Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.324
Filter
1.
Ital J Pediatr ; 50(1): 93, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715086

ABSTRACT

BACKGROUND: we aim to discuss the origin and the differences of the phenotypic features and the management care of rare form of disorder of sex development due to Mosaic monosomy X and Y chromosome materiel. METHODS: We report our experience with patients harboring mosaic monosomy X and Y chromosome material diagnosed by blood cells karyotypes and cared for in our department from 2005 to 2022. RESULTS: We have included five infants in our study. The current average age was 8 years. In four cases, the diagnosis was still after born and it was at the age of 15 years in one case. Physical examination revealed a variable degree of virilization, ranging from a normal male phallus with unilateral ectopic gonad to ambiguous with a genital tubercle and bilateral not palpable gonads in four cases and normal female external genitalia in patient 5. Karyotype found 45, X/46, XY mosaicism in patient 1 and 2 and 45, X/46, X, der (Y) mosaicism in patient 3, 4 and 5. Three cases were assigned to male gender and two cases were assigned to female. After radiologic and histologic exploration, four patients had been explored by laparoscopy to perform gonadectomy in two cases and Mullerian derivative resection in the other. Urethroplasty was done in two cases of posterior hypospadias. Gender identity was concordant with the sex of assignment at birth in only 3 cases. CONCLUSION: Because of the phenotypic heterogeneity of this sexual disorders and the variability of its management care, then the decision should rely on a multidisciplinary team approach.


Subject(s)
Chromosomes, Human, Y , Mosaicism , Phenotype , Humans , Male , Female , Child , Adolescent , Chromosomes, Human, Y/genetics , Chromosomes, Human, X/genetics , Infant , Turner Syndrome/genetics , Turner Syndrome/therapy , Karyotyping , Monosomy/genetics , Child, Preschool , Disorders of Sex Development/genetics , Disorders of Sex Development/therapy , Disorders of Sex Development/diagnosis
2.
Front Endocrinol (Lausanne) ; 15: 1385901, 2024.
Article in English | MEDLINE | ID: mdl-38721146

ABSTRACT

In mammals, the development of male or female gonads from fetal bipotential gonads depends on intricate genetic networks. Changes in dosage or temporal expression of sex-determining genes can lead to differences of gonadal development. Two rare conditions are associated with disruptions in ovarian determination, including 46,XX testicular differences in sex development (DSD), in which the 46,XX gonads differentiate into testes, and 46,XX ovotesticular DSD, characterized by the coexistence of ovarian and testicular tissue in the same individual. Several mechanisms have been identified that may contribute to the development of testicular tissue in XX gonads. This includes translocation of SRY to the X chromosome or an autosome. In the absence of SRY, other genes associated with testis development may be overexpressed or there may be a reduction in the activity of pro-ovarian/antitesticular factors. However, it is important to note that a significant number of patients with these DSD conditions have not yet recognized a genetic diagnosis. This finding suggests that there are additional genetic pathways or epigenetic mechanisms that have yet to be identified. The text will provide an overview of the current understanding of the genetic factors contributing to 46,XX DSD, specifically focusing on testicular and ovotesticular DSD conditions. It will summarize the existing knowledge regarding the genetic causes of these differences. Furthermore, it will explore the potential involvement of other factors, such as epigenetic mechanisms, in developing these conditions.


Subject(s)
Testis , Humans , Male , Testis/pathology , Testis/metabolism , Animals , Female , 46, XX Disorders of Sex Development/genetics , 46, XX Disorders of Sex Development/pathology , Sex Differentiation/genetics , Disorders of Sex Development/genetics , Disorders of Sex Development/pathology
3.
Front Endocrinol (Lausanne) ; 15: 1372887, 2024.
Article in English | MEDLINE | ID: mdl-38752171

ABSTRACT

Differences/disorders of sex development (DSD) comprise a large group of rare congenital conditions. 46,XX DSD, excluding congenital adrenal hyperplasia (CAH), represent only a small number of these diseases. Due to the rarity of non-CAH 46,XX DSD, data on this sex chromosomal aberration were confined to case reports or case series with small numbers of patients. As the literature is still relatively sparse, medical data on the long-term effects of these pathologies remain scarce. In this review, we aim to provide an overview of current data on the long-term follow-up of patients with non-CAH 46,XX DSD, by covering the following topics: quality of life, gender identity, fertility and sexuality, global health, bone and cardiometabolic effects, cancer risk, and mortality. As non-CAH 46,XX DSD is a very rare condition, we have no accurate data on adult QoL assessment for these patients. Various factors may contribute to a legitimate questioning about their gender identity, which may differ from their sex assigned at birth. A significant proportion of gender dysphoria has been reported in various series of 46,XX DSD patients. However, it is difficult to give an accurate prevalence of gender dysphoria and gender reassignment in non-CAH 46,XX DSD because of the rarity of the data. Whatever the aetiology of non-CAH 46,XX DSD, fertility seems to be impaired. On the other hand, sexuality appears preserved in 46,XX men, whereas it is impaired in women with MRKH syndrome before treatment. Although there is still a paucity of data on general health, bone and cardiometabolic effects, and mortality, it would appear that the 46,XX DSD condition is less severely affected than other DSD conditions. Further structured and continued multi-center follow-up is needed to provide more information on the long-term outcome of this very rare non-CAH 46,XX DSD condition.


Subject(s)
46, XX Disorders of Sex Development , Quality of Life , Humans , Female , Male , Adrenal Hyperplasia, Congenital/complications , Gender Identity , Disorders of Sex Development/genetics , Fertility
4.
Nat Commun ; 15(1): 3809, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714644

ABSTRACT

Mammalian sex determination is controlled by antagonistic gene cascades operating in embryonic undifferentiated gonads. The expression of the Y-linked gene SRY is sufficient to trigger the testicular pathway, whereas its absence in XX embryos leads to ovarian differentiation. Yet, the potential involvement of non-coding regulation in this process remains unclear. Here we show that the deletion of a single microRNA cluster, miR-17~92, induces complete primary male-to-female sex reversal in XY mice. Sry expression is delayed in XY knockout gonads, which develop as ovaries. Sertoli cell differentiation is reduced, delayed and unable to sustain testicular development. Pre-supporting cells in mutant gonads undergo a transient state of sex ambiguity which is subsequently resolved towards the ovarian fate. The miR-17~92 predicted target genes are upregulated, affecting the fine regulation of gene networks controlling gonad development. Thus, microRNAs emerge as key components for mammalian sex determination, controlling Sry expression timing and Sertoli cell differentiation.


Subject(s)
Cell Differentiation , MicroRNAs , Ovary , Sertoli Cells , Sex Determination Processes , Sex-Determining Region Y Protein , Testis , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Female , Male , Sertoli Cells/metabolism , Sertoli Cells/cytology , Mice , Ovary/metabolism , Testis/metabolism , Sex-Determining Region Y Protein/genetics , Sex-Determining Region Y Protein/metabolism , Cell Differentiation/genetics , Sex Determination Processes/genetics , Gene Expression Regulation, Developmental , Mice, Knockout , Sex Differentiation/genetics , Disorders of Sex Development/genetics , Gonads/metabolism
5.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(5): 626-631, 2024 May 10.
Article in Chinese | MEDLINE | ID: mdl-38684314

ABSTRACT

OBJECTIVE: To explore the genetic basis for a patient with Disorders of sex development (DSD). METHODS: A female patient who had presented at the Linyi People's Hospital due to primary amenorrhea on April 6, 2022 was selected as the study subject. Conventional chromosomal karyotyping, fluorescence in situ hybridization (FISH), chromosomal microarray analysis (CMA), fluorescence quantitative PCR and Sanger sequencing were carried out for the patient. RESULTS: The patient, a 14-year-old female, had featured short statue, multiple nevi, and primary amenorrhea. She was found to have a karyotype of 46,X,idic(Y)(p11.3)[59]/45,X[39]/47,X,idic(Y)(p11.3)×2[2]. The result of FISH assay was 46,X,der(Y).ish idic(Y)(p11.3)(SRY+)[59]/45,X[39]/47,X,der(Y)×2.ish idic(Y)(p11.3)(SRY+)[2]. That of CMA was arr[GRCh37](X)×1,(Y)×0-1,arr[GRCh37]Yp11.32(118552_472090)×1. The patient had no deletion in the AZF region of Y chromosome, and was negative for variant of SRY gene. Combining the above results, her molecular karyotype was determined as mos 46,X,idic(Y)(p11.32)[59]/45,X[39]/47,X,idic(Y)(p11.32)×2[2].ish 46,X,idic(Y)(p11.32)(DXZ1+,DYZ1++,DYZ3++,SRY+)[59]/45,X(DXZ1+,DYZ1-,DYZ3-,SRY-)[39]/47,X,der(Y)×2.ish idic(Y)(p11.32)(DXZ1+,DYZ1++,DYZ3++,SRY+)[2].arr[GRCh37](X)×1, (Y)×0-1,arr[GRCh37]Yp11.32(118552_472090)×1. The patient was diagnosed with mosaicism DSD with idic(Y)(p11.32). CONCLUSION: The abnormal mosaicism karyotype probably underlay the DSD in this patient.


Subject(s)
Chromosomes, Human, Y , Disorders of Sex Development , Karyotyping , Humans , Female , Adolescent , Chromosomes, Human, Y/genetics , Disorders of Sex Development/genetics , In Situ Hybridization, Fluorescence , Sex Chromosome Aberrations , Genetic Testing
6.
Eur J Hum Genet ; 32(4): 421-425, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38200083

ABSTRACT

46,XY gonadal dysgenesis (GD) is a disorder of sex development due to incomplete gonadal differentiation into testes, resulting in female to ambiguous external genitalia. Duplications at the Xp21.2 locus involving the NR0B1 (DAX1) gene have previously been associated with 46,XY GD. More recently, a complex structural variant not directly involving NR0B1 has been reported in 46,XY GD illustrating that the mechanism of how copy number variants (CNVs) at Xp21.2 may cause 46,XY gonadal dysgenesis is not yet fully understood. Here, we report on three families in which a duplication involving the NR0B1 gene was detected in the context of prenatal screening. This is the first report of duplications involving NR0B1 in three phenotypically normal males in two families. Fertility problems were present in one adult male carrier. The data reported here from an unbiased screening population broaden the phenotype associated with CNVs involving NR0B1, and this may aid clinicians in counseling and decision making in the prenatal context.


Subject(s)
DAX-1 Orphan Nuclear Receptor , Gonadal Dysgenesis, 46,XY , Adult , Female , Humans , Male , DAX-1 Orphan Nuclear Receptor/genetics , Disorders of Sex Development/genetics , DNA Copy Number Variations , Gonadal Dysgenesis, 46,XY/genetics , Phenotype
7.
J Equine Vet Sci ; 133: 105007, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38237706

ABSTRACT

A two-year-old Arabian horse presented for abnormal external genitalia and dangerous stallion-like behavior was diagnosed with disorder of sexual development (DSD), also known as intersex/hermaphroditism. Standing 1-stage surgical procedure performed under sedation, and local anesthesia to concurrently eliminate stallion-like behavior, risk of neoplastic transformation of intraabdominal gonads, and to replace ambiguous external genital with a functional, and cosmetically more acceptable anatomy. Step-1) Laparoscopic abdominal exploration and gonadectomy; Step-2) Rudimentary penis resection and perineal urethrostomy. The horse tolerated surgery well (combined surgery time 185 min) with no complications. At macroscopic examination of the gonads, they resembled hypoplastic testis-like tissues. Microscopic examination confirmed presence of seminiferous tubules, Leydig and Sertoli/granulosa cells. Cytogenetic evaluation revealed a 64,XX karyotype, SRY-negative. The stallion-like behavior subsided within days post-operatively. Long-term follow-up revealed the genitoplasty site healed without urine scalding or urethral stricture. The owner satisfaction was excellent and the horse could be used post-surgery as an athlete.


Subject(s)
Disorders of Sex Development , Horse Diseases , Female , Male , Horses , Animals , Case Management , Disorders of Sex Development/genetics , Disorders of Sex Development/surgery , Disorders of Sex Development/veterinary , Gonads , Karyotyping/veterinary , Karyotype , Horse Diseases/surgery
9.
PLoS One ; 19(1): e0297802, 2024.
Article in English | MEDLINE | ID: mdl-38271363

ABSTRACT

Sex differences in sex-shared behavior are common across various species. During mating, males transfer sperm and seminal fluid to females, which can affect female behavior. Sperm can be stored in the female reproductive tract for extended periods of time and used to fertilize eggs. However, the role of either sperm or embryo production in regulating female behavior is poorly understood. In the androdioecious nematode C. elegans, hermaphrodites produce both oocytes and sperm, enabling them to self-fertilize or mate with males. Hermaphrodites exhibit less locomotor activity compared to males, indicating sex difference in behavioral regulation. In this study, mutants defective in the sperm production and function were examined to investigate the role of sperm function in the regulation of locomotor behavior. Infertile hermaphrodites exhibited increased locomotor activity, which was suppressed after mating with fertile males. The results suggest that sperm, seminal fluid, or the presence of embryos are detected by hermaphrodites, leading to a reduction in locomotor activity. Additionally, females of closely related gonochoristic species, C. remanei and C. brenneri, exhibited reduced locomotor activity after mating. The regulation of locomotion by sperm function may be an adaptive mechanism that enables hermaphrodites lacking sperm or embryo to search for mates and allow females to cease their search for mates after mating.


Subject(s)
Disorders of Sex Development , Nematoda , Animals , Female , Male , Caenorhabditis elegans/genetics , Semen , Spermatozoa/physiology , Fertilization , Disorders of Sex Development/genetics
10.
Zhonghua Bing Li Xue Za Zhi ; 53(2): 162-167, 2024 Feb 08.
Article in Chinese | MEDLINE | ID: mdl-38281784

ABSTRACT

Objective: To investigate pathological features and differential diagnosis in the gonads with disorder of sex development. Methods: Thirty-six cases of clinically diagnosed hermaphroditism with gonadal biopsy in the Department of Pathology, the Seventh Medical Center of People's Liberation Army General Hospital from April 2007 to July 2021, were collected. All biopsy pathological sections were reviewed, and the gonadal cases with abnormal pathological morphology were screened out. The clinical and imaging data and karyotype of these cases were reviewed. Additional immunohistochemical staining was performed and relevant literature was reviewed. Results: Seven cases of ovotesticular disorder of sex development (OTDSD) were identified, which were characterized by the presence of testicular and ovarian differentiation in the same individual. All patients were under 15 years old and presented with abnormal appearance of external genitalia, and the ratio of male to female was 2∶5. Ultrasonography showed testicular structure in all female patients and cryptorchidism in all male patients. The most common karyotype was 46, XX. One case with undifferentiated gonadal tissue (UGT) and one case with streak gonads were screened out. UGT germ cells were neither in seminiferous tubules nor in follicles, but randomly distributed in an ovarial-type interstitial background, sometimes accompanied by immature sex cords. Streak gonads resembled UGT without germ cells. FOXL2 was positive in granulosa cells, but negative in Sertoli cells. SOX9 expression was opposite. OCT4 was weakly positively/negatively expressed in oocytes and positively expressed in the germ nuclei of UGT. Conclusions: Four differentiation patterns need to be identified in the gonadal biopsy: ovarian differentiation, testicular differentiation, undifferentiated gonadal tissue and streak gonad. The positive expression of SOX9 indicates testicular differentiation, while the positive expression of FOXL2 confirms ovarian differentiation, and the expression of both markers in the same tissue indicates ovotestis differentiation. It is very important to identify UGT, because that has a high probability of developing into gonadoblastoma in the future.


Subject(s)
Disorders of Sex Development , Gonads , Humans , Male , Female , Adolescent , Gonads/pathology , Disorders of Sex Development/genetics , Disorders of Sex Development/pathology , Testis/pathology , Ovary/pathology , Karyotyping
11.
Am J Med Genet A ; 194(2): 351-357, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37789729

ABSTRACT

Establishing an early and accurate genetic diagnosis among patients with differences of sex development (DSD) is crucial in guiding the complex medical and psychosocial care they require. Genetic testing routinely utilized in clinical practice for this population is predicated upon physical exam findings and biochemical and endocrine profiling. This approach, however, is inefficient and unstandardized. Many patients with DSD, particularly those with 46,XY DSD, never receive a molecular genetic diagnosis. Rapid genome sequencing (rGS) is gaining momentum as a first-tier diagnostic instrument in the evaluation of patients with DSD given its ability to provide greater diagnostic yield and timely results. We present the case of a patient with nonbinary genitalia and systemic findings for whom rGS identified a novel variant of the WT1 gene and resulted in a molecular diagnosis within two weeks of life. This timeframe of diagnosis for syndromic DSD is largely unprecedented at our institution. Rapid GS expedited mobilization of a multidisciplinary medical team; enabled early understanding of clinical trajectory; informed planning of medical and surgical interventions; and guided individualized psychosocial support provided to the family. This case highlights the potential of early rGS in transforming the evaluation and care of patients with DSD.


Subject(s)
Disorders of Sex Development , Genetic Testing , Humans , Genetic Testing/methods , Chromosome Mapping , Genitalia , Sexual Development , Disorders of Sex Development/diagnosis , Disorders of Sex Development/genetics
12.
Cell Mol Biol (Noisy-le-grand) ; 69(13): 65-69, 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-38158687

ABSTRACT

Disorders of Sexual Development (DSD) encompass all types of intersex cases and have been reported globally. However, in Iraq, studies related to DSD are scanty.  The current single-center prospective study was carried out to find out the frequency, genetic and clinical presentation of different types of DSDs in the sample population of Duhok, Iraq. The sample comprises 40 DSD patients who have been referred to Hivi Pediatric Teaching Hospital in Duhok, Kurdistan region, Iraq, from June 2017 to June 2022. We conducted karyotype-based classification, laparoscopic-based internal organ diagnosis and abdominal ultrasound to diagnose DSDs in the target population. Of the total 40 cases, 19 (47.5%) were males, and 21 (52.5%) were females. Among them, 85 % were diagnosed as peno- scrotal hypospadias, 10% had clitoromegaly and the remaining were diagnosed as under-developed female-like genitalia. The majority of the patients were diagnosed with congenital adrenal hyperplasia (CAH) (55%), 37.5% were Testicular Feminization Syndrome (TFS) and the remaining were rare categories that we did not reach final diagnosis. Laparoscopy was done for 77.5 % of the participants of whom 30% had small uterus and ovaries, 25% had Intra-abdominal testes and the remaining had testes &ovaries, Mullerian Inhibitory Factor (MIF) deficiency and TFS. The study found different types of DSDs in the target population that requires both physical and psychological intervention. Future studies should focus on evaluating DSDs in larger populations and at multi-centers to understand the condition's trajectory in the Iraqi population.


Subject(s)
Adrenal Hyperplasia, Congenital , Disorders of Sex Development , Male , Humans , Female , Child , Prospective Studies , Iraq/epidemiology , Disorders of Sex Development/diagnosis , Disorders of Sex Development/epidemiology , Disorders of Sex Development/genetics , Adrenal Hyperplasia, Congenital/complications , Adrenal Hyperplasia, Congenital/diagnosis , Testis
13.
Zhongguo Dang Dai Er Ke Za Zhi ; 25(11): 1124-1130, 2023 Nov 15.
Article in Chinese | MEDLINE | ID: mdl-37990456

ABSTRACT

OBJECTIVES: To investigate the clinical phenotypes, genetic characteristics, and pathological features of children with disorders of sex development (DSD). METHODS: A retrospective analysis was conducted on epidemiological, clinical phenotype, chromosomal karyotype, gonadal pathology, and genotype data of 165 hospitalized children with DSD at Children's Hospital of Hebei Province and Tangshan Maternal and Child Health Hospital from August 2008 to December 2022. RESULTS: Among the 165 children with DSD, common presenting symptoms were short stature (62/165, 37.6%), clitoromegaly (33/165, 20.0%), cryptorchidism (28/165, 17.0%), hypospadias (24/165, 14.5%), and skin pigmentation abnormalities/exteriorized pigmented labia majora (19/165, 11.5%). Chromosomal karyotype analysis was performed on 127 cases, revealing 36 cases (28.3%) of 46,XX DSD, 34 cases (26.8%) of 46,XY DSD, and 57 cases (44.9%) of sex chromosome abnormalities. Among the sex chromosome abnormal karyotypes, the 45,X karyotype (11/57, 19%) and 45,X/other karyotype mosaicism (36/57, 63%) were more common. Sixteen children underwent histopathological biopsy of gonadal tissues, resulting in retrieval of 25 gonadal tissues. The gonadal tissue biopsies revealed 3 cases of testes, 3 cases of dysplastic testes, 6 cases of ovaries, 11 cases of ovotestes, and 1 case each of streak gonad and agenesis of gonads. Genetic testing identified pathogenic/likely pathogenic variants in 23 cases (23/36, 64%), including 12 cases of 21-hydroxylase deficiency congenital adrenal hyperplasia caused by CYP21A2 pathogenic variants. CONCLUSIONS: Short stature, clitoromegaly, cryptorchidism, hypospadias, and skin pigmentation abnormalities are common phenotypes in children with DSD. 45,X/other karyotype mosaicism and CYP21A2 compound heterozygous variants are major etiological factors in children with DSD. The most commonly observed gonadal histopathology in children with DSD includes ovotestes, ovaries, and testes/dysgenetic testes.


Subject(s)
Adrenal Hyperplasia, Congenital , Cryptorchidism , Disorders of Sex Development , Hypospadias , Male , Humans , Child , Disorders of Sex Development/genetics , Disorders of Sex Development/diagnosis , Disorders of Sex Development/pathology , Hypospadias/genetics , Hypospadias/complications , Cryptorchidism/complications , Retrospective Studies , Steroid 21-Hydroxylase
14.
Medicine (Baltimore) ; 102(46): e36171, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37986304

ABSTRACT

RATIONALE: Pseudovaginal perineoscrotal hypospadias (PPSH) is a rare autosomal recessive disorder of sex development caused by biallelic mutations in SRD5A2. PPSH is characterized by a vaginal-like blind ending perineal opening, penoscrotal hypospadias, and impaired masculinization. PATIENT CONCERNS: We reported preimplantation genetic testing and prenatal diagnosis in a family with PPSH. DIAGNOSIS: Whole-exome sequencing of the family identified 2 SRD5A2 pathogenic variants (c.578A>G and c.607G>A). Haplotype analysis showed that the variants were inherited from the previous generation of this family. INTERVENTIONS: During subsequent in vitro fertilization, preimplantation genetic testing was performed on 9 embryos. One unaffected embryo was transferred, resulting in a singleton pregnancy. OUTCOMES: The prenatal diagnosis at 20 weeks' gestation confirmed the fetus was unaffected. A healthy female infant weighing 3100 g and measuring 50 cm was delivered vaginally at 39+5 weeks of gestation. LESSONS SUBSECTIONS: This case highlights the use of preimplantation genetic testing and prenatal diagnosis to prevent the transmission of PPSH in families at risk. Our approach provides an effective strategy for identification and management of families with autosomal recessive disorders like PPSH.


Subject(s)
Disorders of Sex Development , Hypospadias , Preimplantation Diagnosis , Male , Infant , Pregnancy , Humans , Female , Hypospadias/diagnosis , Hypospadias/genetics , Disorders of Sex Development/diagnosis , Disorders of Sex Development/genetics , Genetic Testing , Prenatal Diagnosis , Membrane Proteins/genetics , 3-Oxo-5-alpha-Steroid 4-Dehydrogenase
15.
Curr Biol ; 33(21): R1150-R1152, 2023 11 06.
Article in English | MEDLINE | ID: mdl-37935128

ABSTRACT

The existence of sex chromosomes complicates the evolution of cosexuality (hermaphroditism). Four new genomic studies from haploid-dominant plants show commonalities and differences in mechanisms of the evolution of cosexuality, raising questions about the genetics of sexual dimorphism and the fate of cosexual lineages.


Subject(s)
Disorders of Sex Development , Sex Chromosomes , Sex Chromosomes/genetics , Sex Characteristics , Disorders of Sex Development/genetics , Plants/genetics , Genome , Chromosomes
16.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(8): 947-953, 2023 Aug 10.
Article in Chinese | MEDLINE | ID: mdl-37532493

ABSTRACT

OBJECTIVE: To retrospectively analyze sex chromosomal abnormalities and clinical manifestations of children with disorders of sex development (DSD). METHODS: A total of 14 857 children with clinical features of DSD including short stature, cryptorchidism, hypospadia, buried penis and developmental delay were recruited from Zhengzhou Children's Hospital from January 2013 to March 2022. Fluorescence in situ hybridization (FISH) and chromosomal karyotyping were carried out for such children. RESULTS: In total 423 children were found to harbor sex chromosome abnormalities, which has yielded a detection rate of 2.85%. There were 327 cases (77.30%) with Turner syndrome and a 45,X karyotype or its mosaicism. Among these, 325 were females with short stature as the main clinical manifestation, 2 were males with short stature, cryptorchidism and hypospadia as the main manifestations. Sixty-two children (14.66%) had a 47,XXY karyotype or its mosaicism, and showed characteristics of Klinefelter syndrome (KS) including cryptorchidism, buried penis and hypospadia. Nineteen cases (4.49%) had sex chromosome mosaicisms (XO/XY), which included 11 females with short stature, 8 males with hypospadia, and 6 cases with cryptorchidism, buried penis, testicular torsion and hypospadia. The remainder 15 cases (3.55%) included 9 children with a XYY karyotype or mosaicisms, with main clinical manifestations including cryptorchidisms and hypospadia, 4 children with a 47,XXX karyotype and clinical manifestations including short stature and labial adhesion, 1 child with a 46,XX/46,XY karyotype and clinical manifestations including micropenis, hypospadia, syndactyly and polydactyly, and 1 case with XXXX syndrome and clinical manifestations including growth retardation. CONCLUSION: Among children with DSD due to sex chromosomal abnormalities, sex chromosome characteristics consistent with Turner syndrome was most common, among which mosaicism (XO/XX) was the commonest. In terms of clinical manifestations, the females mainly featured short stature, while males mainly featured external genital abnormalities. Early diagnosis and treatment are particularly important for improving the quality of life in such children.


Subject(s)
Cryptorchidism , Disorders of Sex Development , Hypospadias , Turner Syndrome , Humans , Male , Female , Turner Syndrome/diagnosis , Turner Syndrome/genetics , In Situ Hybridization, Fluorescence , Retrospective Studies , Quality of Life , Sex Chromosome Aberrations , Karyotyping , Mosaicism , Disorders of Sex Development/diagnosis , Disorders of Sex Development/genetics
17.
Genes (Basel) ; 14(8)2023 08 16.
Article in English | MEDLINE | ID: mdl-37628683

ABSTRACT

BACKGROUND: Disorders/Differences of sex development (DSD) are often due to disruptions of the genetic programs that regulate gonad development. The GATA-4 gene, located on chromosome 8p23.1, encodes GATA-binding protein 4 (GATA-4), a transcription factor that is essential for cardiac and gonadal development and sexual differentiation. CASE DESCRIPTION: A child with a history of micropenis and cryptorchidism. At 8 years of age, he came under our observation for an increase in sexual pubic hair (pubarche). The laboratory parameters and the GnRH test suggested a central precocious puberty (CPP). Treatment with GnRH analogs was started, and we decided to perform genetic tests for DSD. The NGS genetic investigation showed a novel and heterozygous variant in the GATA-4 gene. DISCUSSION: In the literature, 26 cases with 46,XY DSD due to the GATA4 gene were reported. CONCLUSION: The novel variant in the GATA-4 gene of our patient was not previously associated with DSD. This is the first case of a DSD due to a GATA-4 mutation that develops precocious puberty. Precocious puberty could be associated with DSD and considered a prelude to hypogonadism in some cases.


Subject(s)
Disorders of Sex Development , Puberty, Precocious , Male , Child , Humans , Puberty, Precocious/genetics , Sexual Development/genetics , Mutation , Disorders of Sex Development/genetics , Gonadotropin-Releasing Hormone
18.
Am J Med Genet A ; 191(12): 2831-2836, 2023 12.
Article in English | MEDLINE | ID: mdl-37551848

ABSTRACT

Copy number variants that duplicate distal upstream enhancer elements of the SOX9 gene cause 46,XX testicular differences of sex development (DSD) which is characterized by a 46,XX karyotype in an individual presenting with either ambiguous genitalia or genitalia with varying degrees of virilization, including those resembling typical male genitalia. Reported duplications in this region range in size from 24 to 780 kilobases (kb). Here we report a family with two affected individuals, the proband and his maternal uncle, harboring a 3.7 kb duplication of a SOX9 enhancer identified by clinical genome sequencing. Prior fluorescence in situ hybridization (FISH) for SRY and a multi-gene panel for ambiguous genitalia were non-diagnostic. The unaffected mother also carries this duplication, consistent with previously described incomplete penetrance. To our knowledge, this is the smallest duplication identified to-date, most of which resides in a 5.2 kb region that has been previously shown to possess enhancer activity that promotes the expression of SOX9. The duplication was confirmed by quantitative-PCR and shown to be in tandem by bidirectional Sanger sequencing breakpoint analysis. This finding highlights the importance of non-coding variant interrogation in suspected genetic disorders.


Subject(s)
Disorders of Sex Development , Regulatory Sequences, Nucleic Acid , Female , Humans , Male , In Situ Hybridization, Fluorescence , Disorders of Sex Development/genetics , Mothers , Sexual Development , SOX9 Transcription Factor/genetics
19.
Front Endocrinol (Lausanne) ; 14: 1226387, 2023.
Article in English | MEDLINE | ID: mdl-37635957

ABSTRACT

Cytochrome P450 oxidoreductase deficiency (PORD) is a rare form of congenital adrenal hyperplasia that can manifest with skeletal malformations, ambiguous genitalia, and menstrual disorders caused by cytochrome P450 oxidoreductase (POR) mutations affecting electron transfer to all microsomal cytochrome P450 and some non-P450 enzymes involved in cholesterol, sterol, and drug metabolism. With the advancement of molecular biology and medical genetics, increasing numbers of PORD cases were reported, and the clinical spectrum of PORD was extended with studies on underlying mechanisms of phenotype-genotype correlations and optimum treatment. However, diagnostic challenges and management dilemma still exists because of unawareness of the condition, the overlapping manifestations with other disorders, and no clear guidelines for treatment. Delayed diagnosis and management may result in improper sex assignment, loss of reproductive capacity because of surgical removal of ruptured ovarian macro-cysts, and life-threatening conditions such as airway obstruction and adrenal crisis. The clinical outcomes and prognosis, which are influenced by specific POR mutations, the presence of additional genetic or environmental factors, and management, include early death due to developmental malformations or adrenal crisis, bilateral oophorectomies after spontaneous rupture of ovarian macro-cysts, genital ambiguity, abnormal pubertal development, and nearly normal phenotype with successful pregnancy outcomes by assisted reproduction. Thus, timely diagnosis including prenatal diagnosis with invasive and non-invasive techniques and appropriate management is essential to improve patients' outcomes. However, even in cases with conclusive diagnosis, comprehensive assessment is needed to avoid severe complications, such as chromosomal test to help sex assignment and evaluation of adrenal function to detect partial adrenal insufficiency. In recent years, it has been noted that proper hormone replacement therapy can lead to decrease or resolve of ovarian macro-cysts, and healthy babies can be delivered by in vitro fertilization and frozen embryo transfer following adequate control of multiple hormonal imbalances. Treatment may be complicated with adverse effects on drug metabolism caused by POR mutations. Unique challenges occur in female PORD patients such as ovarian macro-cysts prone to spontaneous rupture, masculinized genitalia without progression after birth, more frequently affected pubertal development, and impaired fertility. Thus, this review focuses only on 46, XX PORD patients to summarize the potential molecular pathogenesis, differential diagnosis of classic and non-classic PORD, and tailoring therapy to maintain health, avoid severe complications, and promote fertility.


Subject(s)
Adrenal Hyperplasia, Congenital , Antley-Bixler Syndrome Phenotype , Cysts , Disorders of Sex Development , Female , Pregnancy , Humans , Adrenal Hyperplasia, Congenital/diagnosis , Adrenal Hyperplasia, Congenital/genetics , Adrenal Hyperplasia, Congenital/therapy , Antley-Bixler Syndrome Phenotype/diagnosis , Antley-Bixler Syndrome Phenotype/genetics , Antley-Bixler Syndrome Phenotype/therapy , Rupture, Spontaneous , Karyotype , Disorders of Sex Development/diagnosis , Disorders of Sex Development/genetics , Disorders of Sex Development/therapy
20.
PLoS One ; 18(7): e0287515, 2023.
Article in English | MEDLINE | ID: mdl-37432935

ABSTRACT

NR5A1/SF-1 (Steroidogenic factor-1) variants may cause mild to severe differences of sex development (DSD) or may be found in healthy carriers. The NR5A1/SF-1 c.437G>C/p.Gly146Ala variant is common in individuals with a DSD and has been suggested to act as a susceptibility factor for adrenal disease or cryptorchidism. Since the allele frequency is high in the general population, and the functional testing of the p.Gly146Ala variant revealed inconclusive results, the disease-causing effect of this variant has been questioned. However, a role as a disease modifier is still possible given that oligogenic inheritance has been described in patients with NR5A1/SF-1 variants. Therefore, we performed next generation sequencing (NGS) in 13 DSD individuals harboring the NR5A1/SF-1 p.Gly146Ala variant to search for other DSD-causing variants and clarify the function of this variant for the phenotype of the carriers. Panel and whole-exome sequencing was performed, and data were analyzed with a filtering algorithm for detecting variants in NR5A1- and DSD-related genes. The phenotype of the studied individuals ranged from scrotal hypospadias and ambiguous genitalia in 46,XY DSD to opposite sex in both 46,XY and 46,XX. In nine subjects we identified either a clearly pathogenic DSD gene variant (e.g. in AR) or one to four potentially deleterious variants that likely explain the observed phenotype alone (e.g. in FGFR3, CHD7). Our study shows that most individuals carrying the NR5A1/SF-1 p.Gly146Ala variant, harbor at least one other deleterious gene variant which can explain the DSD phenotype. This finding confirms that the NR5A1/SF-1 p.Gly146Ala variant may not contribute to the pathogenesis of DSD and qualifies as a benign polymorphism. Thus, individuals, in whom the NR5A1/SF-1 p.Gly146Ala gene variant has been identified as the underlying genetic cause for their DSD in the past, should be re-evaluated with a NGS method to reveal the real genetic diagnosis.


Subject(s)
Cryptorchidism , Disorders of Sex Development , Humans , Male , Sexual Development , Algorithms , Causality , Disorders of Sex Development/genetics , Steroidogenic Factor 1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...