Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
J Neurosurg Pediatr ; 29(1): 115-121, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34624852

ABSTRACT

OBJECTIVE: Late infantile neuronal ceroid lipofuscinosis type 2 (CLN2) is a rare autosomal recessive disease caused by tripeptidyl peptidase 1 enzyme deficiency. At the authors' center, the medication cerliponase alfa is administered every 2 weeks via the intracerebroventricular (ICV) route. This requires the placement of a ventricular access device (VAD) or reservoir and frequent percutaneous punctures of this device over the child's lifetime. In this study, the authors audited the longevity and survival of these VADs and examined the causes of device failure. METHODS: A single-center survival analysis of VAD insertions and revisions (January 2014 through June 2020) was conducted. All children received cerliponase alfa infusions through a VAD. Patient characteristics and complications were determined from a prospectively maintained surgical database and patient records. For the VAD survival analysis, the defined endpoint was when the device was removed or changed. Reservoir survival was assessed using Kaplan-Meier curves and the log-rank (Cox-Mantel) test. RESULTS: A total of 17 patients had VADs inserted for drug delivery; median (range) age at first surgery was 4 years 4 months (1 year 8 months to 15 years). Twenty-six VAD operations (17 primary insertions and 9 revisions) were required among these 17 patients. Twelve VAD operations had an associated complication, including CSF infection (n = 6) with Propionibacterium and Staphylococcus species being the most prevalent organisms, significant surgical site swelling preventing infusion (n = 3), leakage/wound breakdown (n = 2), and catheter obstruction (n = 1). There were no complications or deaths associated with VAD insertion. The median (interquartile range) number of punctures was 59.5 (7.5-82.0) for unrevised VADs (n = 17) versus 2 (6-87.5) for revised VADs (n = 9) (p = 0.70). The median survival was 301 days for revisional reservoirs (n = 9) versus 2317 days for primary inserted reservoirs (n = 17) (p = 0.019). CONCLUSIONS: In the context of the current interest in intrathecal drug delivery for rare metabolic disorders, the need for VADs is likely to increase. Auditing the medium- to long-term outcomes associated with these devices will hopefully result in their wider application and may have potential implications on the development of new VAD technologies. These results could also be used to counsel parents prior to commencement of therapy and VAD implantation.


Subject(s)
Catheters, Indwelling , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/administration & dosage , Infusions, Intraventricular , Neuronal Ceroid-Lipofuscinoses/drug therapy , Recombinant Proteins/administration & dosage , Adolescent , Child , Child, Preschool , Female , Humans , Infant , Male , Reoperation
2.
Clin Transl Sci ; 14(5): 1810-1821, 2021 09.
Article in English | MEDLINE | ID: mdl-34076336

ABSTRACT

Neuronal ceroid lipofuscinosis type 2 (CLN2 disease) is an ultra-rare pediatric neurodegenerative disorder characterized by deficiency of the lysosomal enzyme tripeptidyl peptidase-1 (TPP1). In the absence of adequate TPP1, lysosomal storage material accumulation occurs in the central nervous system (CNS) accompanied by neurodegeneration and neurological decline that culminates in childhood death. Cerliponase alfa is a recombinant human TPP1 enzyme replacement therapy administered via intracerebroventricular infusion and approved for the treatment of CLN2 disease. Here, we describe two allometric methods, calculated by scaling brain mass across species, that informed the human dose selection and exposure prediction of cerliponase alfa from preclinical studies in monkeys and a dog model of CLN2 disease: (1) scaling of dose using a human-equivalent dose factor; and (2) scaling of compartmental pharmacokinetic (PK) model parameters. Source PK data were obtained from cerebrospinal fluid (CSF) samples from dogs and monkeys, and the human exposure predictions were confirmed with CSF data from the first-in-human clinical study. Nonclinical and clinical data were analyzed using noncompartmental analysis and nonlinear mixed-effect modeling approaches. Both allometric methods produced CSF exposure predictions within twofold of the observed exposure parameters maximum plasma concentration (Cmax ) and area under the curve (AUC). Furthermore, cross-species qualification produced consistent and reasonable PK profile predictions, which supported the allometric scaling of model parameters. The challenges faced in orphan drug development place an increased importance on, and opportunity for, data translation from research and nonclinical development. Our approach to dose translation and human exposure prediction for cerliponase alfa may be applicable to other CNS administered therapies being developed.


Subject(s)
Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/administration & dosage , Enzyme Replacement Therapy/methods , Neuronal Ceroid-Lipofuscinoses/drug therapy , Rare Diseases/drug therapy , Recombinant Proteins/administration & dosage , Tripeptidyl-Peptidase 1/deficiency , Animals , Child , Child, Preschool , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/pharmacokinetics , Disease Models, Animal , Disease Progression , Dogs , Drug Administration Schedule , Drug Dosage Calculations , Female , Humans , Infusions, Intraventricular , Macaca fascicularis , Male , Neuronal Ceroid-Lipofuscinoses/cerebrospinal fluid , Neuronal Ceroid-Lipofuscinoses/genetics , Rare Diseases/genetics , Recombinant Proteins/pharmacokinetics , Treatment Outcome , Tripeptidyl-Peptidase 1/genetics
3.
J Child Neurol ; 36(8): 635-641, 2021 07.
Article in English | MEDLINE | ID: mdl-33543660

ABSTRACT

Intracerebroventricular enzyme replacement therapy (ICV-ERT) for CLN2 disease represents the first approved treatment for neuronal ceroid lipofuscinosis (NCL) diseases. It is the first treatment where a recombinant lysosomal enzyme, cerliponase alfa, is administered into the lateral cerebral ventricles to reach the central nervous system, the organ affected in CLN2 disease. If untreated, CLN2 children show first symptoms such as epilepsy and language developmental delay at 2-4 years followed by rapid loss of motor and language function, vision loss, and early death. Treatment with cerliponase alfa has shown to slow the rapid neurologic decline. However, the mode of administration by 4 hour-long intracerebroventricular infusions every 14 days represents a potentially greater risk of infection compared to intravenous enzyme replacement therapies. The Hamburg NCL Specialty Clinic was the first site worldwide to perform intracerebroventricular enzyme replacement therapy in children with CLN2 disease. In order to ensure maximum patient safety, we analysed data from our center from more than 3000 intracerebroventricular enzyme replacement therapies in 48 patients over 6 years with regard to the occurrence of device-related adverse events and device infections. Since starting intracerebroventricular enzyme replacement therapy, we have also developed and continuously improved the "Hamburg Best Practice Guidelines for ICV-Enzyme Replacement Therapy (ERT) in CLN2 Disease." Results from this study showed low rates for device-related adverse events and infections with 0.27% and 0.33%, respectively. Therefore, following our internal procedural guidelines has shown to improve standardization and patient safety of intracerebroventricular enzyme replacement therapy for CLN2 disease.


Subject(s)
Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/therapeutic use , Enzyme Replacement Therapy/methods , Infusions, Intraventricular , Neuronal Ceroid-Lipofuscinoses/drug therapy , Recombinant Proteins/therapeutic use , Child , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/administration & dosage , Enzyme Replacement Therapy/instrumentation , Humans , Practice Guidelines as Topic , Recombinant Proteins/administration & dosage
4.
Clin Transl Sci ; 14(2): 635-644, 2021 03.
Article in English | MEDLINE | ID: mdl-33202105

ABSTRACT

Cerliponase alfa is recombinant human tripeptidyl peptidase 1 (TPP1) delivered by i.c.v. infusion for CLN2, a pediatric neurodegenerative disease caused by deficiency in lysosomal enzyme TPP1. We report the pharmacokinetics (PK) and pharmacodynamics of cerliponase alfa, the first i.c.v. enzyme replacement therapy, characterized in a phase I/II study. Escalating doses (30-300 mg Q2W) followed by 300 mg Q2W for ≥ 48 weeks were administered in 24 patients aged ≥ 3 years. Concentrations peaked in cerebrospinal fluid (CSF) at the end of ~ 4-hour i.c.v. infusion and 8 hours thereafter in plasma. Plasma exposure was 300-1,000-fold lower than in CSF, with no correlation in the magnitude of peak concentration (Cmax ) or area under the concentration-time curve (AUC) among body sites. There was no apparent accumulation in CSF or plasma exposure with Q2W dosing. Interpatient and intrapatient variability of AUC, respectively, were 31-49% and 24% in CSF vs. 59-103% and 80% in plasma. PK variability was not explained by baseline demographics, as sex, age, weight, and CLN2 disease severity score did not appear to impact CSF or plasma PK. No apparent correlation was noted between CSF or plasma PK and incidence of adverse events (pyrexia, hypersensitivity, seizure, and epilepsy) or presence of antidrug antibodies in CSF and serum. There was no relationship between magnitude of CSF exposure and efficacy (change in CLN2 score from baseline), indicating maximum benefit was obtained across the range of exposures with 300 mg Q2W. Data from this small trial of ultra-rare disease were leveraged to adequately profile cerliponase alfa and support 300 mg i.c.v. Q2W for CLN2 treatment.


Subject(s)
Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/administration & dosage , Enzyme Replacement Therapy/methods , Neuronal Ceroid-Lipofuscinoses/drug therapy , Recombinant Proteins/administration & dosage , Child , Child, Preschool , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/adverse effects , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/pharmacokinetics , Disease Progression , Drug Administration Schedule , Female , Humans , Injections, Intraventricular , Male , Neuronal Ceroid-Lipofuscinoses/cerebrospinal fluid , Neuronal Ceroid-Lipofuscinoses/genetics , Recombinant Proteins/adverse effects , Recombinant Proteins/pharmacokinetics , Tripeptidyl-Peptidase 1/deficiency
5.
Pediatr Neurol ; 110: 64-70, 2020 09.
Article in English | MEDLINE | ID: mdl-32684372

ABSTRACT

BACKGROUND: Neuronal ceroid lipofuscinosis type 2 or CLN2 disease is a rare, autosomal recessive, neurodegenerative lysosomal storage disorder caused by tripeptidyl peptidase 1 deficiency. Cerliponase alfa, a recombinant human tripeptidyl peptidase 1 enzyme, is the first and only approved treatment for CLN2 disease and the first approved enzyme replacement therapy administered via intracerebroventricular infusion. METHODS: A meeting of health care professionals from US institutions with experience in cerliponase alfa treatment of children with CLN2 disease was held in November 2018. Key common practices were identified, and later refined during the drafting of this article, that facilitate safe chronic administration of cerliponase alfa. RESULTS: Key practices include developing a multidisciplinary team of clinicians, pharmacists, and coordinators, and institution-specific processes. Infection risk may be reduced through strict aseptic techniques and minimizing connections and disconnections during infusion. The impact of intracerebroventricular device design on port needle stability during extended intracerebroventricular infusion is a critical consideration in device selection. Monitoring for central nervous system infection is performed at each patient contact, but with flexibility in the degree of monitoring. Although few institutions had experienced positive cerebrospinal fluid test results, the response to a positive cerebrospinal fluid culture should be determined on a case-by-case basis, and the intracerebroventricular device should be removed if cerebrospinal fluid infection is confirmed. CONCLUSIONS: The key common practices and flexible practices used by institutions with cerliponase alfa experience may assist other institutions in process development. Continued sharing of experiences will be essential for developing standards and patient care guidelines.


Subject(s)
Aminopeptidases/deficiency , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/administration & dosage , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/deficiency , Infusion Pumps/standards , Infusions, Intraventricular , Neuronal Ceroid-Lipofuscinoses/drug therapy , Neurosurgical Procedures/standards , Patient Care Team , Practice Guidelines as Topic , Recombinant Proteins/administration & dosage , Serine Proteases/deficiency , Child , Humans , Infusion Pumps/adverse effects , Interdisciplinary Communication , Patient Care Team/standards , Tripeptidyl-Peptidase 1 , United States
6.
Exp Eye Res ; 198: 108135, 2020 09.
Article in English | MEDLINE | ID: mdl-32634395

ABSTRACT

CLN2 neuronal ceroid lipofuscinosis is a rare recessive hereditary retinal and neurodegenerative disease resulting from deleterious sequence variants in TPP1 that encodes the soluble lysosomal enzyme tripeptidyl peptidase-1 (TPP1). Children with this disorder develop normally, but starting at 2-4 years of age begin to exhibit neurological signs and visual deficits. Vision loss that progresses to blindness is associated with progressive retinal degeneration and impairment of retinal function. Similar progressive loss of retinal function and retinal degeneration occur in a dog CLN2 disease model with a TPP1 null sequence variant. Studies using the dog model were conducted to determine whether intravitreal injection of recombinant human TPP1 (rhTPP1) administered starting after onset of retinal functional impairment could slow or halt the progression of retinal functional decline and degeneration. TPP1-null dogs received intravitreal injections of rhTPP1 in one eye and vehicle in the other eye beginning at 23.5-25 weeks of age followed by second injections at 34-40 weeks in 3 out of 4 dogs. Ophthalmic exams, in vivo ocular imaging, and electroretinography (ERG) were repeated regularly to monitor retinal structure and function. Retinal histology was evaluated in eyes collected from these dogs when they were euthanized at end-stage neurological disease (40-45 weeks of age). Intravitreal rhTPP1 injections were effective in preserving retinal function (as measured with the electroretinogram) and retinal morphology for as long as 4 months after a single treatment. These findings indicate that intravitreal injection of rhTPP1 administered after partial loss of retinal function is an effective treatment for preserving retinal structure and function in canine CLN2 disease.


Subject(s)
Aminopeptidases/administration & dosage , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/administration & dosage , Enzyme Replacement Therapy/methods , Neuronal Ceroid-Lipofuscinoses/complications , Serine Proteases/administration & dosage , Animals , Disease Models, Animal , Disease Progression , Dogs , Electroretinography , Intravitreal Injections , Neuronal Ceroid-Lipofuscinoses/diagnosis , Neuronal Ceroid-Lipofuscinoses/drug therapy , Retina/metabolism , Retina/pathology , Retinal Degeneration/pathology , Tripeptidyl-Peptidase 1
7.
Exp Eye Res ; 197: 108130, 2020 08.
Article in English | MEDLINE | ID: mdl-32622066

ABSTRACT

CLN2 neuronal ceroid lipofuscinosis is a hereditary neurodegenerative disorder characterized by progressive vision loss, neurological decline, and seizures. CLN2 disease results from mutations in TPP1 that encodes the lysosomal enzyme tripeptidyl peptidase-1 (TPP1). Children with CLN2 neuronal ceroid lipofuscinosis experience ocular disease, characterized by progressive retinal degeneration associated with impaired retinal function and gradual vision loss culminating in total blindness. A similar progressive loss of retinal function is also observed in a dog CLN2 model with a TPP1 null mutation. A study was conducted to evaluate the efficacy of periodic intravitreal injections of recombinant human (rh) TPP1 in inhibiting retinal degeneration and preserving retinal function in the canine model. TPP1 null dogs received periodic intravitreal injections of rhTPP1 in one eye and vehicle in the other eye beginning at approximately 12 weeks of age. Ophthalmic exams, in vivo ocular imaging, and electroretinography (ERG) were repeated regularly to monitor retinal structure and function. Retinal histology was evaluated in eyes collected from these dogs when they were euthanized at end-stage neurological disease (43-46 weeks of age). Intravitreal rhTPP1 dosing prevented disease-related declines in ERG amplitudes in the TPP1-treated eyes. At end-stage neurologic disease, TPP1-treated eyes retained normal morphology while the contralateral vehicle-treated eyes exhibited loss of inner retinal neurons and photoreceptor disorganization typical of CLN2 disease. The treatment also prevented the development of disease-related focal retinal detachments observed in the control eyes. Uveitis occurred secondary to the administration of the rhTPP1 but did not hinder the therapeutic benefits. These findings demonstrate that periodic intravitreal injection of rhTPP1 preserves retinal structure and function in canine CLN2 disease.


Subject(s)
Aminopeptidases/administration & dosage , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/administration & dosage , Enzyme Replacement Therapy/methods , Neuronal Ceroid-Lipofuscinoses/drug therapy , Retina/drug effects , Serine Proteases/administration & dosage , Animals , Disease Models, Animal , Disease Progression , Dogs , Electroretinography , Intravitreal Injections , Neuronal Ceroid-Lipofuscinoses/metabolism , Neuronal Ceroid-Lipofuscinoses/pathology , Reflex, Pupillary/physiology , Retina/pathology , Treatment Outcome , Tripeptidyl-Peptidase 1
8.
Drugs ; 77(11): 1247-1249, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28589525

ABSTRACT

Cerliponase alfa (Brineura™) is a recombinant human tripeptidyl peptidase-1 (TPP1) being developed by BioMarin Pharmaceutical Inc. for use in patients with neuronal ceroid lipofuscinosis type 2 (CLN2), a paediatric neurodegenerative disease caused by a deficiency in TPP1. CLN2 is characterised by progressive impairment of motor function, language deficiencies, seizures, ataxia, blindness and early death, and intracerebroventricular infusion of cerliponase alfa has been shown to reduce the progression of functional decline. This article summarizes the milestones in the development of cerliponase alfa leading to its first global approval in the USA for the treatment of motor function loss in paediatric patients ≥3 years of age with CLN2, and subsequent approval in the EU for CLN2 in all ages.


Subject(s)
Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/therapeutic use , Neuronal Ceroid-Lipofuscinoses/drug therapy , Recombinant Proteins/therapeutic use , Child , Child, Preschool , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/administration & dosage , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/adverse effects , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/pharmacokinetics , Disease Progression , Drug Approval , Enzyme Replacement Therapy , Europe , Female , Humans , Male , Recombinant Proteins/administration & dosage , Recombinant Proteins/adverse effects , Recombinant Proteins/pharmacokinetics , Tripeptidyl-Peptidase 1 , United States , United States Food and Drug Administration
9.
Med Sci Monit Basic Res ; 23: 36-44, 2017 Feb 28.
Article in English | MEDLINE | ID: mdl-28242866

ABSTRACT

BACKGROUND Although the efficacy of combination therapy consisting of basal insulin and oral hypoglycemic agents (OHAs) has been shown, which OHAs are the most efficient remains unclear. MATERIAL AND METHODS Five patients with type 2 diabetes were enrolled and treated with insulin degludec and metformin as a basal therapy. The patients were randomized in a cross-over fashion to receive a combination of mitiglinide (10 mg) and voglibose (0.2 mg) (M+V) 3 times daily or linagliptin (5 mg) (L) once daily for 8 weeks. After 8 weeks, 2 kinds of meal tolerance tests were performed as breakfast on 2 consecutive days. The first breakfast contained 460 kcal (carbohydrates, 49.1%; protein, 15.7%; fat, 35.2%), while the second contained 462 kcal (carbohydrates, 37.2%; protein, 19.6%; fat, 43.2%). Self-monitoring blood glucose levels were measured at 0, 30, 60, and 120 min after the meal tests, and the increase in the postprandial area under the curve (AUC)0-120 min was determined. The HbA1c, glycated albumin, and 1,5-anhydroglucitol (AG) levels were measured, and continuous glucose monitoring was performed. RESULTS The increase in the postprandial AUC0-120 min was significantly smaller in the M+V group than in the L group after both meals. The 24-h average, 24-h standard deviations, 24-h AUC, and mean amplitude of glycemic excursion (MAGE) were similar for both groups and after both meals. The change in 1,5-AG was higher in the M+V group than in the L group. CONCLUSIONS The combination of M+V with basal therapy improved postprandial glucose excursion more effectively than L in T2DM patients.


Subject(s)
Blood Glucose/metabolism , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/drug therapy , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/administration & dosage , Hypoglycemic Agents/administration & dosage , Inositol/analogs & derivatives , Isoindoles/administration & dosage , Aged , Cross-Over Studies , Humans , Inositol/administration & dosage , Insulin/blood , Insulin, Long-Acting/administration & dosage , Linagliptin/administration & dosage , Male , Metformin/administration & dosage , Middle Aged , Postprandial Period/drug effects
10.
Exp Eye Res ; 146: 276-282, 2016 05.
Article in English | MEDLINE | ID: mdl-27039708

ABSTRACT

CLN2 disease is one of a group of lysosomal storage disorders called the neuronal ceroid lipofuscinoses (NCLs). The disease results from mutations in the TPP1 gene that cause an insufficiency or complete lack of the soluble lysosomal enzyme tripeptidyl peptidase-1 (TPP1). TPP1 is involved in lysosomal protein degradation, and lack of this enzyme results in the accumulation of protein-rich autofluorescent lysosomal storage bodies in numerous cell types including neurons throughout the central nervous system and the retina. CLN2 disease is characterized primarily by progressive loss of neurological functions and vision as well as generalized neurodegeneration and retinal degeneration. In children the progressive loss of neurological functions typically results in death by the early teenage years. A Dachshund model of CLN2 disease with a null mutation in TPP1 closely recapitulates the human disorder with a progression from disease onset at approximately 4 months of age to end-stage at 10-11 months. Delivery of functional TPP1 to the cerebrospinal fluid (CSF), either by periodic infusion of the recombinant protein or by a single administration of a TPP1 gene therapy vector to the CSF, significantly delays the onset and progression of neurological signs and prolongs life span but does not prevent the loss of vision or modest retinal degeneration that occurs by 11 months of age. In this study we found that in dogs that received the CSF gene therapy treatment, the degeneration of the retina and loss of retinal function continued to progress during the prolonged life spans of the treated dogs. Eventually the normal cell layers of the retina almost completely disappeared. An exception was the ganglion cell layer. In affected dogs that received TPP1 gene therapy to the CSF and survived an average of 80 weeks, ganglion cell axons were present in numbers comparable to those of normal Dachshunds of similar age. The selective preservation of the retinal ganglion cells suggests that while TPP1 protein delivered via the CSF may protect these cells, preservation of the remainder of the retina will require delivery of normal TPP1 more directly to the retina, probably via the vitreous body.


Subject(s)
Aminopeptidases/therapeutic use , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/therapeutic use , Genetic Therapy/methods , Neuronal Ceroid-Lipofuscinoses/therapy , Retinal Degeneration/therapy , Retinal Ganglion Cells/pathology , Serine Proteases/therapeutic use , Aminopeptidases/administration & dosage , Aminopeptidases/genetics , Analysis of Variance , Animals , Axons/pathology , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/administration & dosage , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics , Disease Models, Animal , Disease Progression , Dogs , Electroretinography , Genetic Vectors/cerebrospinal fluid , Infusions, Intraventricular , Optic Nerve/cytology , Reflex, Pupillary/physiology , Retinal Degeneration/etiology , Retinal Degeneration/physiopathology , Serine Proteases/administration & dosage , Serine Proteases/genetics , Tripeptidyl-Peptidase 1
11.
Neurology ; 85(10): 890-7, 2015 Sep 08.
Article in English | MEDLINE | ID: mdl-26291285

ABSTRACT

OBJECTIVE: To characterize pathogenic effects of antibodies to dipeptidyl-peptidase-like protein 6 (DPPX), a subunit of Kv4.2 potassium channels, on gut and brain neurons. METHODS: We identified a new patient with anti-DPPX encephalitis and analyzed the effects of the patient's serum and purified immunoglobulin G (IgG), and of serum of a previous patient with anti-DPPX encephalitis, on the activity of enteric neurons by voltage-sensitive dye imaging in guinea pig myenteric and human submucous plexus preparations. We studied the subcellular localization of DPPX by immunocytochemistry in cultured murine hippocampal neurons using sera of 4 patients with anti-DPPX encephalitis. We investigated the influence of anti-DPPX-containing serum and purified IgG on neuronal surface expression of DPPX and Kv4.2 by immunoblots of purified murine hippocampal neuron membranes. RESULTS: The new patient with anti-DPPX encephalitis presented with a 2-month episode of diarrhea, which was followed by tremor, disorientation, and mild memory impairment. Anti-DPPX-IgG-containing sera and purified IgG increased the excitability and action potential frequency of guinea pig and human enteric nervous system neurons. Patient sera revealed a somatodendritic and perisynaptic neuronal surface staining that colocalized with the signal of commercial anti-DPPX and Kv4.2 antibodies. Incubation of hippocampal neurons with patient serum and purified IgG resulted in a decreased expression of DPPX and Kv4.2 in neuronal membranes. CONCLUSIONS: Hyperexcitability of enteric nervous system neurons and downregulation of DPPX and Kv4.2 from hippocampal neuron membranes mirror the clinical phenotype of patients with anti-DPPX encephalitis and support a pathogenic role of anti-DPPX antibodies in anti-DPPX encephalitis.


Subject(s)
Antibodies, Anti-Idiotypic/blood , Brain/pathology , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/blood , Encephalitis/blood , Myenteric Plexus/pathology , Nerve Tissue Proteins/blood , Neurons/pathology , Potassium Channels/blood , Aged , Animals , Antibodies, Anti-Idiotypic/administration & dosage , Brain/drug effects , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/administration & dosage , Encephalitis/diagnosis , Guinea Pigs , Humans , Immunoglobulin G/administration & dosage , Immunoglobulin G/blood , Male , Mice , Myenteric Plexus/drug effects , Nerve Tissue Proteins/administration & dosage , Neurons/drug effects , Potassium Channels/administration & dosage , Rats
12.
Mol Genet Metab ; 114(2): 281-93, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25257657

ABSTRACT

The CLN2 form of neuronal ceroid lipofuscinosis, a type of Batten disease, is a lysosomal storage disorder caused by a deficiency of the enzyme tripeptidyl peptidase-1 (TPP1). Patients exhibit progressive neurodegeneration and loss of motor, cognitive, and visual functions, leading to death by the early teenage years. TPP1-null Dachshunds recapitulate human CLN2 disease. To characterize the safety and pharmacology of recombinant human (rh) TPP1 administration to the cerebrospinal fluid (CSF) as a potential enzyme replacement therapy (ERT) for CLN2 disease, TPP1-null and wild-type (WT) Dachshunds were given repeated intracerebroventricular (ICV) infusions and the pharmacokinetic (PK) profile, central nervous system (CNS) distribution, and safety were evaluated. TPP1-null animals and WT controls received 4 or 16mg of rhTPP1 or artificial cerebrospinal fluid (aCSF) vehicle every other week. Elevated CSF TPP1 concentrations were observed for 2-3 days after the first ICV infusion and were approximately 1000-fold higher than plasma levels at the same time points. Anti-rhTPP1 antibodies were detected in CSF and plasma after repeat rhTPP1 administration, with titers generally higher in TPP1-null than in WT animals. Widespread brain distribution of rhTPP1 was observed after chronic administration. Expected histological changes were present due to the CNS delivery catheters and were similar in rhTPP1 and vehicle-treated animals, regardless of genotype. Neuropathological evaluation demonstrated the clearance of lysosomal storage, preservation of neuronal morphology, and reduction in brain inflammation with treatment. This study demonstrates the favorable safety and pharmacology profile of rhTPP1 ERT administered directly to the CNS and supports clinical evaluation in patients with CLN2 disease.


Subject(s)
Aminopeptidases/administration & dosage , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/administration & dosage , Enzyme Replacement Therapy , Neuronal Ceroid-Lipofuscinoses/drug therapy , Serine Proteases/administration & dosage , Aminopeptidases/adverse effects , Aminopeptidases/immunology , Aminopeptidases/pharmacokinetics , Animals , Antibodies/blood , Antibodies/cerebrospinal fluid , Brain/pathology , Brain/ultrastructure , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/adverse effects , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/immunology , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/pharmacokinetics , Disease Progression , Dogs , Drug Evaluation, Preclinical , Genotype , Infusions, Intraventricular , Neuronal Ceroid-Lipofuscinoses/pathology , Recombinant Proteins/administration & dosage , Recombinant Proteins/adverse effects , Recombinant Proteins/immunology , Recombinant Proteins/pharmacokinetics , Serine Proteases/adverse effects , Serine Proteases/immunology , Serine Proteases/pharmacokinetics , Tripeptidyl-Peptidase 1
13.
Toxicol Appl Pharmacol ; 277(1): 49-57, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24642058

ABSTRACT

CLN2 disease is caused by deficiency in tripeptidyl peptidase-1 (TPP1), leading to neurodegeneration and death. The safety, pharmacokinetics (PK), and CNS distribution of recombinant human TPP1 (rhTPP1) were characterized following a single intracerebroventricular (ICV) or intrathecal-lumbar (IT-L) infusion to cynomolgus monkeys. Animals received 0, 5, 14, or 20mg rhTPP1, ICV, or 14 mg IT-L, in artificial cerebrospinal fluid (aCSF) vehicle. Plasma and CSF were collected for PK analysis. Necropsies occurred at 3, 7, and 14 days post-infusion. CNS tissues were sampled for rhTPP1 distribution. TPP1 infusion was well tolerated and without effect on clinical observations or ECG. A mild increase in CSF white blood cells (WBCs) was detected transiently after ICV infusion. Isolated histological changes related to catheter placement and infusion were observed in ICV treated animals, including vehicle controls. The CSF and plasma exposure profiles were equivalent between animals that received an ICV or IT-L infusion. TPP1 levels peaked at the end of infusion, at which point the enzyme was present in plasma at 0.3% to 0.5% of CSF levels. TPP1 was detected in brain tissues with half-lives of 3-14 days. CNS distribution between ICV and IT-L administration was similar, although ICV resulted in distribution to deep brain structures including the thalamus, midbrain, and striatum. Direct CNS infusion of rhTPP1 was well tolerated with no drug related safety findings. The favorable nonclinical profile of ICV rhTPP1 supports the treatment of CLN2 by direct administration to the CNS.


Subject(s)
Aminopeptidases/therapeutic use , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/therapeutic use , Enzyme Replacement Therapy/methods , Neuronal Ceroid-Lipofuscinoses/drug therapy , Serine Proteases/therapeutic use , Aminopeptidases/administration & dosage , Aminopeptidases/adverse effects , Aminopeptidases/pharmacokinetics , Animals , Cerebrospinal Fluid/cytology , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/administration & dosage , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/adverse effects , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/pharmacokinetics , Disease Models, Animal , Dose-Response Relationship, Drug , Female , Haplorhini , Infusions, Intraventricular , Injections, Spinal , Leukocyte Count , Recombinant Proteins , Serine Proteases/administration & dosage , Serine Proteases/adverse effects , Serine Proteases/pharmacokinetics , Tripeptidyl-Peptidase 1
14.
PLoS One ; 7(7): e40509, 2012.
Article in English | MEDLINE | ID: mdl-22792360

ABSTRACT

Late-infantile neuronal ceroid lipofuscinosis (LINCL) is a recessive genetic disease of childhood caused by deficiencies in the lysosomal protease tripeptidyl peptidase I (TPP1). Disease is characterized by progressive and extensive neuronal death. One hurdle towards development of enzyme replacement therapy is delivery of TPP1 to the brain. In this study, we evaluated the effect of modifying N-linked glycans on recombinant human TPP1 on its pharmacokinetic properties after administration via tail vein injection to a mouse model of LINCL. Unmodified TPP1 exhibited a dose-dependent serum half-life of 12 min (0.12 mg) to 45 min (2 mg). Deglycosylation or modification using sodium metaperiodate oxidation and reduction with sodium borohydride increased the circulatory half-life but did not improve targeting to the brain compared to unmodified TPP1. Analysis of liver, brain, spleen, kidney and lung demonstrated that for all preparations, >95% of the recovered activity was in the liver. Interestingly, administration of a single 2 mg dose (80 mg/kg) of unmodified TPP1 resulted in ∼10% of wild-type activity in brain. This suggests that systemic administration of unmodified recombinant enzyme merits further exploration as a potential therapy for LINCL.


Subject(s)
Aminopeptidases/therapeutic use , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/therapeutic use , Neuronal Ceroid-Lipofuscinoses/drug therapy , Neuronal Ceroid-Lipofuscinoses/metabolism , Polysaccharides/metabolism , Serine Proteases/therapeutic use , Administration, Intravenous , Aminopeptidases/administration & dosage , Aminopeptidases/pharmacokinetics , Animals , CHO Cells , Carbohydrates/chemistry , Cricetinae , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/administration & dosage , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/pharmacokinetics , Disease Models, Animal , Enzyme Replacement Therapy , Enzyme Stability , Half-Life , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Recombinant Proteins/administration & dosage , Recombinant Proteins/pharmacokinetics , Recombinant Proteins/therapeutic use , Serine Proteases/administration & dosage , Serine Proteases/pharmacokinetics , Tripeptidyl-Peptidase 1
15.
Mol Ther ; 19(10): 1842-8, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21730969

ABSTRACT

Late infantile neuronal ceroid lipofuscinosis (LINCL) is a progressive neurodegenerative lysosomal storage disorder caused by mutations in TPP1, the gene encoding the lysosomal protease tripeptidyl-peptidase (TPP1). LINCL primarily affects children, is fatal and there is no effective treatment. Administration of recombinant protein has proved effective in treatment of visceral manifestations of other lysosomal storage disorders but to date, only marginal improvement in survival has been obtained for neurological diseases. In this study, we have developed and optimized a large-volume intrathecal administration strategy to deliver therapeutic amounts of TPP1 to the central nervous system (CNS) of a mouse model of LINCL. To determine the efficacy of treatment, we have monitored survival as the primary endpoint and demonstrate that an acute treatment regimen (three consecutive daily doses started at 4 weeks of age) increases median lifespan of the LINCL mice from 16 (vehicle treated) to 23 weeks (enzyme treated). Consistent with the increase in life-span, we also observed significant reversal of pathology and improvement in neurological phenotype. These results provide a strong basis for both clinical investigation of large-volume/high-dose delivery of TPP1 to the brain via the cerebrospinal fluid (CSF) and extension of this approach towards other neurological lysosomal storage diseases.


Subject(s)
Aminopeptidases/administration & dosage , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/administration & dosage , Disease Models, Animal , Neuronal Ceroid-Lipofuscinoses/drug therapy , Serine Proteases/administration & dosage , Aminopeptidases/genetics , Aminopeptidases/therapeutic use , Animals , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/therapeutic use , Injections, Spinal , Mice , Recombinant Proteins/administration & dosage , Recombinant Proteins/genetics , Recombinant Proteins/therapeutic use , Serine Proteases/genetics , Serine Proteases/therapeutic use , Tripeptidyl-Peptidase 1
16.
Mol Genet Metab ; 104(3): 325-37, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21784683

ABSTRACT

Late infantile neuronal ceroid lipofuscinosis (LINCL) is caused by mutations in the gene encoding tripeptidyl-peptidase 1 (TPP1). LINCL patients accumulate lysosomal storage materials in the CNS accompanied by neurodegeneration, blindness, and functional decline. Dachshunds homozygous for a null mutation in the TPP1 gene recapitulate many symptoms of the human disease. The objectives of this study were to determine whether intrathecal (IT) TPP1 treatment attenuates storage accumulation and functional decline in TPP1-/- Dachshunds and to characterize the CNS distribution of TPP1 activity. TPP1 was administered to one TPP1-/- and one homozygous wild-type (WT) dog. An additional TPP1-/- and WT dog received vehicle. Four IT administrations of 32 mg TPP1 formulated in 2.3 mL of artificial cerebrospinal fluid (aCSF) or vehicle were administered monthly via the cerebellomedullary cistern from four to seven months of age. Functional decline was assessed by physical and neurological examinations, electrophysiology, and T-maze performance. Neural tissues were collected 48 h after the fourth administration and analyzed for TPP1 activity and autofluorescent storage material. TPP1 was distributed at greater than WT levels in many areas of the CNS of the TPP1-/- dog administered TPP1. The amount of autofluorescent storage was decreased in this dog relative to the vehicle-treated affected control. No improvement in overall function was observed in this dog compared to the vehicle-treated TPP1-/- littermate control. These results demonstrate for the first time in a large animal model of LINCL widespread delivery of biochemically active TPP1 to the brain after IT administration along with a decrease in lysosomal storage material. Further studies with this model will be necessary to optimize the dosing route and regimen to attenuate functional decline.


Subject(s)
Aminopeptidases/pharmacology , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/pharmacology , Lysosomes/metabolism , Neuronal Ceroid-Lipofuscinoses/drug therapy , Neuronal Ceroid-Lipofuscinoses/metabolism , Serine Proteases/pharmacology , Aminopeptidases/administration & dosage , Aminopeptidases/blood , Aminopeptidases/genetics , Aminopeptidases/therapeutic use , Animals , CHO Cells , Central Nervous System/metabolism , Chromatography, Gel , Chromatography, Ion Exchange , Cricetinae , Cricetulus , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/administration & dosage , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/blood , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/therapeutic use , Dogs , Electrophysiology , Fluorescence , Gene Knockout Techniques , Humans , Immunoassay , Immunoglobulin E/blood , Injections, Spinal , Magnetic Resonance Imaging , Maze Learning/drug effects , Recombinant Proteins/pharmacology , Serine Proteases/administration & dosage , Serine Proteases/blood , Serine Proteases/genetics , Serine Proteases/therapeutic use , Tripeptidyl-Peptidase 1
SELECTION OF CITATIONS
SEARCH DETAIL
...