Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 220
Filter
1.
J Pharm Biomed Anal ; 245: 116196, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38723559

ABSTRACT

Osteoarthritis (OA) is a degenerative joint disease primarily affecting the cartilage. The therapeutic potential of the Dipsacus asper-Achyranthes bidentate herb pair for OA has been acknowledged, yet its precise mechanism remains elusive. In this study, we conducted a comprehensive analysis of metabolomic changes and therapeutic outcomes in osteoarthritic rats, employing a gas chromatography-mass spectrometry-based metabolomics approach in conjunction with histopathological and biochemical assessments. The rats were divided into six groups: control, model, positive control, Dipsacus asper treated, Achyranthes bidentata treated, and herb pair treated groups. Compared to the model group, significant reductions in levels of tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and iNOS were observed in the treated groups. Multivariate statistical analyses were employed to investigate metabolite profile changes in serum samples and identify potential biomarkers, revealing 45 differential biomarkers, with eighteen validated using standard substances. These analytes exhibited excellent linearity across a wide concentration range (R2>0.9990), with intra- and inter-day precision RSD values below 4.69% and 4.83%, respectively. Recoveries of the eighteen analytes ranged from 93.97% to 106.59%, with RSD values under 5.72%, underscoring the method's reliability. Treatment with the herbal pair effectively restored levels of unsaturated fatty acids such as linoleic acid and arachidonic acid, along with glucogenic amino acids. Additionally, levels of phosphoric acid and citric acid were reversed, indicating restoration of energy metabolism. Collectively, these findings highlight the utility of metabolomic analysis in evaluating therapeutic efficacy and elucidating the underlying molecular mechanisms of herb pairs in OA treatment.


Subject(s)
Achyranthes , Biomarkers , Energy Metabolism , Fatty Acids, Unsaturated , Gas Chromatography-Mass Spectrometry , Metabolomics , Osteoarthritis , Rats, Sprague-Dawley , Animals , Metabolomics/methods , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Achyranthes/chemistry , Rats , Energy Metabolism/drug effects , Male , Gas Chromatography-Mass Spectrometry/methods , Fatty Acids, Unsaturated/metabolism , Fatty Acids, Unsaturated/blood , Biomarkers/blood , Dipsacaceae/chemistry , Disease Models, Animal , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
2.
Int J Nanomedicine ; 19: 1097-1108, 2024.
Article in English | MEDLINE | ID: mdl-38327597

ABSTRACT

Introduction: Osteosarcoma is a prevalent and highly malignant primary bone tumor. However, current clinical therapeutic drugs for osteosarcoma are not suitable for long-term use due to significant side effects. Therefore, there is an urgent need to develop new drugs with fewer side effects. Dipsacus asperoides C. Y. Cheng et T. M. Ai, a traditional Chinese medicine, is commonly used for its anti-inflammatory, anti-pain, bone fracture healing, and anti-tumor effects. In this study, we investigated the effects of exosome-like nanoparticles derived from Dipsacus asperoides (DAELNs) on osteosarcoma cells in vitro and in vivo. Methods: DAELNs were isolated and purified from Dipsacus asperoides and their physical and chemical properties were characterized using transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA). The cellular uptake of DAELNs in osteosarcoma cells was analyzed by PKH26 staining. The proliferation, invasion, migration, and apoptosis of osteosarcoma cells were assessed using CCK8 assay, EdU assay, colony-formation assay, transwell assay, wound healing assay, and mitochondrial membrane potential measurement, respectively. The regulatory mechanism of DAELNs inhibiting the progression of osteosarcoma via activating P38/JNK signaling pathway was investigated using Western blotting and immunohistochemistry. Moreover, the therapeutic effects of DAELNs were evaluated using in vivo small animal imaging assay, HE staining, and immunohistochemistry. Results: Our results showed that DAELNs inhibited the proliferation, invasion, migration, and fostered the apoptosis of osteosarcoma cells in vitro and suppressed the tumor growth of osteosarcoma cells in a xenograft nude mouse model. Furthermore, the bio-distribution of DiD-labeled DAELNs showed preferential targeting of osteosarcoma tumors and excellent biosafety in histological analysis of the liver and kidney. Mechanistically, DAELNs activated the P38/JNK signaling pathway-induced apoptosis. Conclusion: Taken together, DAELNs are novel, natural, and osteosarcoma-targeted agents that can serve as safe and effective therapeutic approaches for the treatment of osteosarcoma.


Subject(s)
Bone Neoplasms , Dipsacaceae , Exosomes , Osteosarcoma , Humans , Mice , Animals , MAP Kinase Signaling System , Dipsacaceae/chemistry , Exosomes/metabolism , Apoptosis , Osteosarcoma/pathology , Cell Line, Tumor , Bone Neoplasms/pathology , Disease Models, Animal , Cell Proliferation , Cell Movement
3.
Toxicon ; 239: 107614, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38237691

ABSTRACT

Scabiosa artropurperea var.maritima is a plant widely distributed in the Mediterranean region and used as a traditional medicine. The present study evaluated the biochemical composition and the potential toxicity of aqueous extract of whole Scabiosa artropurperea var.maritima through acute toxicity oral administration in male mice. Phytochemical analysis of the Scabiosa artropurperea var.maritima revealed high levels of reductor sugars and significant flavonoid and total phenol content. The aqueous extract of Scabiosa artropurperea var.maritima was daily oral administered to mice at doses of 300 (group 1), 2000 (group 2) and 4000 (group 3) mg/kg body weight per day for 14 days. We observed no significant difference in the consumption of food, body weight and relative organ weights except for an increase in the seminal vesicles weight in group 3. Hematological parameters revealed the non-adverse effects of prolonged oral consumption of Scabiosa artropurperea var.maritima except for a slight increase but significant of percentage of hematocrit in group 1 and 3 and a decrease in percentage of granulocytes in group 2. The histopathologic examination did not show any differences in vital organs. We also observed non-adverse effects on the reproductive parameters including testosterone concentration, spermatozoa motility and morphologies. Based on our findings, the aqueous extract of Scabiosa artropurperea var.maritima could be considered safe for oral medication in animals.


Subject(s)
Dipsacaceae , Plant Extracts , Male , Mice , Animals , Toxicity Tests, Acute , Medicine, Traditional , Administration, Oral , Body Weight
4.
Chem Biodivers ; 21(2): e202301652, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38240171

ABSTRACT

In this research, the total phenolic and flavonoid amounts, phenolic compositions, in vitro antioxidant, antibacterial and antidiabetic properties of the methanol extracts obtained from Scabiosa L. (Caprifoliaceae) species distributed in the flora of Türkiye were investigated using chemometric methods. For this purpose, principal component (PCA) and agglomerative hierarchical clustering analysis were performed as chemometric methods. Chlorogenic acid, quinic acid and cyranoside were determined in the extracts. According to chemometric analysis, S. columbaria subsp. ochroleuca var. ochroleuca and S. triniifolia species were found to be valuable in terms of methanol extract yields, total phenolic and flavonoid contents, antioxidant and antidiabetic activities while S. columbaria subsp. ochroleuca var. webbiana species were found to be valuable in terms of phenolic composition. The methanol extracts of Scabiosa species showed high antioxidant activity, with high phenolic and flavonoid contents. Among the tested 13 bacteria, Scabiosa extracts showed only low activity against Klebsiella pneumoniae, Streptococcus pneumoniae and Pseudomonas aeruginosa. The extracts showed high α-amylase and α-glucosidase inhibitory activity. The results show that Scabiosa methanol extracts may be a source of alternative antioxidants that may be beneficial in slowing or preventing the progression of various oxidative stress-related diseases.


Subject(s)
Caprifoliaceae , Dipsacaceae , Antioxidants/pharmacology , Antioxidants/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Chemometrics , Methanol , Plant Extracts/pharmacology , Plant Extracts/chemistry , Flavonoids/pharmacology , Phytochemicals/pharmacology
5.
Sci Rep ; 13(1): 16964, 2023 10 08.
Article in English | MEDLINE | ID: mdl-37807002

ABSTRACT

Four new triterpene saponins, namely speciosides A-D (1-4) along with six known saponins were isolated from the n-butanol extract of Cephalaria speciosa. In addition to these, three new prosapogenins (2a-4a) were obtained after alkaline hydrolysis. Elucidation of the structures of the isolated compounds was carried out by 1D, 2D NMR, HR-ESI/MS and GC-MS analyses. Cytotoxic activity was investigated on A549, CCD34-Lu, MDA-MB-231, PC-3, U-87MG, HeLa, HepG-2 cells by MTT method. Additionally, the immunomodulatory effect of compounds was evaluated for macrophage polarization with/without inactivated IBV D274 antigen treatment on THP-1 cells originated macrophage cells in terms of M1 or M2. According to the cytotoxicity results, compound 1 and prosapogenin 2a exhibit significant cytotoxicity than doxorubicin by comparison. The results demonstrated that saponin molecules treated THP-1 originated macrophages were induced M1 and/or M2 polarization. Additionally, macrophage cells treated with/without IBV D274 antigen contained saponin compounds were triggered significantly M2 polarization relative to M1. Notably, monodesmosidic saponins (1 and 2a-4a) in comparison with bisdesmosidic ones (2-4) demonstrated the most effect on M2 polarization. In conclusion, the results showed that all the isolated new saponins and their prosapogenins have immunomodulatory potential on macrophage cells increasing immune response without significant cytotoxic effect on THP-1 originated macrophages.


Subject(s)
Antineoplastic Agents , Dipsacaceae , Saponins , Triterpenes , Humans , Triterpenes/chemistry , Dipsacaceae/chemistry , Saponins/chemistry , HeLa Cells , Immunity , Molecular Structure
6.
Int J Mol Sci ; 24(11)2023 May 24.
Article in English | MEDLINE | ID: mdl-37298138

ABSTRACT

The treatment of acne and other seborrheic diseases has arisen as a significant clinical challenge due to the increasing appearance of multi-drug resistant pathogens and a high frequency of recurrent lesions. Taking into consideration the fact that some Knautia species are valuable curatives in skin diseases in traditional medicine, we assumed that the thus far unstudied species K. drymeia and K. macedonica may be a source of active substances used in skin diseases. The purpose of this study was to evaluate the antioxidant, anti-inflammatory, antibacterial, and cytotoxic activities of their extracts and fractions. An LC-MS analysis revealed the presence of 47 compounds belonging to flavonoids and phenolic acids in both species while the GC-MS procedure allowed for the identification mainly sugar derivatives, phytosterols, and fatty acids and their esters. The ethanol as well as methanol-acetone-water (3:1:1) extracts of K. drymeia (KDE and KDM) exhibited great ability to scavenge free radicals and good capacity to inhibit cyclooxygenase-1, cyclooxygenase-2, and lipoxygenase. Moreover, they had the most favorable low minimal inhibitory concentration values against acne strains, and importantly, they were non-toxic toward normal skin fibroblasts. In conclusion, K. drymeia extracts seem to be promising and safe agents for further biomedical applications.


Subject(s)
Dipsacaceae , Skin Diseases , Humans , Plant Extracts/chemistry , Anti-Bacterial Agents/pharmacology , Medicine, Traditional , Antioxidants/pharmacology , Antioxidants/chemistry
7.
Molecules ; 28(11)2023 May 25.
Article in English | MEDLINE | ID: mdl-37298806

ABSTRACT

In the field of research on medicinal plants from the Armenian flora, the phytochemical study of two Scabiosa L. species, S. caucasica M. Bieb. and S. ochroleuca L. (Caprifoliaceae), has led to the isolation of five previously undescribed oleanolic acid glycosides from an aqueous-ethanolic extract of the roots: 3-O-α-L-rhamnopyranosyl-(1→3)-ß-D-glucopyranosyl-(1→4)-ß-D-glucopyranosyl-(1→4)-ß-D-xylopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranosyloleanolic acid 28-O-ß-D-glucopyranosyl-(1→6)-ß-D-glucopyranosyl ester, 3-O-ß-D-xylopyranosyl-(1→2)-[α-L-rhamnopyranosyl-(1→4)]-ß-D-glucopyranosyl-(1→4)-ß-D-glucopyranosyl-(1→4)-ß-D-xylopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranosyloleanolic acid 28-O-ß-D-glucopyranosyl-(1→6)-ß-D-glucopyranosyl ester, 3-O-ß-D-xylopyranosyl-(1→2)-[α-L-rhamnopyranosyl-(1→4)]-ß-D-glucopyranosyl-(1→4)-ß-D-glucopyranosyl-(1→4)-ß-D-xylopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranosyloleanolic acid, 3-O-ß-D-xylopyranosyl-(1→2)-[α-L-rhamnopyranosyl-(1→4)]-ß-D-xylopyranosyl-(1→4)-ß-D-glucopyranosyl-(1→4)-ß-D-xylopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranosyloleanolic acid 28-O-ß-D-glucopyranosyl-(1→6)-ß-D-glucopyranosyl ester, 3-O-α-L-rhamnopyranosyl-(1→4)-ß-D-glucopyranosyl-(1→4)-ß-D-glucopyranosyl-(1→4)-ß-D-xylopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranosyloleanolic acid 28-O-ß-D-glucopyranosyl-(1→6)-ß-D-glucopyranosyl ester. Their full structural elucidation required extensive 1D and 2D NMR experiments, as well as mass spectrometry analysis. For the biological activity of the bidesmosidic saponins and the monodesmosidic saponin, their cytotoxicity on a mouse colon cancer cell line (MC-38) was evaluated.


Subject(s)
Caprifoliaceae , Dipsacaceae , Oleanolic Acid , Saponins , Triterpenes , Animals , Mice , Glycosides/pharmacology , Glycosides/chemistry , Oleanolic Acid/pharmacology , Oleanolic Acid/chemistry , Saponins/chemistry , Caprifoliaceae/chemistry , Triterpenes/pharmacology , Triterpenes/chemistry
8.
Molecules ; 28(9)2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37175164

ABSTRACT

The genera Dipsacus L. and Scabiosa L. of the Caprifoliaceae family are widely distributed in Europe, Asia, and Africa. This work reviews the available literature on the phytochemical profiles, ethnomedicinal uses, and biological activities of the most popular species. These plants are rich sources of many valuable specialized metabolites with beneficial medicinal properties, such as triterpenoid derivatives, iridoids, phenolic acids, and flavonoids. They are also sources of essential oils. The genus Dipsacus has been used for centuries in Chinese and Korean folk medicines to treat bone (osteoporosis) and joint problems (rheumatic arthritis). The Korean Herbal Pharmacopoeia and Chinese Pharmacopoeia include Dipsaci radix, the dried roots of D. asperoides C.Y.Cheng & T.M.Ai. In addition, S. comosa Fisch. ex Roem & Schult. and S. tschiliiensis Grunning are used in traditional Mongolian medicine to treat liver diseases. The current scientific literature data indicate that these plants and their constituents have various biological properties, including inter alia antiarthritic, anti-neurodegenerative, anti-inflammatory, antioxidant, anticancer, and antimicrobial activities; they have also been found to strengthen tendon and bone tissue and protect the liver, heart, and kidney. The essential oils possess antibacterial, antifungal, and insecticidal properties. This paper reviews the key biological values of Dipsacus and Scabiosa species, as identified by in vitro and in vivo studies, and presents their potential pharmacological applications.


Subject(s)
Dipsacaceae , Oils, Volatile , Medicine, Traditional , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Oils, Volatile/pharmacology , Oils, Volatile/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Ethnopharmacology , Phytotherapy
10.
J Ethnopharmacol ; 309: 116281, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-36828196

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Dipsaci Radix (DR) is the dry root of the Dipsacus asper Wall. ex DC., which has the function of tonifying the liver and kidney, continuing tendons and bones, and regulating blood vessels. However, there are few reports on the main active ingredients. AIM OF THE STUDY: This study aimed to find the main active components of DR in the treatment of osteoarthritis (OA) by spectrum-effect relationship and compare the differences between RDR and WDR. MATERIALS AND METHODS: Firstly, the high-performance liquid chromatography (HPLC) method was used to establish the fingerprint of DR, and 10 peaks of them were determined by UPLC-Q-TOF/MS. Then, the OA rat model was established by injecting sodium iodoacetate to study the effect of DR on OA. The spectrum-effect relationship was analyzed by grey relational analysis (GRA) and Pearson correlation analysis. RESULTS: According to the pharmacological results, compared with the model group, the cartilage score, tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and interleukin-6 (IL-6), and Mankin score of rats in low, medium and high dose groups were decreased, and the therapeutic effect of wine-processed DR tended to be better than raw DR at the same dose. Finally, the active components of DR were preliminarily determined as 4 (loganic acid), 6 (chlorogenic acid), 8 (caffeic acid), 14 (dipsanoside B), 16, and 17 (asperosaponin VI) which had a large correlation in GRA and Pearson correlation analysis. CONCLUSION: This study established the spectrum-effect relationship between the raw and wine-processed DR for the first time, which provided a theoretical basis for the study of the pharmacodynamic substance basis of DR before and after processing. This research provided a reference for the subsequent study of DR.


Subject(s)
Dipsacaceae , Drugs, Chinese Herbal , Wine , Rats , Animals , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/analysis , Wine/analysis , Chemometrics , Dipsacaceae/chemistry , Chromatography, High Pressure Liquid/methods
11.
J Biomol Struct Dyn ; 41(21): 11832-11844, 2023.
Article in English | MEDLINE | ID: mdl-36637391

ABSTRACT

In this study, the therapeutic potential and phytochemical composition of ethanolic extract of Cephalaria elazigensis var. purpurea (CE), an endemic species, were investigated. For this purpose, the antiproliferative effect of CE on the MCF-7 human breast cancer cell line was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and its effectiveness on colony formation and cell migration was analyzed with clonogenic assay and wound healing assay, respectively. In addition, the cell death detection ELISA (CDDE) assay was conducted to determine the pro-apoptotic capacity of CE. The IC50 value of the CE was determined as 324.2 ± 14.7 µg/mL. Furthermore, upon 1000 µg/mL CE treatment, there was 4.96-fold increase in the population of cells undergoing apoptosis compared to the untreated control cells. The antioxidant activity tests were performed by DPPH free radical, ABTS cation radical, ferric-ion reducing power (FRAP) and ferrous-ion chelating power (FCAP) assays. Antioxidant activity values for the DPPH, ABTS and FRAP assays were found to be 125.6 ± 6.3, 34.09 ± 0.1 and 123.4 ± 4.2 µmol TE/mg DE, respectively. We further determined the effect of CE ethanolic extract against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzymes. CE plays an effective inhibitory role in AChE and BuChE (AChE: IC50: 10.54 µg/mL, BuChE: IC50: 6.84 µg/mL) respectively. Further, molecular docking stuy was conducted to understand the nature of the all compound against AChE an BChE. It is revealed that α-Linolenic acid shows lowest binding energy (-7.90 kcal/mol) towards AChE, on the other side, Linoleic acid shows good binding affinity (-7.40 kcal/mol) for BChE.Communicated by Ramaswamy H. Sarma.


Subject(s)
Antioxidants , Dipsacaceae , Humans , Antioxidants/pharmacology , Antioxidants/chemistry , Butyrylcholinesterase/metabolism , Acetylcholinesterase/metabolism , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Dipsacaceae/metabolism , Molecular Docking Simulation , Plant Extracts/pharmacology , Plant Extracts/chemistry
12.
J Pharm Biomed Anal ; 221: 115078, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36183633

ABSTRACT

Radix Dipsaci (RD) is the dry root of the Dipsacus asper Wall. ex DC., which has the effect of strengthening muscles and bones. The purpose of this study was to find the main active ingredients that could improve the anti-osteoporosis efficacy of RD after processing with salt. The fingerprints of raw and salt-processed RD were established by HPLC-DAD to determine the common components. Then, an experimental study on the anti-osteoporosis efficacy was carried out to compared the difference in the efficacy between raw and salt-processed RD. Pharmacological results showed that, compared with the model group, both the raw and salt-processed RD were able to increase the Ca, bone mineral content, bone mineral density, trabeculae bone area and number of trabeculae bone of rats, and reduce the P, alkaline phosphatase, osteocalcin and trabecular bone separation of rats. Under the same dose, the pharmacological effect of salt-processed RD group was better than that of raw RD group. Finally, spectrum-effect relationship between fingerprints and anti-osteoporosis efficacy of RD was assessed by grey relational analysis and entropy method to screening out the ingredients that affect the anti-osteoporosis efficacy in RD after processing with salt. The results showed that the anti-osteoporosis efficacy of salt-processed RD was stronger than that of raw RD, and the pharmacologically active ingredients that improved its anti-osteoporosis efficacy after processing with salt were peak 4, peak 7 (caffeic acid), peak 8 (loganin), peak 12 (isochlorogenic acid C), peak 13 (dipsanoside A) and peak 14. As far as we known, this was the first time to establish the spectrum-effect relationship between RD and anti-osteoporosis efficacy, which laid the foundation for the follow-up research on the pharmacodynamic components and molecular mechanism of RD.


Subject(s)
Dipsacaceae , Drugs, Chinese Herbal , Osteoporosis , Alkaline Phosphatase , Animals , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Osteocalcin , Osteoporosis/drug therapy , Rats
13.
Zhongguo Zhong Yao Za Zhi ; 47(17): 4593-4599, 2022 Sep.
Article in Chinese | MEDLINE | ID: mdl-36164864

ABSTRACT

Dipsaci Radix is one of the commonly used Chinese medicinal materials in China, with a long history. It has the medicinal activities of nourishing liver and kidney, recovering from broken sinews, and treating bone fracture. Triterpenoid saponins are the main functional ingredients of Dipsacus asper. ß-Amyrin synthases(ß-AS) as a superfamily of oxidosqualene cyclases(OSCs) can catalyze the construction of the skeleton structure of oleanane-type triterpenoid saponins. There are only a few studies about the ß-AS in D. asper, and the catalytic mechanism of this enzyme remains to be explored. To enrich the information of ß-AS, according to the transcriptome sequencing results, we cloned DaWß-AS gene from D. asper into a specific vector for heterologous expression in Escherichia coli. In the meantime, real-time PCR was performed to analyze the relative expression of DaWß-AS in four different tissues of D. asper. The results of RT-qPCR showed DaWß-AS had the highest expression level in leaves. Bioinformatics results indicated that DaWß-AS had a conserved domain of PLN03012 superfamily, belonging to the cl31551 superfamily. There was no transmembrane domain or signal peptide in DaWß-AS. This study provides a scientific basis for revealing the biological pathways of triterpenoid saponins in D. asper, which will facilitate the biosynthesis of the associated saponins and afford reference for the cultivation and development of high-quality resources of D. asper.


Subject(s)
Dipsacaceae , Saponins , Triterpenes , Cloning, Molecular , Computational Biology , Dipsacaceae/chemistry , Intramolecular Transferases , Protein Sorting Signals , Saponins/chemistry , Triterpenes/chemistry
14.
Zhongguo Zhong Yao Za Zhi ; 47(13): 3609-3618, 2022 Jul.
Article in Chinese | MEDLINE | ID: mdl-35850815

ABSTRACT

This study aims to systematically elucidate the pharmacodynamics and network pharmacological mechanism of Mongolian medicinal plants Scabiosa comosa, explore their key targets and related pathways, and further clarify the mechanism of the plants in treating liver fibrosis. Wistar rats were assigned into the blank group, carbon tetrachloride-induced liver fibrosis model group, and low-, medium-, and high-dose S. comosa groups. HE staining and Masson staining were performed for the observation of liver tissue under a microscope. Further, Wistar rats were assigned into a control group and a S. comosa group for administration. Seven days later, blood was collected from the abdominal aorta, and different doses of drug-containing serum samples were used to treat hepatic stellate cell-T6(HSC-T6). Flow cytometry was adopted to detect the apoptosis of HSC-T6 cells. Ultra-high performance liquid chromatography-time of flight-mass spectrometry(UHPLC-TOF-MS) was employed to determine the components in Scabiosa comosa. The target of S. comosa and liver fibrosis were obtained from SwissTargetPrediction and GeneCards, respectively, and the common targets were selected as the anti-liver fibrosis targets. Protein-protein interaction was analyzed via STRING. Gene Ontology(GO) annotation and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment were carried out via Metascape. Phosphatidylinosital 3-kinase(PI3 K), protein kinase B(AKT), p-AKT, p38, and p-p38 targets which are involved in the top-ranked PI3 K/AKT and mitogen activated kinase-like protein(MAPK) signaling pathways were selected for validation via Western blot. The HE and Masson staining results showed that Scabiosa alleviated the hyperplasia of connective tissue and the fibrosis. The serum containing Scabiosa significantly promoted the apoptosis of HSC-T6 in a concentration-dependent manner. A total of 76 chemical components were identified by UHPLC-TOF-MS, among which flavonoids, alkaloids, terpenoids, phenols, and fatty acids were the main components. According to the prediction, there were 63 anti-liver fibrosis targets in Scabiosa comosa, the annotated GO terms of which involved biological processes, cell components, and molecular functions. The KEGG pathway enrichment showed that the targets were mainly involved in PI3 K/AKT, epidermal growth factor receptor(EGFR), RAS-associated protein 1(Rap1), hypoxia-inducible factor 1(HIF-1), resistance to audiogenic seizures(Ras), and MAPK signaling pathways. Western blot results showed that compared with the model group, S. comosa down-regulated the protein levels of α-smooth muscle actin(α-SMA), collagen Ⅰ, PI3 K, AKT, p-AKT, p38, and p-p38 in liver tissue. Compared with the control group, the low-, medium-, and high-dose S. comosa significantly down-regulated the protein levels of α-SMA, collagen Ⅰ, PI3 K, AKT, p-AKT, p38, and p-p38 in HSC-T6. The evidence of pharmacodynamics, network pharmacology, and molecular biology indicated that the plants of S. comosa had significant activity against liver fibrosis, the mechanism of which may involve the regulation of the key targets PI3 K, AKT, and MAPK14 p38 in the PI3 K/AKT and MAPK signaling pathways.


Subject(s)
Dipsacaceae , Drugs, Chinese Herbal , Animals , Collagen Type I/metabolism , Drugs, Chinese Herbal/pharmacology , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Network Pharmacology , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Wistar
15.
J Chromatogr A ; 1677: 463330, 2022 Aug 16.
Article in English | MEDLINE | ID: mdl-35868154

ABSTRACT

In this study, deep eutectic solvent (DES) based systems were evaluated for selective extraction and optimized for increased recovery of chlorogenic acid derivatives, flavone glycosides and iridoid glycosides from Dipsacus fullonum L. leaves. Bioactives from Dipsacus plants has shown great antioxidant and antimicrobial activities as well as effectiveness against several cancer strains and a source for anti-Borrelia compounds. Twelve different hydrophilic and hydrophobic DESs were tested to find the best solvent composition. Choline chloride and betaine were used as hydrogen bond acceptors (HBA) for the preparation of hydrophilic DESs and menthol for hydrophobic DESs. The tested hydrogen bond donors (HBD) were various organic acids and glycerol. The composition of most effective DES was optimized using the Box-Behnken design for each of the three main group of analytes from D. fullonum L. to evaluate possible selectivity and highest recovery. HPLC-DAD-MS was used to identify and quantify the main bioactive compounds extracted from plant material. The optimal extraction for highest overall recovery was achieved using a molar ratio of choline chloride and lactic acid of 1:2.4 with 35% water and 27 mL of the solvent per one gram of dry material. The optimized DES extract gave concentrations 1.8 to 2.2 times higher than traditional organic solvent extracts depending on the group of analytes.


Subject(s)
Dipsacaceae , Choline/chemistry , Deep Eutectic Solvents , Plant Leaves/chemistry , Solvents/chemistry
16.
Insect Sci ; 29(4): 1211-1225, 2022 Aug.
Article in English | MEDLINE | ID: mdl-34585509

ABSTRACT

The Marsh Fritillary (Euphydryas aurinia) was once widespread in large parts of Central Europe. However, in the course of the last century, populations of the butterfly largely collapsed. Here, we surveyed patch and microhabitat occupancy and its drivers in one of the last vital populations in calcareous grasslands. Our study revealed that environmental conditions at the landscape and habitat level determined the occurrence of E. aurinia in a montane agricultural landscape with low land-use intensity. Patch occupancy increased with the cover of Devil's-bit Scabious (Succisa pratensis) grasslands in the surroundings of the patches, habitat heterogeneity and host-plant cover. Microhabitat occupancy was driven by a warm microclimate and high availability of host plants. In the well-connected landscape of nutrient-poor grasslands, patch occupancy of E. aurinia was driven by parameters defining a high habitat quality. Habitat heterogeneity very likely buffers E. aurinia populations against environmental stochasticity and, hence, enhances long-term viability. For the gregariously feeding caterpillars of E. aurinia, host-plant biomass is essential. Due to their more luxuriant growth, S. pratensis plants were clearly preferred, although the Glossy Scabious (Scabiosa lucida) was also widespread. Additionally, the growth of large Succisa plants was favored by soil humidity and grassland abandonment. To cope with the adverse macro- and mesoclimatic conditions of the study area, females of the butterfly selected host plants growing in extraordinarily warm microhabitats for oviposition. To secure long-term viability of E. aurinia populations, we recommend creating mosaics of traditionally managed grasslands and early stages of abandonment within the patches.


Subject(s)
Butterflies , Dipsacaceae , Animals , Conservation of Natural Resources , Ecosystem , Female , Grassland , Microclimate , Plants
17.
Nat Prod Res ; 36(10): 2495-2503, 2022 May.
Article in English | MEDLINE | ID: mdl-33843360

ABSTRACT

A new hederagenin-type triterpene saponin; hederagenin 28-O-ß-D-galactopyranosyl-(1→6)-ß-D-glucopyranosyl ester named sumbulianoside A (1), together with twelve known saponins were isolated from the n-butanol extract of Cephalaria sumbuliana (Caprifoliaceae) from which, one known saponin, dipsacus saponin A (2) was isolated, for the first time from Cephalaria species. The structures of the isolated compounds were elucidated by 1 D and 2 D NMR and HRESIMS analyses. Cytotoxic activities were investigated on A549, Hela, PANC1, SHSY5Y cells and non-cancerous cell HEK293 by MTT method and immunomodulatory activities were evaluated against activated H3N2 seasonal virus in whole blood by measuring IL-4, IFN-γ, IL-1ß cytokine level with ELISA. According to the cytotoxicity results, compounds 1 and 2 did not possess significant cytotoxicity, while only compound 2 induced significant IL-4 production (** p<.001) against H3N2 showing a possible Th2 response and antibody production. All compounds had no effect on cytokine release (p > 0.5).


Subject(s)
Dipsacaceae , Saponins , Triterpenes , Dipsacaceae/chemistry , HEK293 Cells , Humans , Influenza A Virus, H3N2 Subtype , Interleukin-4 , Oleanolic Acid/analogs & derivatives , Saponins/chemistry , Seasons , Triterpenes/chemistry
18.
BMC Ecol Evol ; 21(1): 200, 2021 11 05.
Article in English | MEDLINE | ID: mdl-34740329

ABSTRACT

BACKGROUND: Ecosystem restoration is as a critical tool to counteract the decline of biodiversity and recover vital ecosystem services. Restoration efforts, however, often fall short of meeting their goals. Although functionally important levels of biodiversity can significantly contribute to the outcome of ecosystem restoration, they are often overlooked. One such important facet of biodiversity is within-species genetic diversity, which is fundamental to population fitness and adaptation to environmental change. Also the diversity of arbuscular mycorrhizal fungi (AMF), obligate root symbionts that regulate nutrient and carbon cycles, potentially plays a vital role in mediating ecosystem restoration outcome. In this study, we investigated the relative contribution of intraspecific population genetic diversity, AMF diversity, and their interaction, to population recovery of Succisa pratensis, a key species of nutrient poor semi natural grasslands. We genotyped 180 individuals from 12 populations of S. pratensis and characterized AMF composition in their roots, using microsatellite markers and next generation amplicon sequencing, respectively. We also investigated whether the genetic makeup of the host plant species can structure the composition of root-inhabiting AMF communities. RESULTS: Our analysis revealed that population allelic richness was strongly positively correlated to relative population growth, whereas AMF richness and its interaction with population genetic diversity did not significantly contribute. The variation partitioning analysis showed that, after accounting for soil and spatial variables, the plant genetic makeup explained a small but significant part of the unique variation in AMF communities. CONCLUSIONS: Our results confirm that population genetic diversity can contribute to population recovery, highlighting the importance of within-species genetic diversity for the success of restoration. We could not find evidence, however, that population recovery benefits from the presence of more diverse AMF communities. Our analysis also showed that the genetic makeup of the host plant structured root-inhabiting AMF communities, suggesting that the plant genetic makeup may be linked to genes that control symbiosis development.


Subject(s)
Dipsacaceae , Mycorrhizae , Ecosystem , Genetic Variation , Grassland , Humans , Mycorrhizae/genetics
19.
Zhongguo Zhong Yao Za Zhi ; 46(18): 4730-4735, 2021 Sep.
Article in Chinese | MEDLINE | ID: mdl-34581082

ABSTRACT

The present study aimed to explore the mechanism of the sweating of Dipsacus asper on content changes of triterpene sa-ponins by detecting the total triterpene saponins and the index component asperosaponin Ⅵ in the crude and sweated D. asper, and analyzing the differentially expressed proteins by isobaric tags for relative and absolute quantification(iTRAQ) combined with LC-MS/MS. After sweating, the content of total triterpene saponins decreased manifestly, while that of asperosaponin Ⅵ increased significantly. As revealed by the iTRAQ-LC-MS/MS analysis, 140 proteins with significant differential expression were figured out, with 50 up-regulated and 90 down-regulated. GO analysis indicated a variety of hydrolases, oxido-reductases, and transferases in the differential proteins. The results of activity test on two differentially expressed oxido-reductases were consistent with those of the iTRAQ-LC-MS/MS analysis. As demonstrated by the analysis of enzymes related to the triterpene saponin biosynthesis pathway, two enzymes(from CYP450 and UGT families, respectively, which are involved in the structural modification of triterpene saponins) were significantly down-regulated after sweating. The findings suggested that sweating of D. asper presumedly regulated triterpene saponins by affecting the expression of downstream CYP450 s and UGTs in the biosynthesis pathway of triterpene saponins of D. asper.


Subject(s)
Dipsacaceae , Saponins , Triterpenes , Chromatography, Liquid , Humans , Sweating , Tandem Mass Spectrometry
20.
Sci Rep ; 11(1): 2600, 2021 01 28.
Article in English | MEDLINE | ID: mdl-33510287

ABSTRACT

Scabiosa comosa and S. tschilliensis (SCST) are traditionally used for liver diseases in Mongolian medicine. However, their active ingredients and molecular mechanisms are unknown. The present study employed network pharmacology and experimental verification approaches to decipher the common pharmacological mechanisms of SCST on liver fibrosis, which is the key step in liver diseases. We predicted the targets of all available SCST ingredients with the SWISS and SuperPred servers and clustered the targets related to liver fibrosis from DrugBank, the OMIM database and the literature. We further evaluated the links between the herbal ingredients and pharmacological actions to explore the potential mechanism of action of SCST. We found that the PPARG signalling pathway could be regulated by SCST for liver fibrosis through enrichment analysis. The key targets included 8 co-targets, including HSP90AA1, PPARG, HSP90AB1, STAT1, etc., which play pivotal roles in the pathogenesis of liver fibrosis. Additionally, the top 15 key compounds included flavonoids and phenylpropanoids. Central to the pathogenesis of liver fibrosis is trans-differentiation or activation of hepatic stellate cells (HSCs). Therefore, LX2 cells, an immortalized human HSC line, were studied. Here, a total 37 components were isolated and identified from the inflorescences of SCST, including the new compound tschilliensisin, and the first separated components, ß-sitosterol and luteolin, and these compounds were assessed against anti-hepatic fibrosis. An MTT assay and quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting analyses demonstrated that the flavonoids of SCST revealed anti-hepatic fibrosis effects via anti-proliferation and increases in the Stat1, Pparg, Hsp90aa1 genes and STAT1 and PPARG proteins in LX-2 cells. In conclusion, these results indicate that SCST has multi-targeted and multi-component synergistic anti-hepatic fibrosis effects.


Subject(s)
Dipsacaceae/chemistry , Flavonoids/pharmacology , Liver Cirrhosis/drug therapy , Molecular Targeted Therapy , Plant Extracts/pharmacology , Actins/metabolism , Biomarkers/metabolism , Cell Line , Cell Proliferation/drug effects , Humans , Liver Cirrhosis/metabolism , Medicine, Mongolian Traditional , Molecular Docking Simulation , Phytotherapy , Plant Extracts/chemistry , Plant Extracts/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...