Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters











Publication year range
1.
FEBS J ; 287(15): 3273-3297, 2020 08.
Article in English | MEDLINE | ID: mdl-31883412

ABSTRACT

The clinical efficacy of sulfa drugs as antimalarials has declined owing to the evolution of resistance in Plasmodium falciparum (Pf) malaria parasites. In order to understand the basis of this resistance and to design more effective antimalarials, we have solved 13 structures of the bifunctional enzyme 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK)-dihydropteroate synthase (DHPS) from wild-type (WT) P. falciparum and sulfa-resistant mutants, both as apoenzyme and as complexes with pteroate (PTA) and sulfa derivatives. The structures of these complexes show that PTA, which effectively inhibits both the WT and mutants, stays in active sites without steric constraint. In contrast, parts of the sulfa compounds situated outside of the substrate envelope are in the vicinity of the resistance mutations. Steric conflict between compound and mutant residue along with increased flexibility of loop D2 in the mutants can account for the reduced compound binding affinity to the mutants. Kinetic data show that the mutants have enhanced enzyme activity compared with the WT. These PfDHPS structural insights are critical for the design of novel, substrate envelope-compliant DHPS inhibitors that are less vulnerable to resistance mutations. DATABASES: The data reported in this paper have been deposited in the Protein Data Bank, www.wwpdb.org. PDB ID codes: 6JWQ for apoWT; 6JWR, 6JWS, and 6JWT for PTA complexes of WT, A437G (3D7), and V1/S; 6JWU, 6JWV, and 6JWW for STZ-DHP complexes of WT, 3D7, and V1/S; 6JWX, 6JWY, and 6JWZ for SDX-DHP complexes of WT, 3D7, and W2; 6KCK, 6KCL, and 6KCM for Pterin/pHBA complexes of WT, TN1, and W2.


Subject(s)
Dihydropteroate Synthase/chemistry , Diphosphotransferases/chemistry , Drug Resistance/genetics , Malaria, Falciparum/drug therapy , Mutation , Plasmodium falciparum/drug effects , Plasmodium falciparum/enzymology , Amino Acid Sequence , Antimalarials/pharmacology , Catalytic Domain , Crystallography, X-Ray , Dihydropteroate Synthase/metabolism , Diphosphotransferases/metabolism , Humans , Malaria, Falciparum/parasitology , Protein Conformation , Sequence Homology
2.
J Biol Chem ; 293(39): 14962-14972, 2018 09 28.
Article in English | MEDLINE | ID: mdl-30104413

ABSTRACT

The genomes of the malaria-causing Plasmodium parasites encode a protein fused of 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) and dihydropteroate synthase (DHPS) domains that catalyze sequential reactions in the folate biosynthetic pathway. Whereas higher organisms derive folate from their diet and lack the enzymes for its synthesis, most eubacteria and a number of lower eukaryotes including malaria parasites synthesize tetrahydrofolate via DHPS. Plasmodium falciparum (Pf) and Plasmodium vivax (Pv) HPPK-DHPSs are currently targets of drugs like sulfadoxine (SDX). The SDX effectiveness as an antimalarial drug is increasingly diminished by the rise and spread of drug-resistant mutations. Here, we present the crystal structure of PvHPPK-DHPS in complex with four substrates/analogs, revealing the bifunctional PvHPPK-DHPS architecture in an unprecedented state of enzymatic activation. SDX's effect on HPPK-DHPS is due to 4-amino benzoic acid (pABA) mimicry, and the PvHPPK-DHPS structure sheds light on the SDX-binding cavity, as well as on mutations that effect SDX potency. We mapped five dominant drug resistance mutations in PvHPPK-DHPS: S382A, A383G, K512E/D, A553G, and V585A, most of which occur individually or in clusters proximal to the pABA-binding site. We found that these resistance mutations subtly alter the intricate enzyme/pABA/SDX interactions such that DHPS affinity for pABA is diminished only moderately, but its affinity for SDX is changed substantially. In conclusion, the PvHPPK-DHPS structure rationalizes and unravels the structural bases for SDX resistance mutations and highlights architectural features in HPPK-DHPSs from malaria parasites that can form the basis for developing next-generation anti-folate agents to combat malaria parasites.


Subject(s)
Dihydropteroate Synthase/chemistry , Diphosphotransferases/chemistry , Malaria, Vivax/drug therapy , Plasmodium vivax/chemistry , Sulfadoxine/chemistry , Amino Acids/chemistry , Amino Acids/genetics , Crystallography, X-Ray , Dihydropteroate Synthase/genetics , Diphosphotransferases/genetics , Drug Resistance/genetics , Humans , Malaria, Vivax/parasitology , Mutation , Plasmodium falciparum , Plasmodium vivax/genetics , Plasmodium vivax/pathogenicity , Sulfadoxine/therapeutic use , Tetrahydrofolates/chemistry
3.
J Phys Chem B ; 122(6): 1885-1897, 2018 02 15.
Article in English | MEDLINE | ID: mdl-29385349

ABSTRACT

HPPK (6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase) is a monomeric protein with 158 residues, which undergoes large-scale conformational changes between apo, open, and holo states responding to ligand binding for its function. It has been explored widely as an excellent target for potential antibacterial drug development. However, little is known about how conformational dynamics between the native states influences the substrate recognition and the functionality of enzymatic catalysis. Here, we report a coarse-grained triple-basin structure-based model upon ligand binding to describe such multiple-state system by the molecular dynamics simulation. With our model, we have made theoretical predictions that are in good agreement with the experimental measurements. Our results revealed the intrinsic conformational fluctuations between apo and open states without ligand binding. We found that HPPK can switch to the activated holo state upon the ordered binding of the two ligands (ATP and HP). We uncovered the underlying mechanism by which major induced fit and minor population shift pathways coexist upon ligand binding by quantitative flux analysis. Additionally, we pointed out the structural origin for the conformational changes and identified the key residues as well as contact interactions. We further explored the temperature effect on the conformational distributions and pathway weights. It gave strong support that higher temperatures promote population shift, while the induced fit pathway is always the predominant activation route of the HPPK system. These findings will provide significant insights of the mechanisms of the multistate conformational dynamics of HPPK upon ligand binding.


Subject(s)
Adenosine Triphosphate/metabolism , Diphosphotransferases/metabolism , Molecular Dynamics Simulation , Pterins/metabolism , Adenosine Triphosphate/chemistry , Binding Sites , Diphosphotransferases/chemistry , Ligands , Protein Conformation , Pterins/chemistry
4.
ACS Nano ; 12(3): 2448-2454, 2018 03 27.
Article in English | MEDLINE | ID: mdl-29462552

ABSTRACT

Manipulating protein conformations for exploring protein structure-function relationship has shown great promise. Although protein conformational changes under pulling force manipulation have been extensively studied, protein conformation changes under a compressive force have not been explored quantitatively. The latter is even more biologically significant and relevant in revealing protein functions in living cells associated with protein crowdedness, distribution fluctuations, and cell osmotic stress. Here we report our experimental observations on abrupt ruptures of protein native structures under compressive force, demonstrated and studied by single-molecule AFM-FRET spectroscopic nanoscopy. Our results show that the protein ruptures are abrupt and spontaneous events occurred when the compressive force reaches a threshold of 12-75 pN, a force amplitude accessible from thermal fluctuations in a living cell. The abrupt ruptures are sensitive to local environment, likely a general and important pathway of protein unfolding in living cells.


Subject(s)
Protein Unfolding , Proteins/chemistry , Stress, Mechanical , Diphosphotransferases/chemistry , Equipment Design , Fluorescence Resonance Energy Transfer/instrumentation , Immobilized Proteins/chemistry , Microscopy, Atomic Force/instrumentation , Protein Conformation , Thermodynamics
5.
J Biomol Struct Dyn ; 35(16): 3507-3521, 2017 Dec.
Article in English | MEDLINE | ID: mdl-27844507

ABSTRACT

6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) is a promising antimicrobial target involved in the folate biosynthesis pathway. Although, the results from crystallographic studies of HPPK have attracted a great interest in the design of novel HPPK inhibitors, the mechanism of action of HPPK due to inhibitor binding remains questionable. Recently, mercaptoguanine derivatives were reported to inhibit the pyrophosphoryl transfer mechanism of Staphylococcus aureus HPPK (SaHPPK). The present study is an attempt to understand the SaHPPK-inhibitors binding mechanism and to highlight the key residues that possibly involve in the complex formation. To decipher these questions, we used the state-of-the-art advanced insilico approach such as molecular docking, molecular dynamics (MD), molecular mechanics-generalized Born surface area approach. Domain cross correlation and principle component analysis were applied to the snapshots obtained from MD revealed that the compounds with high binding affinity stabilize the conformational dynamics of SaHPPK. The binding free energy estimation showed that the van der Waals and electrostatic interactions played a vital role for the binding mechanism. Additionally, the predicted binding free energy was in good agreement with the experimental values (R2 = .78). Moreover, the free energy decomposition on per-residue confirms the key residues that significantly contribute to the complex formation. These results are expected to be useful for rational design of novel SaHPPK inhibitors.


Subject(s)
Anti-Bacterial Agents/chemistry , Bacterial Proteins/chemistry , Diphosphotransferases/chemistry , Guanine/analogs & derivatives , Mercaptopurine/analogs & derivatives , Staphylococcus aureus/chemistry , Amino Acid Motifs , Bacterial Proteins/antagonists & inhibitors , Catalytic Domain , Crystallography, X-Ray , Diphosphotransferases/antagonists & inhibitors , Kinetics , Molecular Docking Simulation , Molecular Dynamics Simulation , Principal Component Analysis , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Staphylococcus aureus/enzymology , Structure-Activity Relationship , Substrate Specificity , Thermodynamics
6.
Biochemistry ; 54(44): 6734-42, 2015 Nov 10.
Article in English | MEDLINE | ID: mdl-26492157

ABSTRACT

6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) catalyzes the first reaction in the folate biosynthetic pathway. Comparison of its X-ray and nuclear magnetic resonance structures suggests that the enzyme undergoes significant conformational change upon binding to its substrates, especially in three catalytic loops. Experimental research has shown that even when confined by crystal contacts, loops 2 and 3 remain rather flexible when the enzyme is in its apo form, raising questions about the putative large-scale induced-fit conformational change of HPPK. To investigate the loop dynamics in a crystal-free environment, we performed conventional molecular dynamics simulations of the apo-enzyme at two different temperatures (300 and 350 K). Our simulations show that the crystallographic B-factors considerably underestimate the loop dynamics; multiple conformations of loops 2 and 3, including the open, semi-open, and closed conformations that an enzyme must adopt throughout its catalytic cycle, are all accessible to the apo-enzyme. These results revise our previous view of the functional mechanism of conformational change upon MgATP binding and offer valuable structural insights into the workings of HPPK. In this paper, conformational network analysis and principal component analysis related to the loops are discussed to support the presented conclusions.


Subject(s)
Diphosphotransferases/chemistry , Escherichia coli/enzymology , Adenosine Triphosphate/metabolism , Crystallography, X-Ray , Diphosphotransferases/metabolism , Escherichia coli/chemistry , Escherichia coli/metabolism , Molecular Dynamics Simulation , Nuclear Magnetic Resonance, Biomolecular , Principal Component Analysis , Protein Conformation , Protein Stability , Thermodynamics
7.
J Med Chem ; 57(22): 9612-26, 2014 Nov 26.
Article in English | MEDLINE | ID: mdl-25357262

ABSTRACT

6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK), an enzyme from the folate biosynthesis pathway, catalyzes the pyrophosphoryl transfer from ATP to 6-hydroxymethyl-7,8-dihydropterin and is a yet-to-be-drugged antimicrobial target. Building on our previous discovery that 8-mercaptoguanine (8MG) is an inhibitor of Staphylococcus aureus HPPK (SaHPPK), we have identified and characterized the binding of an S8-functionalized derivative (3). X-ray structures of both the SaHPPK/3/cofactor analogue ternary and the SaHPPK/cofactor analogue binary complexes have provided insight into cofactor recognition and key residues that move over 30 Å upon binding of 3, whereas NMR measurements reveal a partially plastic ternary complex active site. Synthesis and binding analysis of a set of analogues of 3 have identified an advanced new lead compound (11) displaying >20-fold higher affinity for SaHPPK than 8MG. A number of these exhibited low micromolar affinity for dihydropteroate synthase (DHPS), the adjacent, downstream enzyme to HPPK, and may thus represent promising new leads to bienzyme inhibitors.


Subject(s)
Diphosphotransferases/antagonists & inhibitors , Diphosphotransferases/chemistry , Folic Acid/biosynthesis , Guanine/chemistry , Staphylococcus aureus/enzymology , Adenosine Triphosphate/chemistry , Catalysis , Catalytic Domain , Crystallography, X-Ray , Dihydropteroate Synthase/chemistry , Ions , Kinetics , Magnetic Resonance Spectroscopy , Molecular Conformation , Protein Binding , Protein Conformation , Pterins/chemistry , Structure-Activity Relationship , Surface Plasmon Resonance
8.
Phys Chem Chem Phys ; 16(26): 13052-8, 2014 Jul 14.
Article in English | MEDLINE | ID: mdl-24853252

ABSTRACT

Enzyme-substrate interaction plays a critical role in enzymatic reactions, forming the active enzyme-substrate complex, the transition state ready to react. Studying the enzyme-substrate interaction will help in the ultimate molecular-level characterization of the enzymatic transition state that defines the reaction pathway, energetics, and the dynamics. In our initial effort to experimentally investigate the enzyme-substrate interactions and the related conformational fluctuations, we have developed a new approach to manipulate the enzymatic conformation and enzyme-substrate interaction at a single-molecule level by using a combined magnetic tweezers and simultaneous fluorescence resonance energy transfer (FRET) spectroscopic microscopy. By a repetitive pulling-releasing manipulation of a Cy3-Cy5 dye labeled 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) molecule under the conditions with and without enzymatic substrates, we have probed and analyzed the enzymatic conformational dynamics. Our results indicate that the enzyme conformational flexibility can be regulated by enzyme-substrate interactions: (1) enzyme at its conformation-perturbed state has less flexibility when binding substrates, and (2) substrate binding to enzyme significantly changes the enzyme conformational flexibility, an experimental evidence of so called entropy trapping in the enzyme-substrate reactive transition state. Furthermore, our results provide a significant experimental analysis of the folding-binding enzyme-substrate interactions, a dynamic nature of the enzymatic active transition state formation process.


Subject(s)
Diphosphotransferases/chemistry , Diphosphotransferases/ultrastructure , Fluorescence Resonance Energy Transfer/methods , Magnetics/methods , Micromanipulation/methods , Microscopy/methods , Spectrometry, Fluorescence/methods , Enzyme Activation , Molecular Probe Techniques , Protein Conformation , Substrate Specificity
9.
PLoS One ; 8(4): e59535, 2013.
Article in English | MEDLINE | ID: mdl-23565155

ABSTRACT

As the second essential enzyme of the folate biosynthetic pathway, the potential antimicrobial target, HPPK (6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase), catalyzes the Mg(2+-)dependant transfer of pyrophosphate from the cofactor (ATP) to the substrate, 6-hydroxymethyl-7,8-dihydropterin. Recently, we showed that 8-mercaptoguanine (8-MG) bound at the substrate site (KD ∼13 µM), inhibited the S. aureus enzyme (SaHPPK) (IC50 ∼ 41 µM), and determined the structure of the SaHPPK/8-MG complex. Here we present the synthesis of a series of guanine derivatives, together with their HPPK binding affinities, as determined by SPR and ITC analysis. The binding mode of the most potent was investigated using 2D NMR spectroscopy and X-ray crystallography. The results indicate, firstly, that the SH group of 8-MG makes a significant contribution to the free energy of binding. Secondly, direct N(9) substitution, or tautomerization arising from N(7) substitution in some cases, leads to a dramatic reduction in affinity due to loss of a critical N(9)-H···Val46 hydrogen bond, combined with the limited space available around the N(9) position. The water-filled pocket under the N(7) position is significantly more tolerant of substitution, with a hydroxyl ethyl 8-MG derivative attached to N(7) (compound 21a) exhibiting an affinity for the apo enzyme comparable to the parent compound (KD ∼ 12 µM). In contrast to 8-MG, however, 21a displays competitive binding with the ATP cofactor, as judged by NMR and SPR analysis. The 1.85 Å X-ray structure of the SaHPPK/21a complex confirms that extension from the N(7) position towards the Mg(2+)-binding site, which affords the only tractable route out from the pterin-binding pocket. Promising strategies for the creation of more potent binders might therefore include the introduction of groups capable of interacting with the Mg(2+) centres or Mg(2+)-binding residues, as well as the development of bitopic inhibitors featuring 8-MG linked to a moiety targeting the ATP cofactor binding site.


Subject(s)
Biosynthetic Pathways/drug effects , Diphosphotransferases/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Folic Acid/biosynthesis , Guanine/analogs & derivatives , Guanine/pharmacology , Binding Sites , Diphosphotransferases/chemistry , Diphosphotransferases/metabolism , Drug Design , Enzyme Inhibitors/chemistry , Guanine/chemistry , Ligands , Models, Molecular , Molecular Conformation , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Thermodynamics
10.
Phys Chem Chem Phys ; 15(3): 770-5, 2013 Jan 21.
Article in English | MEDLINE | ID: mdl-23085845

ABSTRACT

The fluorescence resonant energy transfer (FRET) from a donor to an acceptor via transition dipole-dipole interactions decreases the donor's fluorescent lifetime. The donor's fluorescent lifetime decreases as the FRET efficiency increases, following the equation: E(FRET) = 1 - τ(DA)/τ(D), where τ(D) and τ(DA) are the donor fluorescence lifetime without FRET and with FRET. Accordingly, the FRET time trajectories associated with single-molecule conformational dynamics can be recorded by measuring the donor's lifetime fluctuations. In this article, we report our work on the use of a Cy3/Cy5-labeled enzyme, HPPK to demonstrate probing single-molecule conformational dynamics in an enzymatic reaction by measuring single-molecule FRET donor lifetime time trajectories. Compared with single-molecule fluorescence intensity-based FRET measurements, single-molecule lifetime-based FRET measurements are independent of fluorescence intensity. The latter has an advantage in terms of eliminating the analysis background noise from the acceptor fluorescence detection leak through noise, excitation light intensity noise, or light scattering noise due to local environmental factors, for example, in a AFM-tip correlated single-molecule FRET measurements. Furthermore, lifetime-based FRET also supports simultaneous single-molecule fluorescence anisotropy.


Subject(s)
Diphosphotransferases/chemistry , Fluorescence Resonance Energy Transfer , Carbocyanines/chemistry , Diphosphotransferases/metabolism , Molecular Dynamics Simulation , Photons , Protein Structure, Tertiary
11.
PLoS One ; 7(1): e29444, 2012.
Article in English | MEDLINE | ID: mdl-22276115

ABSTRACT

The first structural and biophysical data on the folate biosynthesis pathway enzyme and drug target, 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (SaHPPK), from the pathogen Staphylococcus aureus is presented. HPPK is the second essential enzyme in the pathway catalysing the pyrophosphoryl transfer from cofactor (ATP) to the substrate (6-hydroxymethyl-7,8-dihydropterin, HMDP). In-silico screening identified 8-mercaptoguanine which was shown to bind with an equilibrium dissociation constant, K(d), of ∼13 µM as measured by isothermal titration calorimetry (ITC) and surface plasmon resonance (SPR). An IC(50) of ∼41 µM was determined by means of a luminescent kinase assay. In contrast to the biological substrate, the inhibitor has no requirement for magnesium or the ATP cofactor for competitive binding to the substrate site. The 1.65 Å resolution crystal structure of the inhibited complex showed that it binds in the pterin site and shares many of the key intermolecular interactions of the substrate. Chemical shift and (15)N heteronuclear NMR measurements reveal that the fast motion of the pterin-binding loop (L2) is partially dampened in the SaHPPK/HMDP/α,ß-methylene adenosine 5'-triphosphate (AMPCPP) ternary complex, but the ATP loop (L3) remains mobile on the µs-ms timescale. In contrast, for the SaHPPK/8-mercaptoguanine/AMPCPP ternary complex, the loop L2 becomes rigid on the fast timescale and the L3 loop also becomes more ordered--an observation that correlates with the large entropic penalty associated with inhibitor binding as revealed by ITC. NMR data, including (15)N-(1)H residual dipolar coupling measurements, indicate that the sulfur atom in the inhibitor is important for stabilizing and restricting important motions of the L2 and L3 catalytic loops in the inhibited ternary complex. This work describes a comprehensive analysis of a new HPPK inhibitor, and may provide a foundation for the development of novel antimicrobials targeting the folate biosynthetic pathway.


Subject(s)
Bacterial Proteins/chemistry , Diphosphotransferases/chemistry , Staphylococcus aureus/enzymology , Bacterial Proteins/metabolism , Diphosphotransferases/metabolism , Magnetic Resonance Spectroscopy , Pterins/metabolism
12.
ACS Nano ; 6(2): 1221-9, 2012 Feb 28.
Article in English | MEDLINE | ID: mdl-22276737

ABSTRACT

Combining atomic force microscopy and fluorescence resonance energy transfer spectroscopy (AFM-FRET), we have developed a single-molecule AFM-FRET nanoscopy approach capable of effectively pinpointing and mechanically manipulating a targeted dye-labeled single protein in a large sampling area and simultaneously monitoring the conformational changes of the targeted protein by recording single-molecule FRET time trajectories. We have further demonstrated an application of using this nanoscopy on manipulation of single-molecule protein conformation and simultaneous single-molecule FRET measurement of a Cy3-Cy5-labeled kinase enzyme, HPPK (6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase). By analyzing time-resolved FRET trajectories and correlated AFM force pulling curves of the targeted single-molecule enzyme, we are able to observe the protein conformational changes of a specific coordination by AFM mechanic force pulling.


Subject(s)
Diphosphotransferases/chemistry , Fluorescence Resonance Energy Transfer/methods , Microscopy, Atomic Force/methods , Microscopy/methods , Nanotechnology/methods , Glass/chemistry , Mechanical Phenomena , Models, Molecular , Protein Conformation
13.
J Am Chem Soc ; 133(36): 14389-95, 2011 Sep 14.
Article in English | MEDLINE | ID: mdl-21823644

ABSTRACT

The relationship between protein conformational dynamics and enzymatic reactions has been a fundamental focus in modern enzymology. Using single-molecule fluorescence resonance energy transfer (FRET) with a combined statistical data analysis approach, we have identified the intermittently appearing coherence of the enzymatic conformational state from the recorded single-molecule intensity-time trajectories of enzyme 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) in catalytic reaction. The coherent conformational state dynamics suggests that the enzymatic catalysis involves a multistep conformational motion along the coordinates of substrate-enzyme complex formation and product releasing, presenting as an extreme dynamic behavior intrinsically related to the time bunching effect that we have reported previously. The coherence frequency, identified by statistical results of the correlation function analysis from single-molecule FRET trajectories, increases with the increasing substrate concentrations. The intermittent coherence in conformational state changes at the enzymatic reaction active site is likely to be common and exist in other conformation regulated enzymatic reactions. Our results of HPPK interaction with substrate support a multiple-conformational state model, being consistent with a complementary conformation selection and induced-fit enzymatic loop-gated conformational change mechanism in substrate-enzyme active complex formation.


Subject(s)
Diphosphotransferases/chemistry , Adenosine Triphosphate/chemistry , Catalysis , Catalytic Domain/genetics , Diphosphotransferases/genetics , Fluorescence Resonance Energy Transfer , Protein Conformation , Pterins/chemistry , Substrate Specificity
14.
Protein Pept Lett ; 18(4): 328-35, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21222642

ABSTRACT

Enzymatic catalysis has conflicting structural requirements of the enzyme. In order for the enzyme to form a Michaelis complex, the enzyme must be in an open conformation so that the substrate can get into its active center. On the other hand, in order to maximize the stabilization of the transition state of the enzymatic reaction, the enzyme must be in a closed conformation to maximize its interactions with the transition state. The conflicting structural requirements can be resolved by a flexible active center that can sample both open and closed conformational states. For a bisubstrate enzyme, the Michaelis complex consists of two substrates in addition to the enzyme. The enzyme must remain flexible upon the binding of the first substrate so that the second substrate can get into the active center. The active center is fully assembled and stabilized only when both substrates bind to the enzyme. However, the side-chain positions of the catalytic residues in the Michaelis complex are still not optimally aligned for the stabilization of the transition state, which lasts only approximately 10(-13) s. The instantaneous and optimal alignment of catalytic groups for the transition state stabilization requires a dynamic enzyme, not an enzyme which undergoes a large scale of movements but an enzyme which permits at least a small scale of adjustment of catalytic group positions. This review will summarize the structure, catalytic mechanism, and dynamic properties of 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase and examine the role of protein conformational dynamics in the catalysis of a bisubstrate enzymatic reaction.


Subject(s)
Diphosphotransferases/chemistry , Catalysis , Crystallography, X-Ray , Escherichia coli/enzymology , Folic Acid/biosynthesis , Kinetics , Molecular Dynamics Simulation , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Protein Conformation , Protein Structure, Tertiary , Substrate Specificity
15.
PLoS One ; 5(11): e14165, 2010 Nov 30.
Article in English | MEDLINE | ID: mdl-21152407

ABSTRACT

The 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) and dihydropteroate synthase (DHPS) enzymes catalyze sequential metabolic reactions in the folate biosynthetic pathway of bacteria and lower eukaryotes. Both enzymes represent validated targets for the development of novel anti-microbial therapies. We report herein that the genes which encode FtHPPK and FtDHPS from the biowarfare agent Francisella tularensis are fused into a single polypeptide. The potential of simultaneously targeting both modules with pterin binding inhibitors prompted us to characterize the molecular details of the multifunctional complex. Our high resolution crystallographic analyses reveal the structural organization between FtHPPK and FtDHPS which are tethered together by a short linker. Additional structural analyses of substrate complexes reveal that the active sites of each module are virtually indistinguishable from those of the monofunctional enzymes. The fused bifunctional enzyme therefore represents an excellent vehicle for finding inhibitors that engage the pterin binding pockets of both modules that have entirely different architectures. To demonstrate that this approach has the potential of producing novel two-hit inhibitors of the folate pathway, we identify and structurally characterize a fragment-like molecule that simultaneously engages both active sites. Our study provides a molecular framework to study the enzyme mechanisms of HPPK and DHPS, and to design novel and much needed therapeutic compounds to treat infectious diseases.


Subject(s)
Dihydropteroate Synthase/chemistry , Diphosphotransferases/chemistry , Francisella tularensis/enzymology , Multienzyme Complexes/chemistry , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Biocatalysis , Catalytic Domain , Crystallography, X-Ray , Dihydropteroate Synthase/genetics , Dihydropteroate Synthase/metabolism , Diphosphotransferases/genetics , Diphosphotransferases/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Models, Molecular , Molecular Sequence Data , Molecular Structure , Multienzyme Complexes/genetics , Multienzyme Complexes/metabolism , Protein Binding , Protein Folding , Protein Structure, Secondary , Protein Structure, Tertiary , Sequence Homology, Amino Acid , Substrate Specificity
16.
Biophys J ; 98(12): 3025-34, 2010 Jun 16.
Article in English | MEDLINE | ID: mdl-20550915

ABSTRACT

Protein conformational dynamics, despite its significant anharmonicity, has been widely explored by normal mode analysis (NMA) based on atomic or coarse-grained potential functions. To account for the anharmonic aspects of protein dynamics, this study proposes, and has performed, an anharmonic NMA (ANMA) based on the C(alpha)-only elastic network models, which assume elastic interactions between pairs of residues whose C(alpha) atoms or heavy atoms are within a cutoff distance. The key step of ANMA is to sample an anharmonic potential function along the directions of eigenvectors of the lowest normal modes to determine the mean-squared fluctuations along these directions. ANMA was evaluated based on the modeling of anisotropic displacement parameters (ADPs) from a list of 83 high-resolution protein crystal structures. Significant improvement was found in the modeling of ADPs by ANMA compared with standard NMA. Further improvement in the modeling of ADPs is attained if the interactions between a protein and its crystalline environment are taken into account. In addition, this study has determined the optimal cutoff distances for ADP modeling based on elastic network models, and these agree well with the peaks of the statistical distributions of distances between C(alpha) atoms or heavy atoms derived from a large set of protein crystal structures.


Subject(s)
Elasticity , Models, Molecular , Proteins/chemistry , Anisotropy , Crystallography, X-Ray , Diphosphotransferases/chemistry , Diphosphotransferases/metabolism , Electrons , Escherichia coli/enzymology , Normal Distribution , Protein Conformation , Proteins/metabolism , Temperature
17.
Article in English | MEDLINE | ID: mdl-20445263

ABSTRACT

6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) catalyzes the Mg(2+)-dependent transfer of pyrophosphate from ATP to 6-hydroxymethyl-7,8-dihydropterin (HMDP), forming 6-hydroxymethyl-7,8-dihydropterin pyrophosphate, which is a critical step in the de novo folic acid-biosynthesis pathway. Diffraction-quality crystals of HPPK from the medically relevant species Staphylococcus aureus were grown in the presence of ammonium sulfate or sodium malonate and diffracted to better than 1.65 A resolution. The crystals belonged to space group P2(1), with unit-cell parameters a = 36.8, b = 76.6, c = 51.5 A, alpha = gamma = 90.0, beta = 100.2 degrees . The crystals contained two molecules per asymmetric unit, with a volume per protein weight (V(M)) of 2.04 A(3) Da(-1) and an estimated solvent content of 39.6%.


Subject(s)
Diphosphotransferases/chemistry , Staphylococcus aureus/enzymology , Crystallization , Crystallography, X-Ray
18.
J Phys Chem B ; 113(50): 16197-208, 2009 Dec 17.
Article in English | MEDLINE | ID: mdl-19924845

ABSTRACT

HPPK (6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase) catalyzes the transfer of pyrophosphate from ATP to HP (6-hydroxymethyl-7,8-dihydropterin). This first reaction in the folate biosynthetic pathway is a potential target for antimicrobial agents. A Hamiltonian replica exchange method (HREM) molecular dynamics (MD) approach is used, with the goal of improving conformational sampling, whereby multiple copies of the system are run without requiring a large number of system copies. For HPPK, the aim is to improve conformational sampling around the HP binding pocket and thereby find near-closed conformations (similar but not identical to the binding pocket of HP, as defined by the ternary crystal structure). Near-closed conformations may be better targets for the design of species-selective inhibitors. Well-populated, near-closed conformations of Escherichia coli HPPK (EcHPPK) and Yersinia pestis HPPK (YpHPPK) were found with HREM by focusing on the interactions involving loops 2 and 3 that are known to be the more flexible regions of HPPK. A small number of systems were found to be sufficient to enlarge the sample space substantially, on the basis of root-mean-square fluctuation measures, relative to the results of a conventional MD simulation. By clustering snapshots on the basis of some of the key residues that form the HP binding pocket, distinct HREM-generated conformations are found. Residue displacements mainly from loop 2 are responsible for the distinct conformers found, relative to the crystal structure, for both EcHPPK and YpHPPK. In contrast, the conventional MD simulations of EcHPPK and YpHPPK each lead essentially to one cluster, with use of the same clustering criterion as for the HREM. The shapes of the HREM near-closed binding pockets are qualitatively investigated and found to be different. Some of these conformations are distinguishable between EcHPPK and YpHPPK, indicating that there may be differing species-selective, near-closed conformations suited to HP binding.


Subject(s)
Diphosphotransferases/chemistry , Escherichia coli/enzymology , Yersinia pestis/enzymology , Adenosine Triphosphate/chemistry , Binding Sites , Molecular Dynamics Simulation , Protein Binding , Protein Structure, Tertiary , Pterins/chemistry
19.
J Phys Chem A ; 113(10): 2025-35, 2009 Mar 12.
Article in English | MEDLINE | ID: mdl-19191740

ABSTRACT

HPPK (6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase) catalyzes the transfer of pyrophosphate from ATP to HP (6-hydroxymethyl-7,8-dihydropterin). This first reaction in the folate biosynthetic pathway is an important target for potential antimicrobial agents. In this work, the mechanism by which HPPK traps and binds ATP is studied by molecular dynamics (MD)-based methods. Based on the ternary crystal structure of HPPK with an ATP mimic and HP, a complex of ATPMg(2) and HPPK is simulated and found to undergo small conformational changes with conventional MD, as does also conventional MD when started from the apo crystal structure. The introduction of restraints in the MD that serve to move HPPK-ATP from its ternary complex (closed) to apo-like (open) forms shows that throughout the restraint path ATP remains bound to HPPK. That ATP remains bound suggests that there is an ensemble of conformations with ATP bound to HPPK that span the apo to more ligand-bound-like conformations, consistent with the pre-existing equilibrium hypothesis of ligand binding, whereby a ligand can select from and bind to a broad range of protein conformations. In the apo-like conformations, ATPMg(2) remains bound to HPPK through a number of mainly salt-bridge-like interactions between several negatively charged residues and the two magnesium cations. The introduction of a reweight method that enhances the sampling of MD by targeting explicit terms in the force field helps define the interactions that bind ATP to HPPK. Using the reweight method, conformational and center of mass motions of ATP, driven by the breaking and making of hydrogen bonds and salt bridges, are identified that lead to ATP separating from HPPK. An elastic normal mode (ENM) approach to opening the ternary complex and closing the apo crystal structures was carried out. The ENM analysis of the apo structure analysis shows one mode that does have a closing motion of HPPK loops, but the direction does not correlate strongly with the loop motions that are required for forming the ternary complex.


Subject(s)
Adenosine Triphosphate/chemistry , Diphosphotransferases/chemistry , Molecular Dynamics Simulation , Catalysis , Crystallography, X-Ray , Folic Acid/biosynthesis , Hydrogen Bonding , Protein Conformation , Pterins/chemistry , Substrate Specificity
20.
Biochemistry ; 48(2): 302-12, 2009 Jan 20.
Article in English | MEDLINE | ID: mdl-19108643

ABSTRACT

6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) catalyzes the transfer of pyrophosphate from ATP to 6-hydroxymethyl-7,8-dihydropterin (HP), which follows an ordered bi-bi kinetic mechanism with ATP binding to the enzyme first. HPPK undergoes dramatic conformational changes during its catalytic cycle as revealed by X-ray crystallography, and the conformational changes are essential for the enzymatic catalysis as shown by site-directed mutagenesis and biochemical and crystallographic analysis of the mutants. However, the dynamic properties of the enzyme have not been measured experimentally. Here, we report a (15)N NMR relaxation study of the dynamic properties of Escherichia coli HPPK from the apo form to the binary substrate complex with MgATP (represented by MgAMPCPP, an ATP analogue) to the Michaelis complex (ternary substrate complex) with MgATP (represented by MgAMPCPP) and HP (represented by 7,7-dimethyl-6-hydroxypterin, an HP analogue). The results show that the binding of the nucleotide to HPPK does not cause major changes in the dynamic properties of the enzyme. Whereas enzymes are often more rigid when bound to the ligand or the substrate, the internal mobility of HPPK is not reduced and is even moderately increased in the binary complex, particularly in the catalytic loops. The internal mobility of the catalytic loops is significantly quenched upon the formation of the ternary complex, but some mobility remains. The enhanced motions in the catalytic loops of the binary substrate complex may be required for the assembling of the ternary complex. On the other hand, some degrees of mobility in the catalytic loops of the ternary complex may be required for the optimal stabilization of the transition state, which may need the instantaneous adjustment and alignment of the side-chain positions of catalytic residues. Such dynamic behaviors may be characteristic of bisubstrate enzymes.


Subject(s)
Diphosphotransferases/metabolism , Escherichia coli/enzymology , Protein Conformation , Adenosine Triphosphate/analogs & derivatives , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Amino Acid Sequence , Catalysis , Crystallography, X-Ray , Diffusion , Diphosphotransferases/chemistry , Diphosphotransferases/isolation & purification , Kinetics , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Protein Structure, Secondary , Rotation , Substrate Specificity/genetics , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL