dihydrolipoamide and convert NADH to NAD+. Using an indirect immunofluorescence assay, rMSPdhD was shown to adhere to DF-1 chicken embryo fibroblast cells. Furthermore, the attachment of M. synoviae to DF-1 cells was significantly inhibited by rabbit anti-rMSPdhD serum. Western blot and ELISA binding assays confirmed that rMSPdhD also bound to fibronectin (Fn) and plasminogen (Plg) in a dose-dependent manner. In conclusion, our data show that MSPdhD is not only a biological enzyme, but also an immunogenic surface-exposed protein that can bind to Fn and Plg as well as adhere to host cells. In addition, we show that rabbit anti-rMSPdhD serum can inhibit the adhesion of M. synoviae to DF-1 cells and has a significant complement-dependent bactericidal activity. Our findings suggest that MSPdhD may be involved in the pathogenesis of M. synoviae.


Subject(s)
Mycoplasma Infections , Mycoplasma synoviae , Poultry Diseases , Animals , Chick Embryo , Chickens , Dihydrolipoamide Dehydrogenase , Escherichia coli/genetics , Escherichia coli/metabolism , Fibronectins/metabolism , Mycoplasma Infections/veterinary , Plasminogen/metabolism , Rabbits
20.
Cell Mol Life Sci ; 78(23): 7451-7468, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34718827

ABSTRACT

In human metabolism, pyruvate dehydrogenase complex (PDC) is one of the most intricate and large multimeric protein systems representing a central hub for cellular homeostasis. The worldwide used antiepileptic drug valproic acid (VPA) may potentially induce teratogenicity or a mild to severe hepatic toxicity, where the underlying mechanisms are not completely understood. This work aims to clarify the mechanisms that intersect VPA-related iatrogenic effects to PDC-associated dihydrolipoamide dehydrogenase (DLD; E3) activity. DLD is also a key enzyme of α-ketoglutarate dehydrogenase, branched-chain α-keto acid dehydrogenase, α-ketoadipate dehydrogenase, and the glycine decarboxylase complexes. The molecular effects of VPA will be reviewed underlining the data that sustain a potential interaction with DLD. The drug-associated effects on lipoic acid-related complexes activity may induce alterations on the flux of metabolites through tricarboxylic acid cycle, branched-chain amino acid oxidation, glycine metabolism and other cellular acetyl-CoA-connected reactions. The biotransformation of VPA involves its complete ß-oxidation in mitochondria causing an imbalance on energy homeostasis. The drug consequences as histone deacetylase inhibitor and thus gene expression modulator have also been recognized. The mitochondrial localization of PDC is unequivocal, but its presence and function in the nucleus were also demonstrated, generating acetyl-CoA, crucial for histone acetylation. Bridging metabolism and epigenetics, this review gathers the evidence of VPA-induced interference with DLD or PDC functions, mainly in animal and cellular models, and highlights the uncharted in human. The consequences of this interaction may have significant impact either in mitochondrial or in nuclear acetyl-CoA-dependent processes.


Subject(s)
Dihydrolipoamide Dehydrogenase/metabolism , Histone Deacetylase Inhibitors/adverse effects , Iatrogenic Disease , Pyruvate Dehydrogenase Complex/metabolism , Valproic Acid/adverse effects , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/metabolism , Acetyl Coenzyme A/biosynthesis , Acetylation , Animals , Glycine Dehydrogenase (Decarboxylating)/metabolism , Humans , Ketoglutarate Dehydrogenase Complex/metabolism , Ketone Oxidoreductases/metabolism , Liver/pathology , Mitochondria/metabolism , Oxidation-Reduction/drug effects , Teratogens/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...