Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.752
Filter
1.
Cells ; 13(15)2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39120264

ABSTRACT

Adipose tissue beiging refers to the process by which beige adipocytes emerge in classical white adipose tissue depots. Beige adipocytes dissipate chemical energy and secrete adipokines, such as classical brown adipocytes, to improve systemic metabolism, which is beneficial for people with obesity and metabolic diseases. Cold exposure and ß3-adrenergic receptor (AR) agonist treatment are two commonly used stimuli for increasing beige adipocytes in mice; however, their underlying biological processes are different. Transcriptional analysis of inguinal white adipose tissue (iWAT) has revealed that changes in extracellular matrix (ECM) pathway genes are specific to cold exposure. Hyaluronic acid (HA), a non-sulfated linear polysaccharide produced by nearly all cells, is one of the most common components of ECM. We found that cold exposure significantly increased iWAT HA levels, whereas the ß3-AR agonist CL316,243 did not. Increasing HA levels in iWAT by Has2 overexpression significantly increases cold-induced adipose tissue beiging; in contrast, decreasing HA by Spam1 overexpression, which encodes a hyaluronidase that digests HA, significantly decreases cold-induced iWAT beiging. All these data implicate a role of HA in promoting adipose tissue beiging, which is unique to cold exposure. Given the failure of ß3-AR agonists in clinical trials for obesity and metabolic diseases, increasing HA could serve as a new approach for recruiting more beige adipocytes to combat metabolic diseases.


Subject(s)
Adipose Tissue, White , Cold Temperature , Hyaluronic Acid , Hyaluronic Acid/metabolism , Animals , Mice , Adipose Tissue, White/metabolism , Adipose Tissue, White/drug effects , Mice, Inbred C57BL , Male , Adipose Tissue, Beige/metabolism , Adipocytes, Beige/metabolism , Adipocytes, Beige/drug effects , Extracellular Matrix/metabolism , Dioxoles/pharmacology , Receptors, Adrenergic, beta-3/metabolism , Adrenergic beta-3 Receptor Agonists/pharmacology
2.
Int J Mol Sci ; 25(15)2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39125929

ABSTRACT

In this work, liposomes loaded with the fungicide, Fludioxonil (FLUD), for the containment of fungal diseases in agriculture were developed. Three types of vesicles with different compositions were compared: (I) plain vesicles, composed of soy phosphatidylcholine and cholesterol; (II) PEG-coated vesicles, with an additional polyethylene glycol coating; and (III) cationic vesicles, containing didodecyldimethylammonium bromide. Nanometric-sized vesicles were obtained both by the micelle-to-vesicle transition method and by the extrusion technique, and encapsulation efficiency, drug loading content, and Zeta potential were determined for all the samples. The extruded and PEGylated liposomes were the most stable over time and together with the cationic ones showed a significant prolonged FLUD release capacity. The liposomes' biological activity was evaluated on conidial germination, germ tube elongation and colony radial growth of the ascomycete Botrytis cinerea, a phytopathogenic fungus affecting worldwide many important agricultural crops in the field as well as in the postharvest phase. The extruded and PEGylated liposomes showed greater effectiveness in inhibiting germ tube elongation and colony radial growth of the fungal pathogen, even at 0.01 µg·mL-1, the lowest concentration assessed.


Subject(s)
Botrytis , Dioxoles , Fungicides, Industrial , Liposomes , Plant Diseases , Liposomes/chemistry , Botrytis/drug effects , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Dioxoles/pharmacology , Dioxoles/chemistry , Dioxoles/administration & dosage , Plant Diseases/microbiology , Plant Diseases/prevention & control , Polyethylene Glycols/chemistry , Agriculture/methods , Quaternary Ammonium Compounds/chemistry , Quaternary Ammonium Compounds/pharmacology , Phosphatidylcholines/chemistry , Spores, Fungal/drug effects , Pyrroles
3.
Curr Microbiol ; 81(9): 281, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39060398

ABSTRACT

Brown rot, caused by Monilinia species, is a destructive disease of pome and stone fruits that can lead to significant losses in production. Disease management is mainly based on fungicide applications during the growing season. Fludioxonil, a "new-generation reduced-risk fungicide", is one of the most important fungicide used. The objectives of the present study were to compare and determine the toxicity of fludioxonil to selected M. laxa, M. fructigena and M. fructicola isolates, to test its effectiveness in detached fruits and to assess its effectiveness under practical control conditions. A total of 27 isolates (10 isolates of M. laxa, 8 of M. fructigena and 9 of M. fructicola) were tested for sensitivity to fludioxonil in vitro. Isolates from each species exhibited a homogeneous response to the fungicide, while differences among the different species were determined. Based on calculated resistance factors (RF), the examined isolates were classified into two categories: sensitive and moderately resistant. In vivo testing of the effectiveness of the label concentration of fludioxonil on detached fruit did not reveal differences between isolates classified into different sensitivity categories; fludioxonil used at the label concentration (0.1%) inhibited decay development 93.5 to 100%, regardless of the isolate category. Field trials revealed the very high efficacy of fludioxonil in preventing brown rot on fruits, ranging from 92.2 to 100 for peach, 90.7 to 97.3 for plum and 84.9 to 91.9% for sour cherry. In conclusion, fludioxonil was highly effective according to in vitro sensitivity tests and when used under practical field conditions for brown rot control.


Subject(s)
Ascomycota , Dioxoles , Fungicides, Industrial , Plant Diseases , Pyrroles , Fungicides, Industrial/pharmacology , Dioxoles/pharmacology , Pyrroles/pharmacology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Ascomycota/drug effects , Fruit/microbiology , Drug Resistance, Fungal
4.
Nutr Res ; 128: 14-23, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39002358

ABSTRACT

Sesamolin, a lignan isolated from sesame oils, has been found to possess neuroprotective, anticancer, and free radical scavenging properties. We hypothesized that sesamolin could stimulate the activity of nuclear factor erythroid-derived 2-like 2 (Nrf2) and inhibit adipocyte differentiation of preadipocytes. The objective of this study was to investigate effects of sesamolin on adipocyte differentiation and its underlying molecular mechanisms. In this study, we determined the effects of treatment with 25 to 100 µM sesamolin on adipogenesis in cell culture systems. Sesamolin inhibited lipid accumulation and suppressed the expression of adipocyte markers during adipocyte differentiation of C3H10T1/2, 3T3-L1, and primary preadipocytes. Mechanism studies revealed that sesamolin increased Nrf2 protein expression without inducing its mRNA, leading to an increase in the expression of Nrf2 target genes such as heme oxygenase 1 and NAD(P)H:quinone oxidoreductase 1 (Nqo1) in C3H10T1/2 adipocytes and mouse embryonic fibroblasts. These effects were significantly attenuated in Nrf2 knockout (KO) mouse embryonic fibroblasts, indicating that effects of sesamolin were dependent on Nrf2. In H1299 human lung cancer cells with KO of Kelch like-ECH-associated protein 1 (Keap1), a negative regulator of Nrf2, sesamolin failed to further increase Nrf2 protein expression. However, upon reexpressing Keap1 in Keap1 KO cells, the ability of sesamolin to elevate Nrf2 protein expression was restored, highlighting the crucial role of Keap1 in sesamolin-induced Nrf2 activation. Taken together, these findings show that sesamolin can inhibit adipocyte differentiation through Keap1-mediated Nrf2 activation.


Subject(s)
3T3-L1 Cells , Adipocytes , Adipogenesis , Cell Differentiation , Kelch-Like ECH-Associated Protein 1 , NAD(P)H Dehydrogenase (Quinone) , NF-E2-Related Factor 2 , NF-E2-Related Factor 2/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Animals , Mice , Adipocytes/drug effects , Adipocytes/metabolism , Adipogenesis/drug effects , Cell Differentiation/drug effects , NAD(P)H Dehydrogenase (Quinone)/metabolism , Dioxoles/pharmacology , Mice, Knockout , Lignans/pharmacology , Humans , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/genetics , Fibroblasts/drug effects , Fibroblasts/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics
5.
Ren Fail ; 46(2): 2378212, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39011587

ABSTRACT

PURPOSE: The present study investigated the nephron-testicular protective effects of sesamin against cisplatin (CP)-induced acute renal and testicular injuries. METHODS: Thirty-two male Wistar rats were allocated to receive carboxymethylcellulose (0.5%, as sesamin vehicle), CP (a single i.p. 5 mg/kg dose), CP plus sesamin at 10 or 20 mg/kg orally for 10 days. RESULTS: Data analysis showed significant increases in serum urea, creatinine, interleukin (IL)-1, IL-6, and tumor necrosis factor-α (TNF-α), as well as renal and testicular tissue malondialdehyde and nitric-oxide concentrations in CP-intoxicated rats in comparison to control animals. On the contrary, rats treated with CP only exhibited significantly lower (p < .05) serum testosterone, tissue glutathione, and activities of endogenous antioxidant enzymes compared to control rats. Histopathologically examining CP-intoxicated rats' tissues using H&E and PAS stains showed atrophied glomeruli, interstitial inflammatory cells, atypic tubular epithelium with focal apoptosis, and reduced mucopolysaccharide content. Further, immunohistochemical staining of the same group revealed an increase in p53 and cyclooxygenase-II (Cox-II) expression in renal and testicular tissues. Treatment with sesamin alleviated almost all the changes mentioned above in a dose-dependent manner, with the 20 mg/kg dose restoring several parameters' concentrations to normal ranges. CONCLUSIONS: In brief, sesamin could protect the kidneys and testes against CP toxicity through its antioxidant, anti-inflammatory, and anti-apoptotic effects.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Apoptosis , Cisplatin , Dioxoles , Kidney , Lignans , Rats, Wistar , Testis , Animals , Male , Lignans/pharmacology , Lignans/therapeutic use , Cisplatin/toxicity , Cisplatin/adverse effects , Rats , Dioxoles/pharmacology , Antioxidants/pharmacology , Testis/drug effects , Testis/pathology , Testis/metabolism , Apoptosis/drug effects , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Anti-Inflammatory Agents/pharmacology , Oxidative Stress/drug effects , Acute Kidney Injury/chemically induced , Acute Kidney Injury/prevention & control , Acute Kidney Injury/pathology , Acute Kidney Injury/metabolism , Antineoplastic Agents/toxicity
6.
FASEB J ; 38(14): e23835, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39037555

ABSTRACT

The prevalence of obesity-induced non-alcoholic fatty liver disease (NAFLD) and insulin resistance is increasing worldwide. We previously demonstrated that sesaminol increases thermogenesis in adipocytes, improves insulin sensitivity, and mitigates obesity in mice. In this study, we demonstrated that sesaminol increased mitochondrial activity and reduced ROS production in hepatocytes. Therefore, we delve into the metabolic action of sesaminol in obesity-induced NAFLD or metabolic dysfunction-associated liver disease (MAFLD). Here, we report that sesaminol induces OXPHOS proteins and mitochondrial function in vivo. Further, our data suggest that sesaminol administration reduces hepatic triacylglycerol accumulation and LDL-C levels. Prominently, the lipidomics analyses revealed that sesaminol administration decreased the major phospholipids such as PC, PE, PI, CL, and PS to maintain membrane lipid homeostasis in the liver upon HFD challenge. Besides, SML reduced ePC and SM molecular species and increased PA levels in the HFD-fed mice. Also, sesaminol renders anti-inflammatory properties and dampens fibrosis markers in the liver. Remarkably, SML lowers the hepatic levels of ALT and AST enzymes and alleviates NAFLD in diet-induced obese mice. The molecular docking analysis identifies peroxisome proliferator-activated receptors as potential endogenous receptors for sesaminol. Together, our study demonstrates plant lignan sesaminol as a potential small molecule that alters the molecular species of major phospholipids, including sphingomyelin and ether-linked PCs in the liver tissue, improves metabolic parameters, and alleviates obesity-induced fatty liver disease in mice.


Subject(s)
Dioxoles , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease , Obesity , Phospholipids , Animals , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/etiology , Mice , Obesity/metabolism , Obesity/drug therapy , Obesity/complications , Male , Phospholipids/metabolism , Dioxoles/pharmacology , Dioxoles/therapeutic use , Lignans/pharmacology , Lignans/therapeutic use , Liver/metabolism , Liver/drug effects , Molecular Docking Simulation , Lipid Metabolism/drug effects , Humans , Diet, High-Fat/adverse effects , Hepatocytes/metabolism , Hepatocytes/drug effects , Furans
7.
Int Immunopharmacol ; 138: 112585, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-38950456

ABSTRACT

The mechanism of early tumor recurrence after incomplete microwave ablation (iMWA) is poorly understood. The anti-programmed cell death protein 1 (anti-PD-1) monotherapy is reported to be ineffective to prevent the progression of residual tumor resulted from iMWA. Transforming growth factor-ß (TGFß) signaling pathway plays an important role in tumorigenesis and development. We assume blocking transforming growth factor-ß receptor (TGFßR) after incomplete iMWA may synergistically enhance the effect of anti-PD-1 antibody to prevent the progression of residual tumor. We construct an iMWA model with mice harboring Hepa1-6 derived xenograft. The Tgfb1 expression and phosphorylated-Smad3 protein expression is upregulated in the residual tumor after iMWA. With the application of TGFßR inhibitor SB431542, the cell proliferation potential, the tumor growth, the mRNA expression of epithelial mesenchymal transition (EMT) markers including Cdh2, and Vim, and cancer stem cell marker Epcam, and the infiltrating Treg cells are reduced in the residual tumor tissue. In addition, iMWA combined with TGFßR blocker and anti-PD-1 antibody further decreases the cell proliferation, tumor growth, expression of EMT markers and cancer stem cell marker, and the infiltrating Treg cells in the residual tumor tissue. Blocking TGFßR may alleviate the pro-tumoral effect of tumor microenvironment thereby significantly prevents the progression of residual tumor tissue. Our study indicates that blocking TGFßR may be a novel therapeutic strategy to enhance the effect of anti-PD-1 antibody to prevent residual hepatocellular carcinoma (HCC) progression after iMWA.


Subject(s)
Carcinoma, Hepatocellular , Dioxoles , Liver Neoplasms , Programmed Cell Death 1 Receptor , Receptors, Transforming Growth Factor beta , Animals , Humans , Mice , Benzamides/pharmacology , Carcinoma, Hepatocellular/drug therapy , Cell Line, Tumor , Cell Proliferation/drug effects , Dioxoles/pharmacology , Disease Models, Animal , Epithelial-Mesenchymal Transition/drug effects , Immune Checkpoint Inhibitors/pharmacology , Liver Neoplasms/drug therapy , Mice, Inbred BALB C , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Receptors, Transforming Growth Factor beta/antagonists & inhibitors , T-Lymphocytes, Regulatory/immunology , Transforming Growth Factor beta1/metabolism , Tumor Microenvironment , Xenograft Model Antitumor Assays
8.
Exp Lung Res ; 50(1): 136-145, 2024.
Article in English | MEDLINE | ID: mdl-39033404

ABSTRACT

Background: Macrophages constitute the main part of infiltrating immune cells in Malignant pleural mesothelioma (MPM) and abnormally high ratios of M2 macrophages are present in both pleural effusion and tissue samples of MPM patients. Whether MPM cells affect formation of M2 macrophages is poorly understood. In this study, we focused on identification of MPM-cells-derived soluble factors with M2-promoting effects. Methods: Media of malignant pleural mesothelioma cells were collected and soluble factors affecting macrophages were analyzed by mass spectrometry. TGF-ß receptor inhibitor SB431542 was used as the entry point to explore the downstream mechanism of action by qRT-PCR, WB and immunofluorescence. Results: The serum-free culture media collected from the human MPM cells Meso1 and Meso2 significantly enhanced expression of the M2 signature molecules including IL-10, TGF-ß and CD206 in the human macrophages THP-1, while the culture medium of the human MPM cells H2452 did not show such M2-promoting effects. Analysis of proteins by mass spectrometry and ELISA suggested that Leucine rich α2 glycoprotein 1(LRG1) was a potential candidate. LRG1 time- and dose-dependently increased expression of the M2 signature molecules, confirming its M2-promoting effects. Furthermore, LRG1's M2-promoting effects were reduced by the TGF-ß receptor inhibitor SB431542, and LRG1 increased phosphorylation of Smad2, indicating that M2-promoting effects of LRG1 were via the TGF-ß receptor/Smad2 signaling pathway. Conclusions: Our results provide a potential M2-promoting new member, LRG1, which contributes to the immune escape of MPM via the TGF-ß receptor/Smad2 signaling pathway.


Subject(s)
Macrophages , Mesothelioma, Malignant , Humans , Macrophages/metabolism , Macrophages/drug effects , Mesothelioma, Malignant/metabolism , Mesothelioma, Malignant/drug therapy , Glycoproteins/metabolism , Glycoproteins/pharmacology , Cell Line, Tumor , Pleural Neoplasms/metabolism , Pleural Neoplasms/pathology , Phenotype , Smad2 Protein/metabolism , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Signal Transduction , Transforming Growth Factor beta/metabolism , Interleukin-10/metabolism , Benzamides , Dioxoles
9.
mBio ; 15(7): e0118424, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38832777

ABSTRACT

Group III hybrid histidine kinases are fungal-specific proteins and part of the multistep phosphorelay, representing the initial part of the high osmolarity glycerol (HOG) pathway. TcsC, the corresponding kinase in Aspergillus fumigatus, was expected to be a cytosolic protein but is targeted to the nucleus. Activation of TcsC by the antifungal fludioxonil has lethal consequences for the fungus. The agent triggers a fast and TcsC-dependent activation of SakA and later on a redistribution of TcsC to the cytoplasm. High osmolarity also activates TcsC, which then exits the nucleus or concentrates in spot-like, intra-nuclear structures. The sequence corresponding to the N-terminal 208 amino acids of TcsC lacks detectable domains. Its loss renders TcsC cytosolic and non-responsive to hyperosmotic stress, but it has no impact on the antifungal activity of fludioxonil. A point mutation in one of the three putative nuclear localization sequences, which are present in the N-terminus, prevents the nuclear localization of TcsC, but not its ability to respond to hyperosmotic stress. Hence, this striking intracellular localization is no prerequisite for the role of TcsC in the adaptive response to hyperosmotic stress, instead, TcsC proteins that are present in the nuclei seem to modulate the cell wall composition of hyphae, which takes place in the absence of stress. The results of the present study underline that the spatiotemporal dynamics of the individual components of the multistep phosphorelay is a crucial feature of this unique signaling hub. IMPORTANCE: Signaling pathways enable pathogens, such as Aspergillus fumigatus, to respond to a changing environment. The TcsC protein is the major sensor of the high osmolarity glycerol (HOG) pathway of A. fumigatus and it is also the target of certain antifungals. Insights in its function are therefore relevant for the pathogenicity and new therapeutic treatment options. TcsC was expected to be cytoplasmic, but we detected it in the nucleus and showed that it translocates to the cytoplasm upon activation. We have identified the motif that guides TcsC to the nucleus. An exchange of a single amino acid in this motif prevents a nuclear localization, but this nuclear targeting is no prerequisite for the TcsC-mediated stress response. Loss of the N-terminal 208 amino acids prevents the nuclear localization and renders TcsC unable to respond to hyperosmotic stress demonstrating that this part of the protein is of crucial importance.


Subject(s)
Aspergillus fumigatus , Cell Nucleus , Dioxoles , Fungal Proteins , Histidine Kinase , Pyrroles , Aspergillus fumigatus/genetics , Aspergillus fumigatus/enzymology , Aspergillus fumigatus/metabolism , Aspergillus fumigatus/drug effects , Histidine Kinase/metabolism , Histidine Kinase/genetics , Histidine Kinase/chemistry , Cell Nucleus/metabolism , Pyrroles/pharmacology , Pyrroles/metabolism , Dioxoles/pharmacology , Dioxoles/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungal Proteins/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/metabolism , Osmotic Pressure , Cytoplasm/metabolism , Protein Transport , Gene Expression Regulation, Fungal , Osmolar Concentration , Signal Transduction
10.
Drug Des Devel Ther ; 18: 2021-2032, 2024.
Article in English | MEDLINE | ID: mdl-38863768

ABSTRACT

In the era of single and combination maintenance therapies as well as platinum and Poly (ADP-ribose) polymerase inhibitors (PARPi) resistance, the choice of subsequent treatments following first-line platinum-based chemotherapy in recurrent ovarian cancer (ROC) patients has become increasingly complex. Within the ovarian cancer treatment algorithm, particularly in the emerging context of PARPi resistance, the role of trabectedin, in combination with pegylated liposomal doxorubicin (PLD) still preserves its significance. This paper offers valuable insights into the multifaceted role and mechanism of action of trabectedin in ROC. The main results of clinical trials and studies involving trabectedin/PLD, along with hints of Breast Cancer genes (BRCA)-mutated and BRCAness phenotype cases, are critically discussed. Moreover, this review provides and contextualizes potential scenarios of administering trabectedin in combination with PLD in ROC, according to established guidelines and beyond.


Subject(s)
Ovarian Neoplasms , Trabectedin , Trabectedin/therapeutic use , Trabectedin/pharmacology , Trabectedin/administration & dosage , Humans , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Female , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use , Antineoplastic Agents, Alkylating/administration & dosage , Tetrahydroisoquinolines/pharmacology , Tetrahydroisoquinolines/therapeutic use , Tetrahydroisoquinolines/administration & dosage , Dioxoles/pharmacology , Dioxoles/therapeutic use , Dioxoles/administration & dosage , Doxorubicin/pharmacology , Doxorubicin/administration & dosage , Doxorubicin/analogs & derivatives , Polyethylene Glycols/administration & dosage , Polyethylene Glycols/chemistry , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
11.
Food Chem ; 457: 140079, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-38901343

ABSTRACT

The unknown effect of sesame lignans on aroma formation in sesame oil via the Maillard reaction (MR) and lipid oxidation was investigated. Sesamin, sesamolin, or sesamol was added to 3 models: lysine+glucose (MR), cold-pressed sesame oil (SO), and MR + SO, and were heated at 120 °C for 60 min. All three lignans suppressed SO oxidation while increasing DPPH scavenging ability (p < 0.05). Lignans increased depletions of lysine and glucose and MR browning (p < 0.05). Lignans reduced most aroma-active pyrazines, aldehydes, ketones, alcohols, and esters (p < 0.05). Sesamol and sesamolin increased perceptions of the preferable aromas of nutty, roasted sesame, and popcorn while reducing the undesirable green and rancid aromas (p < 0.05). Sesamol demonstrated a stronger effect on lipid oxidation, MR browning, aroma formation, and sensory perception than sesamin and sesamolin. This study suggests that sesame lignans can modulate aroma formation and sensory perception of sesame oil by interacting with the MR and lipid oxidation pathways.


Subject(s)
Lignans , Maillard Reaction , Odorants , Oxidation-Reduction , Sesame Oil , Sesamum , Lignans/chemistry , Sesame Oil/chemistry , Sesamum/chemistry , Odorants/analysis , Humans , Phenols/chemistry , Dioxoles/chemistry , Benzodioxoles/chemistry
12.
Pest Manag Sci ; 80(9): 4746-4756, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38816914

ABSTRACT

BACKGROUND: Fludioxonil is a fungicide used to control gray mold. However, the frequency of resistance in the field is low, and highly resistant strains are rarely isolated. The biological fitness of the resistant strain is lower than that of the wild strain. Therefore, the molecular mechanism underlying the decrease in the fitness of the fludioxonil-resistant strain of Botrytis cinerea was explored to provide a theoretical basis for resistance monitoring and management. RESULTS: Transcriptome analysis was performed on five different-point mutant resistant strains of fludioxonil, focusing on mining and screening candidate genes that lead to reduced fitness of the resistant strains and the functional verification of these genes. The differentially expressed genes (DEGs) of the five point-mutation resistant strains intersected with 1869 DEGs. Enrichment analysis showed that three downregulated genes (Bcin05g07030, Bcgad1, and Bcin03g05840) were enriched in multiple metabolic pathways and were downregulated in both domesticated strains. Bcin05g07030 and Bcin03g05840 were involved in mycelial growth and development, pathogenicity, and conidial yield, and negatively regulated oxidative stress and cell wall synthesis. Bcgad1 was involved in mycelial growth and development, conidial yield, oxidative stress, and cell wall synthesis. Furthermore, Bcin05g07030 was involved in osmotic stress and spore germination, whereas Bcin03g05840 and Bcgad1 negatively regulated osmotic stress and cell wall integrity. CONCLUSION: These results enable us to further understand the molecular mechanism underlying the decrease in the biological fitness of B. cinerea fludioxonil-resistant strains. © 2024 Society of Chemical Industry.


Subject(s)
Botrytis , Dioxoles , Drug Resistance, Fungal , Fungicides, Industrial , Gene Expression Profiling , Pyrroles , Botrytis/genetics , Botrytis/drug effects , Fungicides, Industrial/pharmacology , Drug Resistance, Fungal/genetics , Pyrroles/pharmacology , Dioxoles/pharmacology , Genetic Fitness , Transcriptome
13.
Anticancer Res ; 44(6): 2359-2367, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38821601

ABSTRACT

BACKGROUND/AIM: The alkylating agent trabectedin, which binds the minor groove of DNA, is second-line therapy for soft-tissue sarcoma but has only moderate efficacy. The aim of the present study was to determine the synergistic efficacy of recombinant methioninase (rMETase) and trabectedin on fibrosarcoma cells in vitro, compared with normal fibroblasts. MATERIALS AND METHODS: HT1080 human fibrosarcoma cells expressing green fluorescent protein (GFP) in the nucleus and red fluorescent protein (RFP) in the cytoplasm and Hs27 normal human fibroblasts, were used. Each cell line was cultured in vitro and divided into four groups: no-treatment control; trabectedin treated; rMETase treated; and trabectedin plus rMETase treated. The dual-color HT1080 cells were used to quantitate nuclear fragmentation in each treatment group. RESULTS: The combination of rMETase and trabectedin was highly synergistic to decrease HT1080 cell viability. In contrast, there was no synergy on Hs27 cells. Moreover, nuclear fragmentation occurred synergistically with the combination of trabectedin and rMETase on dual-color HT1080 cells. CONCLUSION: The combination treatment of trabectedin plus rMETase was highly synergistic on fibrosarcoma cells in vitro suggesting that the combination can improve the outcome of trabectedin alone in future clinical studies. The lack of synergy of rMETase and trabectedin on normal fibroblasts suggests the combination is not toxic to normal cells. Synergy of the two drugs may be due to the high rate of nuclear fragmentation on treated HT1080 cells, and the late-S/G2 cell-cycle block of cancer cells by rMETase, which is a target for trabectedin. The results of the present study suggest the future clinical potential of the combination of rMETase and trabectedin for soft-tissue sarcoma.


Subject(s)
Carbon-Sulfur Lyases , Cell Survival , Dioxoles , Drug Synergism , Fibroblasts , Fibrosarcoma , Tetrahydroisoquinolines , Trabectedin , Humans , Fibrosarcoma/drug therapy , Fibrosarcoma/pathology , Fibrosarcoma/metabolism , Fibroblasts/drug effects , Fibroblasts/metabolism , Trabectedin/pharmacology , Carbon-Sulfur Lyases/pharmacology , Carbon-Sulfur Lyases/administration & dosage , Tetrahydroisoquinolines/pharmacology , Dioxoles/pharmacology , Cell Survival/drug effects , Recombinant Proteins/pharmacology , Cell Line, Tumor , Antineoplastic Agents, Alkylating/pharmacology , Cell Nucleus/metabolism , Cell Nucleus/drug effects
14.
Int J Biol Macromol ; 270(Pt 1): 132101, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38734354

ABSTRACT

Aspergillus oryzae ß-D-galactosidase (ß-Gal) efficiently hydrolyzes sesaminol triglucoside into sesaminol, which has higher biological activity. However, ß-Gal is difficult to be separate from the reaction mixture and limited by stability. To resolve these problems, ß-Gal was immobilized on amino-functionalized magnetic nanoparticles mesoporous silica pre-activated with glutaraldehyde (Fe3O4@mSiO2-ß-Gal), which was used for the first time to prepare sesaminol. Under the optimal conditions, the immobilization yield and recovered activity of ß-Gal were 57.9 ± 0.3 % and 46.5 ± 0.9 %, and the enzymatic loading was 843 ± 21 Uenzyme/gsupport. The construction of Fe3O4@mSiO2-ß-Gal was confirmed by various characterization methods, and the results indicated it was suitable for heterogeneous enzyme-catalyzed reactions. Fe3O4@mSiO2-ß-Gal was readily separable under magnetic action and displayed improved activity in extreme pH and temperature conditions. After 45 days of storage at 4 °C, the activity of Fe3O4@mSiO2-ß-Gal remained at 92.3 ± 2.8 %, which was 1.29 times than that of free enzyme, and its activity remained above 85 % after 10 cycles. Fe3O4@mSiO2-ß-Gal displayed higher affinity and catalytic efficiency. The half-life was 1.41 longer than free enzymes at 55.0 °C. Fe3O4@mSiO2-ß-Gal was employed as a catalyst to prepare sesaminol, achieving a 96.7 % conversion yield of sesaminol. The excellent stability and catalytic efficiency provide broad benefits and potential for biocatalytic industry applications.


Subject(s)
Aspergillus oryzae , Enzymes, Immobilized , Glutaral , Silicon Dioxide , beta-Galactosidase , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , beta-Galactosidase/chemistry , beta-Galactosidase/metabolism , Aspergillus oryzae/enzymology , Silicon Dioxide/chemistry , Glutaral/chemistry , Dioxoles/chemistry , Dioxoles/pharmacology , Magnetite Nanoparticles/chemistry , Porosity , Temperature , Hydrogen-Ion Concentration , Enzyme Stability , Furans
15.
Int J Mol Sci ; 25(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38791458

ABSTRACT

Amblyomma sculptum is a species of tick in the family Ixodidae, with equids and capybaras among its preferred hosts. In this study, the acaricidal activity of the essential oil (EO) from Piper aduncum and its main component, Dillapiole, were evaluated against larvae of A. sculptum to establish lethal concentration values and assess the effects of these compounds on tick enzymes. Dillapiole exhibited slightly greater activity (LC50 = 3.38 mg/mL; 95% CI = 3.24 to 3.54) than P. aduncum EO (LC50 = 3.49 mg/mL; 95% CI = 3.36 to 3.62) against ticks. The activities of α-esterase (α-EST), ß-esterase (ß-EST), and glutathione-S-transferase (GST) enzymes in A. sculptum larvae treated with Dillapiole showed a significant increase compared to the control at all concentrations (LC5, LC25, LC50 and LC75), similar results were obtained with P. aduncum EO, except for α-EST, which did not differ from the control at the highest concentration (LC75). The results of the acetylcholinesterase (AChE) activity show an increase in enzyme activity at the two lower concentrations (LC5 and LC25) and a reduction in activity at the two higher, lethal concentrations (LC50 and LC75) compared to the control. These results suggest potential mechanisms of action for these natural acaricides and can provide guidance for the future development of potential plant-derived formulations.


Subject(s)
Acaricides , Acetylcholinesterase , Amblyomma , Oils, Volatile , Piper , Animals , Acaricides/pharmacology , Acetylcholinesterase/metabolism , Allyl Compounds , Amblyomma/drug effects , Amblyomma/growth & development , Benzodioxoles/pharmacology , Cholinesterase Inhibitors/pharmacology , Dioxoles , Esterases/metabolism , Glutathione Transferase/metabolism , Inactivation, Metabolic , Larva/drug effects , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Piper/chemistry
16.
Food Chem ; 452: 139555, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38728896

ABSTRACT

This study presents the employment of Fourier transform infrared (FTIR) spectroscopy with attenuated total reflection and principal component analysis (PCA) to analyze the stability of a Pickering emulsion stabilized by carboxylated-cellulose nanocrystal (cCNC) comprising sesame oil phases with or without sesamolin. FTIR measurements identified an intermolecular hydrogen bond between the ester group of the triglyceride and the carboxyl group of the cCNC to create the emulsion droplet. The spectral bands from the hydroxyl group vibration (3700-3050 cm-1), carbonyl (1744 cm-1), CO groups of the ester triglyceride and cCNC (1160-998 cm-1) markedly discriminated between stabilized and destabilized emulsions. The PCA of FTIR spectra detected the change of molecular interaction during storage according to creaming, aggregation, and coalescence and changes in physicochemical parameters such as droplet size, refractive index, and zeta potential. Hence, PCA enabled the observation of the destabilization of emulsion in real-time.


Subject(s)
Cellulose , Emulsions , Sesame Oil , Emulsions/chemistry , Cellulose/chemistry , Spectroscopy, Fourier Transform Infrared , Sesame Oil/chemistry , Chemometrics , Particle Size , Dioxoles/chemistry , Dioxoles/analysis
17.
Pestic Biochem Physiol ; 200: 105815, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38582573

ABSTRACT

Fusarium graminearum is an important fungal pathogen causing Fusarium head blight (FHB) in wheat and other cereal crops worldwide. Due to lack of resistant wheat cultivars, FHB control mainly relies on application of chemical fungicides. Both fludioxonil (a phenylpyrrole compound) and phenamacril (a cyanoacrylate fungicide) have been registered for controlling FHB in China, however, fludioxonil-resistant isolates of F. graminearum have been detected in field. To evaluate the potential risk of dual resistance of F. graminearum to both compounds, fludioxonil and phenamacril dual resistant (DR) mutants of F. graminearum were obtained via fungicide domestication in laboratory. Result showed that resistance of the DR mutants to both fludioxonil and phenamacril were genetically stable after sub-cultured for ten generations or stored at 4 °C for 30 days on fungicide-free PDA. Cross-resistance assay showed that the DR mutants remain sensitive to other groups of fungicides, including carbendazim, tebuconazole, pydiflumetofen, and fluazinam. In addition, the DR mutants exhibited defects in mycelia growth, conidiation, mycotoxin deoxynivalenol (DON) production, and virulence Moreover, the DR mutants displayed increased sensitivity to osmotic stress. Sequencing results showed that amino acid point mutations S217L/T in the myosin I protein is responsible for phenamacril resistance in the DR mutants. Our results indicate that mutations leading to fludioxonil and phenamacril dual resistance could result in fitness cost for F. graminearum. Our results also suggest that the potential risk of F. graminearum developing resistance to both fludioxonil and phenamacril in field could be rather low, which provides scientific guidance in controlling FHB with fludioxonil and phenamacril.


Subject(s)
Dioxoles , Fungicides, Industrial , Fusarium , Pyrroles , Fungicides, Industrial/pharmacology , Drug Resistance, Fungal/genetics , Cyanoacrylates , Plant Diseases/microbiology
18.
Br J Pharmacol ; 181(17): 3064-3081, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38689378

ABSTRACT

BACKGROUND AND PURPOSE: Current pharmacotherapies for Tourette syndrome (TS) are often unsatisfactory and poorly tolerated, underscoring the need for novel treatments. Insufficient striatal acetylcholine has been suggested to contribute to tic ontogeny. Thus, we tested whether activating M1 and/or M4 receptors-the two most abundant muscarinic receptors in the striatum-reduced tic-related behaviours in mouse models of TS. EXPERIMENTAL APPROACH: Studies were conducted using CIN-d and D1CT-7 mice, two TS models characterized by early-life depletion of striatal cholinergic interneurons and cortical neuropotentiation, respectively. First, we tested the effects of systemic and intrastriatal xanomeline, a selective M1/M4 receptor agonist, on tic-like and other TS-related responses. Then, we examined whether xanomeline effects were reduced by either M1 or M4 antagonists or mimicked by the M1/M3 agonist cevimeline or the M4 positive allosteric modulator (PAM) VU0467154. Finally, we measured striatal levels of M1 and M4 receptors and assessed the impact of VU0461754 on the striatal expression of the neural marker activity c-Fos. KEY RESULTS: Systemic and intrastriatal xanomeline reduced TS-related behaviours in CIN-d and D1CT-7 mice. Most effects were blocked by M4, but not M1, receptor antagonists. VU0467154, but not cevimeline, elicited xanomeline-like ameliorative effects in both models. M4, but not M1, receptors were down-regulated in the striatum of CIN-d mice. Additionally, VU0467154 reduced striatal c-Fos levels in these animals. CONCLUSION AND IMPLICATIONS: Activation of striatal M4, but not M1, receptors reduced tic-like manifestations in mouse models, pointing to xanomeline and M4 PAMs as novel putative therapeutic strategies for TS.


Subject(s)
Corpus Striatum , Disease Models, Animal , Muscarinic Agonists , Receptor, Muscarinic M4 , Tourette Syndrome , Animals , Tourette Syndrome/metabolism , Tourette Syndrome/drug therapy , Receptor, Muscarinic M4/metabolism , Receptor, Muscarinic M4/agonists , Receptor, Muscarinic M4/antagonists & inhibitors , Mice , Corpus Striatum/metabolism , Corpus Striatum/drug effects , Male , Muscarinic Agonists/pharmacology , Behavior, Animal/drug effects , Pyridines/pharmacology , Tics/drug therapy , Tics/metabolism , Thiophenes/pharmacology , Receptor, Muscarinic M1/metabolism , Receptor, Muscarinic M1/agonists , Dioxoles/pharmacology , Mice, Inbred C57BL , Thiadiazoles
19.
Pestic Biochem Physiol ; 201: 105862, 2024 May.
Article in English | MEDLINE | ID: mdl-38685239

ABSTRACT

Phomopsis longicolla, a causal agent of soybean root rot, stem blight, seed decay, pod and stem canker, which seriously affects the yield and quality of soybean production worldwide. The phenylpyrrole fungicide fludioxonil exhibits a broad spectrum and high activity against phytopathogenic fungi. In this study, the baseline sensitivity of 100 P. longicolla isolates collected from the main soybean production areas of China to fludioxonil were determined. The result showed that the EC50 values of all the P. longicolla isolates ranged from 0.013 to 0.035 µg/ml. Furthermore, 12 fludioxonil-resistance (FluR) mutants of P. longicolla were generated from 6 fludioxonil-sensitive (FluS) isolates. and the resistance factors (RF) of 12 FluR mutants were >3500. Sequence alignment showed that multiple mutation types were found in PlOS1, PlOS4 or/and PlOS5 of FluR mutants. All the FluR mutants exhibited fitness penalty in mycelial growth, conidiation, virulence and osmo-adaptation. Under fludioxonil or NaCl treatment condition, the glycerol accumulation was significantly increased in FluS isolates, but was slightly increased in FluR mutants, and the phosphorylation level of most FluR mutants was significantly decreased when compared to the FluS isolates. Additionally, positive cross-resistance was observed between fludioxonil and procymidone but not fludioxonil and pydiflumetofen, pyraclostrobin or fluazinam. This is first reported that the baseline sensitivity of P. longicolla to fludioxonil, as well as the biological and molecular characterizations of P. longicolla FluR mutants to fludioxonil. These results can provide scientific directions for controlling soybean diseases caused by P. longicolla using fludioxonil.


Subject(s)
Ascomycota , Dioxoles , Drug Resistance, Fungal , Fungicides, Industrial , Pyrroles , Pyrroles/pharmacology , Fungicides, Industrial/pharmacology , Drug Resistance, Fungal/genetics , Dioxoles/pharmacology , Ascomycota/drug effects , Ascomycota/genetics , Ascomycota/metabolism , Mutation , Fungal Proteins/genetics , Fungal Proteins/metabolism , Plant Diseases/microbiology , Glycine max/microbiology , Glycine max/drug effects
20.
Phytopathology ; 114(4): 770-779, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38598410

ABSTRACT

Gray mold caused by Botrytis cinerea is among the 10 most serious fungal diseases worldwide. Fludioxonil is widely used to prevent and control gray mold due to its low toxicity and high efficiency; however, resistance caused by long-term use has become increasingly prominent. Therefore, exploring the resistance mechanism of fungicides provides a theoretical basis for delaying the occurrence of diseases and controlling gray mold. In this study, fludioxonil-resistant strains were obtained through indoor drug domestication, and the mutation sites were determined by sequencing. Strains obtained by site-directed mutagenesis were subjected to biological analysis, and the binding modes of fludioxonil and iprodione to Botrytis cinerea Bos1 BcBos1 were predicted by molecular docking. The results showed that F127S, I365S/N, F127S + I365N, and I376M mutations on the Bos1 protein led to a decrease in the binding energy between the drug and BcBos1. The A1259T mutation did not lead to a decrease in the binding energy, which was not the cause of drug resistance. The biological fitness of the fludioxonil- and point mutation-resistant strains decreased, and their growth rate, sporulation rate, and pathogenicity decreased significantly. The glycerol content of the sensitive strains was significantly lower than that of the resistant strains and increased significantly after treatment with 0.1 µg/ml of fludioxonil, whereas that of the resistant strains decreased. The osmotic sensitivity of the resistant strains was significantly lower than that of the sensitive strains. Positive cross-resistance was observed between fludioxonil and iprodione. These results will help to understand the resistance mechanism of fludioxonil in Botrytis cinerea more deeply.


Subject(s)
Aminoimidazole Carboxamide/analogs & derivatives , Botrytis , Dioxoles , Drug Resistance, Fungal , Fungal Proteins , Fungicides, Industrial , Histidine Kinase , Hydantoins , Pyrroles , Botrytis/genetics , Botrytis/drug effects , Botrytis/enzymology , Dioxoles/pharmacology , Fungicides, Industrial/pharmacology , Drug Resistance, Fungal/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Hydantoins/pharmacology , Pyrroles/pharmacology , Pyrroles/metabolism , Histidine Kinase/genetics , Histidine Kinase/metabolism , Plant Diseases/microbiology , Molecular Docking Simulation , Mutation , Mutagenesis, Site-Directed
SELECTION OF CITATIONS
SEARCH DETAIL