Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
PLoS One ; 17(2): e0262985, 2022.
Article in English | MEDLINE | ID: mdl-35113889

ABSTRACT

The Dilleniaceae is known to produce nectarless flowers pollinated by bees, but the fact that bats ingest Dillenia biflora pollen led us to question pollination assumptions for these trees. We aimed to identify the pollinators of D. biflora, check for nectar presence, and investigate potential for cleistogamy and global prevalence of this pollination system. We examined aspects of the pollination of D. biflora on two Fijian islands using video recordings, direct observations, hand pollination, measurements (flowers, bite marks, nectar), and monitoring. The flowers, receptive for one night, contained copious nectar and had permanently closed globose corollas that required removal by bats for pollination. All the 101 flowers that retained their corolla died and did not produce seeds by cleistogamy. The bat Notopteris macdonaldi was well adapted to corolla removal. Keeping corollas closed until bats manipulate the nectar-rich flowers is a beneficial strategy in high-rainfall environments with many flower parasites. We propose to name a pollination system reliant exclusively on bats "chiropteropisteusis." From clues in the literature, other species in the geographical range of Dillenia are probably chiropteropisunous. Chiropteropisteusis should be investigated in the Old-World range of Dillenia, many species of which are threatened. The remarkable "fall" of the entire corolla observed by an earlier botanist for several species in the genus is most likely attributable to bats. This discovery has important implications for the conservation of bat-dependent trees and their associated fauna, particularly considering the high level of threat faced by flying-foxes globally.


Subject(s)
Chiroptera/physiology , Dilleniaceae/physiology , Flowers/physiology , Plant Nectar/physiology , Pollen/chemistry , Pollination , Animals
2.
Plant Cell Environ ; 44(4): 1257-1267, 2021 04.
Article in English | MEDLINE | ID: mdl-33386607

ABSTRACT

Nutrient-poor ecosystems globally exhibit high plant diversity. One mechanism enabling the co-existence of species in such ecosystems is facilitation among plants with contrasting nutrient-acquisition strategies. The ecophysiological processes underlying these interactions remain poorly understood. We hypothesized that root positioning plays a role between sympatric species in nutrient-poor vegetation. We investigated how the growth traits of the focal mycorrhizal non-cluster-rooted Hibbertia racemosa change when grown in proximity of non-mycorrhizal Banksia attenuata, which produces cluster roots that increase nutrient availability, compared with growth with conspecifics. Focal plants were placed in the centre of rhizoboxes, and biomass allocation, root system architecture, specific root length (SRL), and leaf nutrient concentration were assessed. When grown with B. attenuata, focal plants decreased root investment, increased root growth towards B. attenuata, and positioned their roots near B. attenuata cluster roots. SRL was greater, and the degree of localized root investment correlated positively with B. attenuata cluster-root biomass. Total nutrient contents in the focal individuals were greater when grown with B. attenuata. Focal plants directed their root growth towards the putatively facilitating neighbour's cluster roots, modifying root traits and investment. Preferential root positioning and root morphological traits play important roles in positive plant-plant interactions.


Subject(s)
Dilleniaceae/physiology , Nutrients/metabolism , Plant Roots/growth & development , Communication , Dilleniaceae/growth & development , Dilleniaceae/metabolism , Ecosystem , Mycorrhizae , Plant Roots/metabolism , Plant Roots/physiology , Proteaceae/growth & development , Proteaceae/metabolism , Proteaceae/physiology
3.
Ann Bot ; 109(6): 1111-23, 2012 May.
Article in English | MEDLINE | ID: mdl-22362661

ABSTRACT

BACKGROUND AND AIMS: Several ecologically important plant families in Mediterranean biomes have seeds with morphophysiological dormancy (MPD) but have been poorly studied. The aim of this study was to understand the seed ecology of these species by focusing on the prominent, yet intractably dormant Australian genus Hibbertia. It was hypothesized that the slow germination in species of this genus is caused by a requirement for embryo growth inside the seed before germination, and that initiation of embryo growth is reliant upon a complex sequence of environmental cues including seasonal fluctuations in temperature and moisture, and an interplay with light and smoke. Using the results, the classification of the MPD level in species of Hibbertia is considered. METHODS: Four species of Hibbertia in winter rainfall south-western Australia were selected. These species, whilst differing in geographic distributions, are variously sympatric, and all are important understorey components of plant communities. The following aspects related to dormancy break, embryo growth and germination were investigated: temperature and moisture requirements; effects of karrikinolide, gibberellic acid and aerosol smoke; and phenology. KEY RESULTS: Following exposure to wet/dry cycles at low or high temperatures, embryo growth and germination occurred, albeit slowly in all species at low temperatures when moisture was unlimited, corresponding to winter in south-west Australia. Photo regime influenced germination only in H. racemosa. Aerosol smoke triggered substantial germination during the 1st germination season in H. huegelii and H. hypericoides. CONCLUSIONS: Although the study species are con-generic, sympatric and produce seeds of identical morphology, they possessed different dormancy-break and germination requirements. The physiological component of MPD was non-deep in H. racemosa but varied in the other three species where more deeply dormant seeds required >1 summer to overcome dormancy and, thus, germination was spread over time. Embryos grew during winter, but future studies need to resolve the role of cold versus warm stratification by using constant temperature regimes. To include Mediterranean species with MPD, some modifications to the current seed-dormancy classification system may need consideration: (a) wet/dry conditions for warm stratification and (b) a relatively long period for warm stratification. These outcomes have important implications for improving experimental approaches to resolve the effective use of broadcast seed for ecological restoration.


Subject(s)
Dilleniaceae/genetics , Dilleniaceae/physiology , Germination/physiology , Plant Dormancy/physiology , Seeds/growth & development , Australia , Light , Rain , Seasons , Seeds/physiology , Smoke , Sympatry , Temperature , Weather
SELECTION OF CITATIONS
SEARCH DETAIL
...