Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.312
Filter
1.
Proc Biol Sci ; 291(2023): 20240537, 2024 May.
Article in English | MEDLINE | ID: mdl-38747705

ABSTRACT

The noasaurid ceratosaur Kiyacursor longipes gen. et sp. nov. is described based on a fragmentary skeleton including cervical vertebra, pectoral girdle, humerus and hind limbs from the Lower Cretaceous (Aptian) Ilek Formation at Shestakovo 1 locality in Western Siberia, Russia. This is the first ceratosaur from the Early Cretaceous of Asia, extending the stratigraphic range of Ceratosauria by 40 Myr on that continent. Kiyacursor shares unique hind limb proportions with Elaphrosaurus and Limusaurus, suggesting improved cursorial ability. These taxa show an ostrich-like specialization of the pes, with a large third metatarsal and greatly reduced second metatarsal. By contrast, all other fast running non-avian theropod dinosaurs have an arctometatarsalian pes, with the third metatarsal strongly reduced proximally. The new taxon lived in the Early Cretaceous ecosystem containing a number of other Jurassic relics, such as stem salamanders, protosuchian and shartegosuchid crocodyliforms, tritylodontid synapsids and docodontan mammaliaforms.


Subject(s)
Dinosaurs , Fossils , Animals , Dinosaurs/anatomy & histology , Dinosaurs/classification , Fossils/anatomy & histology , Siberia , Biological Evolution
2.
Naturwissenschaften ; 111(3): 29, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713269

ABSTRACT

The vast majority of pterosaurs are characterized by relatively large, elongate heads that are often adorned with large, elaborate crests. Projecting out in front of the body, these large heads and any crests must have had an aerodynamic effect. The working hypothesis of the present study is that these oversized heads were used to control the left-right motions of the body during flight. Using digital models of eight non-pterodactyloids ("rhamphorhyncoids") and ten pterodactyloids, the turning moments associated with the head + neck show a close and consistent correspondence with the rotational inertia of the whole body about a vertical axis in both groups, supporting the idea of a functional relationship. Turning moments come from calculating the lateral area of the head (plus any crests) and determining the associated lift (aerodynamic force) as a function of flight speed, with flight speeds being based on body mass. Rotational inertias were calculated from the three-dimensional mass distribution of the axial body, the limbs, and the flight membranes. The close correlation between turning moment and rotational inertia was used to revise the life restorations of two pterosaurs and to infer relatively lower flight speeds in another two.


Subject(s)
Head , Skull , Animals , Biomechanical Phenomena/physiology , Skull/anatomy & histology , Skull/physiology , Head/anatomy & histology , Head/physiology , Flight, Animal/physiology , Dinosaurs/physiology , Dinosaurs/anatomy & histology , Fossils
3.
Nat Ecol Evol ; 8(5): 1048, 2024 May.
Article in English | MEDLINE | ID: mdl-38741008
4.
PLoS One ; 19(4): e0298242, 2024.
Article in English | MEDLINE | ID: mdl-38568908

ABSTRACT

Dinosauria debuted on Earth's stage in the aftermath of the Permo-Triassic Mass Extinction Event, and survived two other Triassic extinction intervals to eventually dominate terrestrial ecosystems. More than 231 million years ago, in the Upper Triassic Ischigualasto Formation of west-central Argentina, dinosaurs were just getting warmed up. At this time, dinosaurs represented a minor fraction of ecosystem diversity. Members of other tetrapod clades, including synapsids and pseudosuchians, shared convergently evolved features related to locomotion, feeding, respiration, and metabolism and could have risen to later dominance. However, it was Dinosauria that radiated in the later Mesozoic most significantly in terms of body size, diversity, and global distribution. Elevated growth rates are one of the adaptations that set later Mesozoic dinosaurs apart, particularly from their contemporary crocodilian and mammalian compatriots. When did the elevated growth rates of dinosaurs first evolve? How did the growth strategies of the earliest known dinosaurs compare with those of other tetrapods in their ecosystems? We studied femoral bone histology of an array of early dinosaurs alongside that of non-dinosaurian contemporaries from the Ischigualasto Formation in order to test whether the oldest known dinosaurs exhibited novel growth strategies. Our results indicate that the Ischigualasto vertebrate fauna collectively exhibits relatively high growth rates. Dinosaurs are among the fastest growing taxa in the sample, but they occupied this niche alongside crocodylomorphs, archosauriformes, and large-bodied pseudosuchians. Interestingly, these dinosaurs grew at least as quickly, but more continuously than sauropodomorph and theropod dinosaurs of the later Mesozoic. These data suggest that, while elevated growth rates were ancestral for Dinosauria and likely played a significant role in dinosaurs' ascent within Mesozoic ecosystems, they did not set them apart from their contemporaries.


Subject(s)
Dinosaurs , Animals , Dinosaurs/anatomy & histology , Biological Evolution , Ecosystem , Fossils , Bone and Bones , Phylogeny , Mammals
5.
BMC Ecol Evol ; 24(1): 46, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627692

ABSTRACT

BACKGROUND: Tooth replacement patterns of early-diverging ornithischians, which are important for understanding the evolution of the highly specialized dental systems in hadrosaurid and ceratopsid dinosaurs, are poorly known. The early-diverging neornithischian Jeholosaurus, a small, bipedal herbivorous dinosaur from the Early Cretaceous Jehol Biota, is an important taxon for understanding ornithischian dental evolution, but its dental morphology was only briefly described previously and its tooth replacement is poorly known. RESULTS: CT scanning of six specimens representing different ontogenetic stages of Jeholosaurus reveals significant new information regarding the dental system of Jeholosaurus, including one or two replacement teeth in nearly all alveoli, relatively complete tooth resorption, and an increase in the numbers of alveoli and replacement teeth during ontogeny. Reconstructions of Zahnreihen indicate that the replacement pattern of the maxillary dentition is similar to that of the dentary dentition but with a cyclical difference. The maxillary tooth replacement rate in Jeholosaurus is probably 46 days, which is faster than that of most other early-diverging ornithischians. During the ontogeny of Jeholosaurus, the premaxillary tooth replacement rate slows from 25 days to 33 days with similar daily dentine formation. CONCLUSIONS: The tooth replacement rate exhibits a decreasing trend with ontogeny, as in Alligator. In a phylogenetic context, fast tooth replacement and multi-generation replacement teeth have evolved at least twice independently in Ornithopoda, and our analyses suggest that the early-diverging members of the major ornithischian clades exhibit different tooth replacement patterns as an adaption to herbivory.


Subject(s)
Dinosaurs , Tooth , Animals , Phylogeny , Dinosaurs/anatomy & histology , Herbivory , Fossils , Tooth/diagnostic imaging , Tooth/surgery , Tooth/anatomy & histology
6.
Commun Biol ; 7(1): 436, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600295

ABSTRACT

Oviraptorosaurians were a theropod dinosaur group that reached high diversity in the Late Cretaceous. Within oviraptorosaurians, the later diverging oviraptorids evolved distinctive crania which were extensively pneumatised, short and tall, and had a robust toothless beak, interpreted as providing a powerful bite for their herbivorous to omnivorous diet. The present study explores the ability of oviraptorid crania to resist large mechanical stresses compared with other theropods and where this adaptation originated within oviraptorosaurians. Digital 3D cranial models were constructed for the earliest diverging oviraptorosaurian, Incisivosaurus gauthieri, and three oviraptorids, Citipati osmolskae, Conchoraptor gracilis, and Khaan mckennai. Finite element analyses indicate oviraptorosaurian crania were stronger than those of other herbivorous theropods (Erlikosaurus and Ornithomimus) and were more comparable to the large, carnivorous Allosaurus. The cranial biomechanics of Incisivosaurus align with oviraptorids, indicating an early establishment of distinctive strengthened cranial biomechanics in Oviraptorosauria, even before the highly modified oviraptorid cranial morphology. Bite modelling, using estimated muscle forces, suggests oviraptorid crania may have functioned closer to structural safety limits. Low mechanical stresses around the beaks of oviraptorids suggest a convergently evolved, functionally distinct rhamphotheca, serving as a cropping/feeding tool rather than for stress reduction, when compared with other herbivorous theropods.


Subject(s)
Dinosaurs , Fossils , Animals , Skull/anatomy & histology , Dinosaurs/anatomy & histology , Herbivory , Diet
7.
Sci Rep ; 14(1): 6528, 2024 03 19.
Article in English | MEDLINE | ID: mdl-38499621

ABSTRACT

The Serrote do Letreiro Site, found on the northwest periphery of the Sousa Basin, Brazil, presents a remarkable convergence of paleontological and archaeological elements. It is constituted of sub-horizontal "lajeiros", or rock outcrops, intermingled with endemic Caatinga vegetation. The three prominent outcrops feature fossilized footprints of theropod, sauropod, and iguanodontian dinosaurs from the Early Cretaceous Period. Adjacent to these dinosaur tracks, indigenous petroglyphs adorn the surface. The petroglyphs, mainly characterized by circular motifs, maintain a striking resemblance to other petroglyphs found in the states of Paraíba and Rio Grande do Norte. This study primarily endeavors to delineate the site's major characteristics while concentrating on the relationship between the dinosaur footprints and the petroglyphs. It concurrently assesses the preservation status of this invaluable record, shedding light on its implications for the realms of paleontology, archaeology, and cultural heritage studies.


Subject(s)
Dinosaurs , Dolphins , Animals , Dinosaurs/anatomy & histology , Brazil , Paleontology , Archaeology , Fossils
8.
Commun Biol ; 7(1): 168, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38341492

ABSTRACT

Many modifications to the skull and brain anatomy occurred along the lineage encompassing non-avialan theropod dinosaurs and modern birds. Anatomical changes to the endocranium include an enlarged endocranial cavity, relatively larger optic lobes that imply elevated visual acuity, and proportionately smaller olfactory bulbs that suggest reduced olfactory capacity. Here, we use micro-computed tomographic (µCT) imaging to reconstruct the endocranium and its neuroanatomical features from an exceptionally well-preserved skull of Sinovenator changii (Troodontidae, Theropoda). While its overall morphology resembles the typical endocranium of other troodontids, Sinovenator also exhibits unique endocranial features that are similar to other paravian taxa and non-maniraptoran theropods. Landmark-based geometric morphometric analysis on endocranial shape of non-avialan and avialan dinosaurs points to the overall brain morphology of Sinovenator most closely resembling that of Archaeopteryx, thus indicating acquisition of avialan-grade brain morphology in troodontids and wide existence of such architecture in Maniraptora.


Subject(s)
Biological Evolution , Dinosaurs , Animals , Phylogeny , Dinosaurs/anatomy & histology , Fossils , Brain/diagnostic imaging , Brain/anatomy & histology
9.
BMC Ecol Evol ; 24(1): 20, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38336630

ABSTRACT

BACKGROUND: Living birds comprise the most speciose and anatomically diverse clade of flying vertebrates, but their poor early fossil record and the lack of resolution around the relationships of the major clades have greatly obscured extant avian origins. RESULTS: Here, I describe a Late Cretaceous bird from North America based on a fragmentary skeleton that includes cranial material and portions of the forelimb, hindlimb, and foot and is identified as a juvenile based on bone surface texture. Several features unite this specimen with crown Aves, but its juvenile status precludes the recognition of a distinct taxon. The North American provenance of the specimen supports a cosmopolitan distribution of early crown birds, clashes with the hypothesized southern hemisphere origins of living birds, and demonstrates that crown birds and their closest relatives coexisted with non-avian dinosaurs that independently converged on avian skeletal anatomy, such as the alvarezsaurids and dromaeosaurids. CONCLUSIONS: By revealing the ecological and biogeographic context of Cretaceous birds within or near the crown clade, the Lance Formation specimen provides new insights into the contingent nature of crown avian survival through the Cretaceous-Paleogene mass extinction and the subsequent origins of living bird diversity.


Subject(s)
Dinosaurs , Animals , Dinosaurs/anatomy & histology , Phylogeny , Ecosystem , Birds/anatomy & histology , North America , Skull/anatomy & histology
10.
Nat Ecol Evol ; 8(3): 591, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38378805
11.
Proc Natl Acad Sci U S A ; 121(8): e2306639121, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38346196

ABSTRACT

As a fundamental ecological aspect of most organisms, locomotor function significantly constrains morphology. At the same time, the evolution of novel locomotor abilities has produced dramatic morphological transformations, initiating some of the most significant diversifications in life history. Despite significant new fossil evidence, it remains unclear whether volant locomotion had a single or multiple origins in pennaraptoran dinosaurs and the volant abilities of individual taxa are controversial. The evolution of powered flight in modern birds involved exaptation of feathered surfaces extending off the limbs and tail yet most studies concerning flight potential in pennaraptorans do not account for the structure and morphology of the wing feathers themselves. Analysis of the number and shape of remex and rectrix feathers across a large dataset of extant birds indicates that the number of remiges and rectrices and the degree of primary vane asymmetry strongly correlate with locomotor ability revealing important functional constraints. Among these traits, phenotypic flexibility varies reflected by the different rates at which morphological changes evolve, such that some traits reflect the ancestral condition, whereas others reflect current locomotor function. While Mesozoic birds and Microraptor have remex morphologies consistent with extant volant birds, that of anchiornithines deviate significantly providing strong evidence this clade was not volant. The results of these analyses support a single origin of dinosaurian flight and indicate the early stages of feathered wing evolution are not sampled by the currently available fossil record.


Subject(s)
Biological Evolution , Dinosaurs , Animals , Phylogeny , Flight, Animal , Feathers/anatomy & histology , Locomotion , Dinosaurs/anatomy & histology , Fossils , Wings, Animal/anatomy & histology , Birds/anatomy & histology
12.
PLoS One ; 19(2): e0297637, 2024.
Article in English | MEDLINE | ID: mdl-38354167

ABSTRACT

Fossil deposits with exceptional preservation ("lagerstätten") provide important details not typically preserved in the fossil record, such that they hold an outsized influence on our understanding of biodiversity and evolution. In particular, the potential bias imparted by this so-called "lagerstätten effect" remains a critical, but underexplored aspect of reconstructing evolutionary relationships. Here, we quantify the amount of phylogenetic information available in the global fossil records of 1,327 species of non-avian theropod dinosaurs, Mesozoic birds, and fossil squamates (e.g., lizards, snakes, mosasaurs), and then compare the influence of lagerstätten deposits on phylogenetic information content and taxon selection in phylogenetic analyses to other fossil-bearing deposits. We find that groups that preserve a high amount of phylogenetic information in their global fossil record (e.g., non-avian theropods) are less vulnerable to a "lagerstätten effect" that leads to disproportionate representation of fossil taxa from one geologic unit in an evolutionary tree. Additionally, for each taxonomic group, we find comparable amounts of phylogenetic information in lagerstätten deposits, even though corresponding morphological character datasets vary greatly. Finally, we unexpectedly find that ancient sand dune deposits of the Late Cretaceous Gobi Desert of Mongolia and China exert an anomalously large influence on the phylogenetic information available in the squamate fossil record, suggesting a "lagerstätten effect" can be present in units not traditionally considered lagerstätten. These results offer a phylogenetics-based lens through which to examine the effects of exceptional fossil preservation on biological patterns through time and space, and invites further quantification of evolutionary information in the rock record.


Subject(s)
Dinosaurs , Lizards , Animals , Phylogeny , Fossils , Biological Evolution , Lizards/genetics , Lizards/anatomy & histology , Dinosaurs/genetics , Dinosaurs/anatomy & histology , Birds
13.
Sci Rep ; 14(1): 3665, 2024 02 13.
Article in English | MEDLINE | ID: mdl-38351204

ABSTRACT

In the Late Cretaceous, northern and southern hemispheres evolved distinct dinosaurian faunas. Titanosaurians and abelisaurids dominated the Gondwanan continents; hadrosaurids, ceratopsians and tyrannosaurs dominated North America and Asia. Recently, a lambeosaurine hadrosaurid, Ajnabia odysseus, was reported from the late Maastrichtian phosphates of the Oulad Abdoun Basin Morocco, suggesting dispersal between Laurasia and Gondwana. Here we report new fossils from the phosphates of Morocco showing lambeosaurines achieved high diversity in the late Maastrichtian of North Africa. A skull represents a new dwarf lambeosaurine, Minqaria bata. Minqaria resembles Ajnabia odysseus in size, but differs in the ventrally positioned jugal facet and sinusoidal toothrow. The animal is small, ~ 3.5 m long, but the fused braincase shows it was mature. A humerus and a femur belong to larger hadrosaurids, ~ 6 m long, implying at least three species coexisted. The diversity of hadrosaurids in Europe and Africa suggests a dispersal-driven radiation, with lambeosaurines diversifying to take advantage of low ornithischian diversity. African lambeosaurines are small compared to North American and Asia hadrosaurids however, perhaps due to competition with titanosaurians. Hadrosaurids are unknown from eastern Africa, suggesting Moroccan hadrosaurids may be part of a distinct insular fauna, and represent an island radiation.


Subject(s)
Dinosaurs , Animals , Morocco , Dinosaurs/anatomy & histology , Fossils , Skull/anatomy & histology , Africa, Northern , Phosphates , Phylogeny
14.
Nat Commun ; 15(1): 854, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38365765

ABSTRACT

Our knowledge of vertebrate functional evolution depends on inferences about joint function in extinct taxa. Without rigorous criteria for evaluating joint articulation, however, such analyses risk misleading reconstructions of vertebrate animal motion. Here we propose an approach for synthesizing raycast-based measurements of 3-D articular overlap, symmetry, and congruence into a quantitative "articulation score" for any non-interpenetrating six-degree-of-freedom joint configuration. We apply our methodology to bicondylar hindlimb joints of two extant dinosaurs (guineafowl, emu) and, through comparison with in vivo kinematics, find that locomotor joint poses consistently have high articulation scores. We then exploit this relationship to constrain reconstruction of a pedal walking stride cycle for the extinct dinosaur Deinonychus antirrhopus, demonstrating the utility of our approach. As joint articulation is investigated in more living animals, the framework we establish here can be expanded to accommodate additional joints and clades, facilitating improved understanding of vertebrate animal motion and its evolution.


Subject(s)
Dinosaurs , Walking , Animals , Joints , Hindlimb , Dinosaurs/anatomy & histology , Biomechanical Phenomena
15.
Anat Rec (Hoboken) ; 307(4): 1559-1593, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38197580

ABSTRACT

The complex constructions of land vertebrate skulls have inspired a number of functional analyses. In the present study, we provide a basic view on skull biomechanics and offer a framework for more general observations using advanced modeling approaches in the future. We concentrate our discussion on the cranial openings in the temporal skull region and work out two major, feeding-related factors that largely influence the shape of the skull. We argue that (1) the place where the most forceful biting is conducted and (2) the handling of resisting food (sideward movements) constitute the formation and shaping of either one or two temporal arcades surrounding these openings. Diversity in temporal skull anatomy among amniotes can be explained by specific modulations of these factors with different amounts of acting forces which inevitably lead to deposition or reduction of bone material. For example, forceful anterior bite favors an infratemporal bar, whereas forceful posterior bite favors formation of an upper temporal arcade. Transverse forces (inertia and resistance of seized objects) as well as neck posture also influence the shaping of the temporal region. Considering their individual skull morphotypes, we finally provide hypotheses on the feeding adaptation in a variety of major tetrapod groups. We did not consider ligaments, internal bone structure, or cranial kinesis in our considerations. Involving those in quantitative tests of our hypotheses, such as finite element system synthesis, will provide a comprehensive picture on cranial mechanics and evolution in the future.


Subject(s)
Dinosaurs , Skull , Animals , Biomechanical Phenomena , Skull/anatomy & histology , Head/anatomy & histology , Dinosaurs/anatomy & histology , Bite Force , Fossils
16.
Anat Rec (Hoboken) ; 307(4): 1001-1010, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38263641

ABSTRACT

Lagerpeton chanarensis is an early avemetatarsalian from the lower Carnian (lowermost Upper Triassic) levels of the Chañares Formation, La Rioja Province, Argentina. Lagerpeton and its kin were traditionally interpreted as dinosaur precursors of cursorial habits, with a bipedal posture and parasagittal gait. Some authors also speculated saltatorial capabilities for this genus. Recent analyses indicate that lagerpetids are early-diverging pterosauromorphs, a hypothesis that invites a review of most aspects of their anatomy and function. A revision of available specimens and additional preparation of previously known individuals indicate that Lagerpeton lacked a parasagittal gait and was probably a sprawling archosaur. This latter inference is based on the femoral head articulation with the acetabulum. The acetabular rim has a strongly laterally projected posteroventral antitrochanteric corner, which results in a position of the legs that recalls that of sprawling living reptiles, such as lizards, and departs from the parasagittally positioned limbs of dinosaurs. This may indicate that early pterosauromorphs had a sprawling posture of their hindlegs, casting doubts on the significance of bipedal posture and parasagittal gait for the radiation of early ornithodirans, given that both traits have been regarded as key features that triggered the ecological and evolutionary success of the clade. Our results bolster recent claims of a high ecomorphological diversity among early avemetatarsalians.


Subject(s)
Dinosaurs , Lizards , Animals , Phylogeny , Fossils , Biological Evolution , Lower Extremity/anatomy & histology , Dinosaurs/anatomy & histology , Gait , Lizards/anatomy & histology , Posture
17.
Anat Rec (Hoboken) ; 307(4): 890-924, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38263705

ABSTRACT

Tarjadia ruthae is a quadrupedal terrestrial pseudosuchian from the Middle-early Upper Triassic of the Chañares Formation, La Rioja Province, Argentina. Originally, this species was identified as an indeterminate archosaur and later as a doswelliid archosauriform based on very fragmentary specimens characterized by the ornamentation of the skull roof and osteoderms. Additional specimens (including skulls and postcrania) recovered in the last decade show that Tarjadia is an erpetosuchid, an enigmatic pseudosuchian group composed of six species registered in Middle-Upper Triassic continental units of Tanzania, Germany, Scotland, North America, Brazil, and Argentina. Tarjadia ruthae from Argentina and Parringtonia gracilis from Tanzania are the best preserved and more abundant species. Although the monophyly of Erpetosuchidae is well supported, alternative high-level positions within Archosauria have been suggested, such as sister taxon to Crocodylomorpha, Aetosauria, or Ornithosuchidae. In order to improve the knowledge about the erpetosuchids, we performed a detailed description and paleoneurological reconstruction of the skull of Tarjadia ruthae, based on two articulated partial skulls (CRILAR-Pv 478 and CRILAR-Pv 495) and other fragmentary specimens. We analyzed the stratigraphic and geographic occurrence of historical and new specimens of Tarjadia and provided a new emended diagnosis (the same for the genus as for the species, due to monotypy) along with a comparative description of the cranial endocast. The skull of Tarjadia is robust, with a thick and strongly ornamented skull roof, triangular in dorsal view, with concave lateral margins at mid-length that form an abrupt widened posterior region. The external nares are the smallest openings of the skull. The antorbital fossa is deeply excavated and has a small heart-shaped fenestra with both lobes pointing anteriorly. The supratemporal fenestrae are as large and rounded as the orbits, and the infratemporal fenestrae are L-shaped with an extensive excavation along the jugal, quadratojugal and quadrate. The hemimandibles are low, slightly concave on the dentigerous region and strongly convex on the posterior region, conferring them a S-shaped profile in dorsal view. The external mandibular fenestra is small and elliptic, being twice longer than high. The maxillary dentition is restricted to the anterior to mid region of the rostrum. Since the braincase of both specimens is partially damaged, the dorsal surface of the brain could not be entirely reconstructed. As a result, the endocast is anteroposteriorly elongated and seemingly flat, and the cephalic flexure seems to be lower than expected for a suchian. The labyrinth is twice wider than high, the semicircular canals are remarkably straight, and the anterior canal is longer than the posterior one.


Subject(s)
Dinosaurs , Animals , Phylogeny , Dinosaurs/anatomy & histology , Argentina , Osteology , Fossils , Skull/anatomy & histology
18.
Anat Rec (Hoboken) ; 307(4): 1175-1238, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38258540

ABSTRACT

A vast array of pseudosuchian body plans evolved during the diversification of the group in the Triassic Period, but few can compare to the toothless, long-necked, and bipedal shuvosaurids. Members of this clade possess theropod-like character states mapped on top of more plesiomorphic pseudosuchian character states, complicating our understanding of the evolutionary history of the skeleton. One taxon in this clade, Shuvosaurus inexpectatus has been assigned to various theropod dinosaur groups based on a partial skull and referred material and its postcranium was assigned to a different taxon in Pseudosuchia. After the discovery of a skeleton of a shuvosaurid with a Shuvosaurus-like skull and a pseudosuchian postcranial skeleton, it became clear Shuvosaurus inexpectatus was a pseudosuchian. Nevertheless, a number of questions have arisen about what skeletal elements belonged to Shuvosaurus inexpectatus, the identification of skull bones, and the resulting implication for pseudosuchian evolution. Here, we detail the anatomy of the skeleton Shuvosaurus inexpectatus through a critical lens, parse out the bones that belong to the taxon or those that clearly do not or may not belong to the taxon, rediagnose the taxon based on these revisions, and compare the taxon to other archosaurs. We find that Shuvosaurus inexpectatus possesses similar anatomy to other shuvosaurids but parts of the skeleton of the taxon clarifies the anatomy of the group given that they are preserved in Shuvosaurus inexpectatus but not in others. Shuvosaurus inexpectatus is represented by at least 14 individuals from the West Texas Post Quarry (Adamanian holochronozone) and all Shuvosaurus inexpectatus skeletal material from the locality pertains to skeletally immature individuals. All of the skeletons are missing most of the neural arches, ribs, and most of the forelimb. We only recognize Shuvosaurus inexpectatus from the Post Quarry and all other material assigned to the taxon previously is better assigned to the broader group Shuvosauridae.


Subject(s)
Dinosaurs , Osteology , Animals , Dinosaurs/anatomy & histology , Fossils , Phylogeny , Skull/anatomy & histology , Texas
19.
J Anat ; 244(6): 959-976, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38284134

ABSTRACT

Phytosaurs are a group of Upper Triassic semi-aquatic archosauriform reptiles. Their variable skull morphology forms the foundation of our understanding of their relationships and paleoecology, while only a few studies have focused on demonstrating the existence of postcranial variation. The numbers of vertebrae in the sacrum are thought to vary from two, the plesiomorphic condition for archosauriforms, to three, with the addition of a sacralized dorsal (i.e., dorsosacral) vertebra. In this study, we demonstrate the presence of a sacralized first caudal (i.e., caudosacral) vertebra in a sacrum belonging to Machaeroprosopus mccauleyi. We rule out taphonomic distortion or pathology as explanations for the inclusion of this element in the sacrum, suggesting instead that it occurred through modifications of the same developmental processes that likely produced dorsosacral vertebrae in phytosaurs. Additionally, we show that a dorsosacral vertebra is common in phytosaur specimens from the Chinle Formation and Dockum Group of the southwestern United States and suggest that it may be widespread among phytosaurs. The addition of sacral vertebrae potentially aided adaptation to larger body sizes or more terrestrial lifestyles in certain taxa.


Subject(s)
Fossils , Sacrum , Animals , Sacrum/anatomy & histology , Dinosaurs/anatomy & histology , Biological Evolution , Reptiles/anatomy & histology , Skull/anatomy & histology , Phylogeny
20.
Proc Biol Sci ; 291(2015): 20231713, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38229513

ABSTRACT

Teeth evolved early in vertebrate evolution, and their morphology reflects important specializations in diet and ecology among species. The toothless jaws (edentulism) in extant birds likely coevolved with beak keratin, which functionally replaced teeth. However, extinct dinosaurs lost teeth multiple times independently and exhibited great variation in toothrow distribution and rhamphotheca-like keratin structures. Here, we use rostral jawbone surface texture as a proxy for rostral keratin covering and phylogenetic comparative models to test for the influence of rostral keratin on toothrow distribution in Mesozoic dinosaurs. We find that the evolution of rostral keratin covering explains partial toothrow reduction but not jaw toothlessness. Toothrow reduction preceded the evolution of rostral keratin cover in theropods. Non-theropod dinosaurs evolved continuous toothrows despite evolving rostral keratin covers (e.g. some ornithischians and sauropodomorphs). We also show that rostral keratin covers did not significantly increase the evolutionary rate of tooth loss, which further delineates the antagonistic relationship between these structures. Our results suggest that the evolution of rostral keratin had a limited effect on suppressing tooth development. Independent changes in jaw development may have facilitated further tooth loss. Furthermore, the evolution of strong chemical digestion, a gizzard, and a dietary shift to omnivory or herbivory likely alleviated selective pressures for tooth development.


Subject(s)
Dinosaurs , Tooth Loss , Tooth , Animals , Phylogeny , Biological Evolution , Dinosaurs/anatomy & histology , Keratins , Fossils , Tooth/anatomy & histology
SELECTION OF CITATIONS
SEARCH DETAIL
...