Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ultrason Sonochem ; 69: 105254, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32707459

ABSTRACT

Harmful algal blooms pose a potential threat to the safety of drinking water sources. Ultrasound is an effective method for algae removal. However, this method can lead to the release of algal organic matter and the effects and toxic mechanisms of ultrasound on Anabaena are still poorly understood. The destruction mechanism of Anabaena flos-aquae cells under different ultrasonic conditions, the safety of intracellular organic matter (IOM) release to water and the enhanced coagulation efficiency of ultrasound were studied. Results showed that high-frequency ultrasound was effective in breaking down algae cells. After 10 min ultrasonication at 20 kHz, 5 min at 740 kHz and 1 min at 1120 kHz, the algae cells were inactivated and algae growth was halted. Ultrasound radiation can lead to the release of IOM, primarily chlorophyll a and phycocyanin, followed by some tryptophan and humic substances, polysaccharides, and proteins. The sonicated ribosomes were considerably reduced, and the antioxidant system of cells was also damaged to some extent. The coagulation effect of algae cells was substantially improved after ultrasonication. Thus, the safety of algae cell removal could be improved by controlling the changes in physiological structure and IOM release of algae cells by adjusting the ultrasound parameters.


Subject(s)
Dolichospermum flos-aquae/radiation effects , Ultrasonics/methods , Harmful Algal Bloom , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission
2.
Biotechnol Prog ; 22(6): 1532-40, 2006.
Article in English | MEDLINE | ID: mdl-17137298

ABSTRACT

Heterocyst differentiation is a unique feature of nitrogen-fixing cyanobacteria, potentially important for photobiological hydrogen production. Despite the significant advances in genetic investigation on heterocyst differentiation, there were no quantitative culture-level models that describe the effects of cellular activities and cultivation conditions on the heterocyst differentiation. Such a model was developed in this study, incorporating photosynthetic growth of vegetative cells, heterocyst differentiation, self-shading effect on light penetration, and nitrogen fixation. The model parameters were determined by fitting experimental results from the growth of the heterocystous cyanobacterium Anabaena flos-aquae CCAP 1403/13f in media without and with different nitrate concentrations and under continuous illumination of white light at different light intensities (2, 5, 10, 17, 20 and 50 microE m-2 s-1). The model describes the experimental profiles well and gives reasonable predictions even for the transition of growth from that on external N source to that via nitrogen fixation, responding to the change in external N concentrations. The significance and implications of the best-fit values of the model parameters are discussed.


Subject(s)
Bioreactors/microbiology , Dolichospermum flos-aquae/cytology , Dolichospermum flos-aquae/physiology , Models, Biological , Nitrates/metabolism , Nitrogen Fixation/physiology , Cell Culture Techniques/methods , Cell Proliferation/radiation effects , Computer Simulation , Dolichospermum flos-aquae/radiation effects , Dose-Response Relationship, Radiation , Light , Nitrogen Fixation/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL