Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Publication year range
1.
CNS Neurosci Ther ; 27(8): 963-972, 2021 08.
Article in English | MEDLINE | ID: mdl-33955651

ABSTRACT

AIMS: Epilepsy, frequently comorbid with depression, easily develops drug resistance. Here, we investigated how dorsal raphe (DR) and its 5-HTergic neurons are implicated in epilepsy. METHODS: In mouse hippocampal kindling model, using immunochemistry, calcium fiber photometry, and optogenetics, we investigated the causal role of DR 5-HTergic neurons in seizure of temporal lobe epilepsy (TLE). Further, deep brain stimulation (DBS) of the DR with different frequencies was applied to test its effect on hippocampal seizure and depressive-like behavior. RESULTS: Number of c-fos+ neurons in the DR and calcium activities of DR 5-HTergic neurons were both increased during kindling-induced hippocampal seizures. Optogenetic inhibition, but not activation, of DR 5-HTergic neurons conspicuously retarded seizure acquisition specially during the late period. For clinical translation, 1-Hz-specific, but not 20-Hz or 100-Hz, DBS of the DR retarded the acquisition of hippocampal seizure. This therapeutic effect may be mediated by the inhibition of DR 5-HTergic neurons, as optogenetic activation of DR 5-HTergic neurons reversed the anti-seizure effects of 1-Hz DR DBS. However, DBS treatment had no effect on depressive-like behavior. CONCLUSION: Inhibition of hyperactivity of DR 5-HTergic neuron may present promising anti-seizure effect and the DR may be a potential DBS target for the therapy of TLE.


Subject(s)
Deep Brain Stimulation/methods , Dorsal Raphe Nucleus/metabolism , Hippocampus/metabolism , Neural Inhibition/physiology , Seizures/metabolism , Serotonergic Neurons/metabolism , Animals , Dorsal Raphe Nucleus/chemistry , Hippocampus/chemistry , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Seizures/therapy , Serotonergic Neurons/chemistry
2.
CNS Neurosci Ther ; 27(8): 941-950, 2021 08.
Article in English | MEDLINE | ID: mdl-33973716

ABSTRACT

AIMS: General anesthesia has been widely applied in surgical or nonsurgical medical procedures, but the mechanism behind remains elusive. Because of shared neural circuits of sleep and anesthesia, whether serotonergic system, which is highly implicated in modulation of sleep and wakefulness, regulates general anesthesia as well is worth investigating. METHODS: Immunostaining and fiber photometry were used to assess the neuronal activities. Electroencephalography spectra and burst-suppression ratio (BSR) were used to measure anesthetic depth and loss or recovery of righting reflex to indicate the induction or emergence time of general anesthesia. Regulation of serotonergic system was achieved through optogenetic, chemogenetic, or pharmacological methods. RESULTS: We found that both Fos expression and calcium activity were significantly decreased during general anesthesia. Activation of 5-HT neurons in the dorsal raphe nucleus (DRN) decreased the depth of anesthesia and facilitated the emergence from anesthesia, and inhibition deepened the anesthesia and prolonged the emergence time. Furthermore, agonism or antagonism of 5-HT 1A or 2C receptors mimicked the effect of manipulating DRN serotonergic neurons. CONCLUSION: Our results demonstrate that 5-HT neurons in the DRN play a regulative role of general anesthesia, and activation of serotonergic neurons could facilitate emergence from general anesthesia partly through 5-HT 1A and 2C receptors.


Subject(s)
Arousal/drug effects , Dorsal Raphe Nucleus/drug effects , Dorsal Raphe Nucleus/physiology , Isoflurane/pharmacology , Serotonergic Neurons/drug effects , Serotonergic Neurons/physiology , Anesthetics, Inhalation/pharmacology , Animals , Arousal/physiology , Dorsal Raphe Nucleus/chemistry , Mice , Mice, Transgenic , Optogenetics/methods , Organ Culture Techniques , Rats , Rats, Sprague-Dawley , Serotonergic Neurons/chemistry , Serotonin Antagonists/pharmacology , Serotonin Receptor Agonists/pharmacology
3.
J Neurosci ; 41(12): 2645-2655, 2021 03 24.
Article in English | MEDLINE | ID: mdl-33563725

ABSTRACT

The ability to recognize motivationally salient events and adaptively respond to them is critical for survival. Here, we tested whether dopamine (DA) neurons in the dorsal raphe nucleus (DRN) contribute to this process in both male and female mice. Population recordings of DRNDA neurons during associative learning tasks showed that their activity dynamically tracks the motivational salience, developing excitation to both reward-paired and shock-paired cues. The DRNDA response to reward-predicting cues was diminished after satiety, suggesting modulation by internal states. DRNDA activity was also greater for unexpected outcomes than for expected outcomes. Two-photon imaging of DRNDA neurons demonstrated that the majority of individual neurons developed activation to reward-predicting cues and reward but not to shock-predicting cues, which was surprising and qualitatively distinct from the population results. Performing the same fear learning procedures in freely-moving and head-fixed groups revealed that head-fixation itself abolished the neural response to aversive cues, indicating its modulation by behavioral context. Overall, these results suggest that DRNDA neurons encode motivational salience, dependent on internal and external factors.SIGNIFICANCE STATEMENT Dopamine (DA) contributes to motivational control, composed of at least two functional cell types, one signaling for motivational value and another for motivational salience. Here, we demonstrate that DA neurons in the dorsal raphe nucleus (DRN) encode the motivational salience in associative learning tasks. Neural responses were dynamic and modulated by the animal's internal state. The majority of single-cells developed responses to reward or paired cues, but not to shock-predicting cues. Additional experiments with freely-moving and head-fixed mice showed that head-fixation abolished the development of cue responses during fear learning. This work provides further characterization on the functional roles of overlooked DRNDA populations and an example that neural responses can be altered by head-fixation, which is commonly used in neuroscience.


Subject(s)
Dopaminergic Neurons/physiology , Dorsal Raphe Nucleus/physiology , Habituation, Psychophysiologic/physiology , Learning/physiology , Motivation/physiology , Neurons/physiology , Animals , Dopaminergic Neurons/chemistry , Dorsal Raphe Nucleus/chemistry , Dorsal Raphe Nucleus/cytology , Female , Male , Mice , Mice, Transgenic , Microscopy, Fluorescence, Multiphoton/methods , Neurons/chemistry , Photometry/methods , Signal Transduction/physiology
4.
J Neuroendocrinol ; 31(4): e12703, 2019 04.
Article in English | MEDLINE | ID: mdl-30803087

ABSTRACT

Angiotensin II (Ang II) acts on Ang II type 1 (AT1) receptors located in the organum vasculosum and subfornical organ (SFO) of the lamina terminalis as a main facilitatory mechanism of sodium appetite. The brain serotonin (5-HT) system with soma located in the dorsal raphe nucleus (DRN) provides a main inhibitory mechanism. In the present study, we first investigated the existence of Ang II AT1 receptors in serotonergic DRN neurones. Then, we examined whether whole body sodium depletion affects the gene expression of the AT1a receptor subtype and the presumed functional significance of AT1 receptors. Using confocal microscopy, we found that tryptophan hydroxylase-2 and serotonin neurones express AT1 receptors in the DRN. Immunofluorescence quantification showed a significant reduction in 5-HT content but no change in AT1 receptor expression or AT1/5-HT colocalisation in the DRN after sodium depletion. Whole body sodium depletion also significantly increased Agtr1a mRNA expression in the SFO and DRN. Oral treatment with the AT1 receptor antagonist losartan reversed the changes in Agtr1a expression in the SFO but not the DRN. Losartan injection into either the DRN or the mesencephalic aqueduct had no influence on sodium depletion-induced 0.3 mol L-1 NaCl intake. The results indicate the expression of Agtr1a mRNA in the DRN and SFO as a marker of sodium depletion. They also suggest that serotonergic DRN neurones are targets for Ang II. However, the function of their AT1 receptors remains elusive.


Subject(s)
Dorsal Raphe Nucleus/metabolism , Gene Expression , Receptor, Angiotensin, Type 1/genetics , Serotonin/analysis , Sodium/deficiency , Angiotensin II Type 1 Receptor Blockers/pharmacology , Animals , Appetite/physiology , Dorsal Raphe Nucleus/chemistry , Fluorescent Antibody Technique , Gene Expression/physiology , Losartan/pharmacology , Male , Neurons/chemistry , RNA, Messenger/analysis , Rats , Rats, Wistar , Receptor, Angiotensin, Type 1/analysis , Receptor, Angiotensin, Type 1/physiology , Sodium/blood , Subfornical Organ/chemistry , Subfornical Organ/metabolism , Tryptophan Hydroxylase/analysis
5.
BMC Complement Altern Med ; 17(1): 528, 2017 Dec 11.
Article in English | MEDLINE | ID: mdl-29228944

ABSTRACT

BACKGROUND: Acupuncture has been used as a common therapeutic tool in many disorders including anxiety and depression. Serotonin transporter (SERT) plays an important role in the pathology of anxiety and other mood disorders. The aim of this study was to evaluate the effects of acupuncture on lipopolysaccharide (LPS)-induced anxiety-like behaviors and SERT in the dorsal raphe nuclei (DRN). METHODS: Rats were given acupuncture at ST41 (Jiexi), LI11 (Quchi) or SI3 (Houxi) acupoint in LPS-treated rats. Anxiety-like behaviors of elevated plus maze (EPM) and open field test (OFT) were measured and expressions of SERT and/or c-Fos were also examined in the DRN using immunohistochemistry. RESULTS: The results showed that 1) acupuncture at ST41 acupoint, but neither LI11 nor SI3, significantly attenuated LPS-induced anxiety-like behaviors in EPM and OFT, 2) acupuncture at ST41 decreased SERT expression increased by LPS in the DRN. CONCLUSIONS: Our results suggest that acupuncture can ameliorate anxiety-like behaviors, possibly through regulation of SERT in the DRN.


Subject(s)
Acupuncture Therapy , Anxiety/therapy , Behavior, Animal/physiology , Dorsal Raphe Nucleus/metabolism , Serotonin Plasma Membrane Transport Proteins/metabolism , Animals , Anxiety/chemically induced , Disease Models, Animal , Dorsal Raphe Nucleus/chemistry , Lipopolysaccharides/adverse effects , Male , Rats , Rats, Sprague-Dawley
6.
Brain Res ; 1675: 28-40, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-28867482

ABSTRACT

Serotonin (5-HT)-containing neurons in the dorsal raphe (DR) nucleus project throughout the forebrain and are implicated in many physiological processes and neuropsychiatric disorders. Diversity among these neurons has been characterized in terms of their neurochemistry and anatomical organization, but a clear sense of whether these attributes align with specific brain functions or terminal fields is lacking. DR 5-HT neurons can co-express additional neuroactive substances, increasing the potential for individualized regulation of target circuits. The goal of this study was to link DR neurons to a specific functional role by characterizing cells according to both their neurotransmitter expression and efferent connectivity; specifically, cells projecting to the medial prefrontal cortex (mPFC), a region implicated in cognition, emotion, and responses to stress. Following retrograde tracer injection, brainstem sections from Sprague-Dawley rats were immunohistochemically stained for markers of serotonin, glutamate, GABA, and nitric oxide (NO). 98% of the mPFC-projecting serotonergic neurons co-expressed the marker for glutamate, while the markers for NO and GABA were observed in 60% and less than 1% of those neurons, respectively. To identify potential target-specific differences in co-transmitter expression, we also characterized DR neurons projecting to a visual sensory structure, the lateral geniculate nucleus (LGN). The proportion of serotonergic neurons co-expressing NO was greater amongst cells targeting the mPFC vs LGN (60% vs 22%). The established role of 5-HT in affective disorders and the emerging role of NO in stress signaling suggest that the impact of 5-HT/NO co-localization in DR neurons that regulate mPFC circuit function may be clinically relevant.


Subject(s)
Dorsal Raphe Nucleus/chemistry , Dorsal Raphe Nucleus/metabolism , Neurons/chemistry , Neurons/metabolism , Animals , Dorsal Raphe Nucleus/cytology , Glutamate Decarboxylase/analysis , Glutamate Decarboxylase/metabolism , Humans , Male , Rats , Rats, Sprague-Dawley , Serotonin/analysis , Serotonin/metabolism , Vesicular Glutamate Transport Proteins/analysis , Vesicular Glutamate Transport Proteins/metabolism
7.
Brain Struct Funct ; 222(1): 287-299, 2017 01.
Article in English | MEDLINE | ID: mdl-27044051

ABSTRACT

The median raphe region (MRR, which consist of MR and paramedian raphe regions) plays a crucial role in regulating cortical as well as subcortical network activity and behavior, while its malfunctioning may lead to disorders, such as schizophrenia, major depression, or anxiety. Mouse MRR neurons are classically identified on the basis of their serotonin (5-HT), vesicular glutamate transporter type 3 (VGLUT3), and gamma-aminobutyric acid (GABA) contents; however, the exact cellular composition of MRR regarding transmitter phenotypes is still unknown. Using an unbiased stereological method, we found that in the MR, 8.5 % of the neurons were 5-HT, 26 % were VGLUT3, and 12.8 % were 5-HT and VGLUT3 positive; whereas 37.2 % of the neurons were GABAergic, and 14.4 % were triple negative. In the whole MRR, 2.1 % of the neurons were 5-HT, 7 % were VGLUT3, and 3.6 % were 5-HT and VGLUT3 positive; whereas 61 % of the neurons were GABAergic. Surprisingly, 25.4 % of the neurons were triple negative and were only positive for the neuronal marker NeuN. PET-1/ePET-Cre transgenic mouse lines are widely used to specifically manipulate only 5-HT containing neurons. Interestingly, however, using the ePET-Cre transgenic mice, we found that far more VGLUT3 positive cells expressed ePET than 5-HT positive cells, and about 38 % of the ePET cells contained only VGLUT3, while more than 30 % of 5-HT cells were ePET negative. These data should facilitate the reinterpretation of PET-1/ePET related data in the literature and the identification of the functional role of a putatively new type of triple-negative neuron in the MRR.


Subject(s)
Dorsal Raphe Nucleus/physiology , Neurons/physiology , Amino Acid Transport Systems, Acidic/metabolism , Animals , Cell Count , Dorsal Raphe Nucleus/chemistry , Dorsal Raphe Nucleus/cytology , GABAergic Neurons/cytology , GABAergic Neurons/metabolism , GABAergic Neurons/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurons/cytology , Neurons/metabolism , Phenotype , Serotonergic Neurons/cytology , Serotonergic Neurons/metabolism , Serotonergic Neurons/physiology , Serotonin/metabolism , Transcription Factors/metabolism , gamma-Aminobutyric Acid/metabolism
8.
Neuropsychopharmacology ; 41(8): 2122-32, 2016 07.
Article in English | MEDLINE | ID: mdl-26792442

ABSTRACT

The periaqueductal gray (PAG) is a brain region involved in nociception modulation, and an important relay center for the descending nociceptive pathway through the rostral ventral lateral medulla. Given the dense expression of mu opioid receptors and the role of dopamine in pain, the recently characterized dopamine neurons in the ventral PAG (vPAG)/dorsal raphe (DR) region are a potentially critical site for the antinociceptive actions of opioids. The objectives of this study were to (1) evaluate synaptic modulation of the vPAG/DR dopamine neurons by mu opioid receptors and to (2) dissect the anatomy and neurochemistry of these neurons, in order to assess the downstream loci and functions of their activation. Using a mouse line that expresses eGFP under control of the tyrosine hydroxylase (TH) promoter, we found that mu opioid receptor activation led to a decrease in inhibitory inputs onto the vPAG/DR dopamine neurons. Furthermore, combining immunohistochemistry, optogenetics, electrophysiology, and fast-scan cyclic voltammetry in a TH-cre mouse line, we demonstrated that these neurons also express the vesicular glutamate type 2 transporter and co-release dopamine and glutamate in a major downstream projection structure-the bed nucleus of the stria terminalis. Finally, activation of TH-positive neurons in the vPAG/DR using Gq designer receptors exclusively activated by designer drugs displayed a supraspinal, but not spinal, antinociceptive effect. These results indicate that vPAG/DR dopamine neurons likely play a key role in opiate antinociception, potentially via the activation of downstream structures through dopamine and glutamate release.


Subject(s)
Dopaminergic Neurons/physiology , Dorsal Raphe Nucleus/physiology , Pain Perception/physiology , Periaqueductal Gray/physiology , Receptors, Opioid, mu/physiology , Animals , Dopamine/metabolism , Dopaminergic Neurons/chemistry , Dorsal Raphe Nucleus/chemistry , Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/administration & dosage , Glutamic Acid/metabolism , Inhibitory Postsynaptic Potentials/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Periaqueductal Gray/chemistry , Receptors, Opioid, mu/agonists , Septal Nuclei/metabolism , Tyrosine 3-Monooxygenase/metabolism
9.
Zhen Ci Yan Jiu ; 41(3): 225-9, 2016 Jun 25.
Article in Chinese | MEDLINE | ID: mdl-29071910

ABSTRACT

OBJECTIVE: To observe the effect of electroacupuncture (EA) intervention on pain thresholds (PT) and contents of ß-endorphin (EP) in the hypothalamus and spinal cord, and the expression of 5-HT in the dorsal raphe nucleus(DRN)in rats with pelmatic incisional pain, so as to investigate the underlying mechanisms of acupuncture in reducing post-operative pain. METHODS: Wistar rats were randomized into normal control, model, EA and non-acupoint groups (n=8/group). The pelmatic pain model was induced by making an incision (about 1 cm in length, to the fascia and muscle layers) from the heel towards the toes. EA (2 Hz, 1.5-2 V) was applied to "Zusanli" (ST 36) and "Kunlun" (BL 60) or non-acupoint (about 3 mm beside the ST 36 and BL 60) on the affected side for 20 min, once daily for three days. The thermal PT and mechanical PT were measured before and after operation and after EA. The contents of ß-EP in hypothalamus and L3-S4 spinal cord were detected using enzyme linked immunosorbent assay (ELISA) and the expressions of ß-EP in hypothalamus and 5-HT in DRN were measured with immunohistochemistry. RESULTS: After EA intervention, the markedly decreased mechanical and thermal pain thresholds on day 1 and 3 after paw incision were significantly increased in the EA group (P<0.05), but not in the non-acupoint group (P>0.05). The hypothalamic ß-EP content was significantly higher in the model group than in the normal group (P<0.05), and further up-regulated in the EA group (not the non-acupoint group) than in the model group (P<0.05). In addition, the hypothalamic ß-EP immunoreactive (IR)-positive cell number and 5-HT immunoactivity level in DRN were also considerably up-regulated in the EA group (P<0.05) but not in the non-acupoint group (P>0.05). No significant changes were found in the lumbar spinal ß-EP contents in the model, EA and non-acupoint groups (P>0.05). CONCLUSIONS: EA stimulation of "Zusanli"(ST 36) and "Kunlun" (BL 60) has an analgesic effect in pelmatic incision pain rats, which may be related to its effects in raising the level of hypothalamic ß-EP and the expression of 5-HT in DRN.


Subject(s)
Electroacupuncture , Hypothalamus/chemistry , Spinal Cord/chemistry , Surgical Wound/therapy , beta-Endorphin/analysis , Acupuncture Points , Animals , Dorsal Raphe Nucleus/chemistry , Pain Management , Rats , Rats, Sprague-Dawley , Rats, Wistar , Serotonin/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...