Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Publication year range
1.
Bull Exp Biol Med ; 176(5): 645-648, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38727954

ABSTRACT

Using the method of dominant lethal mutations, we assessed the frequency of the death of Drosophila melanogaster embryos under combined exposure to ionizing γ-radiation and non-ionizing pulsed magnetic field at various doses and modes of exposure. Mutagenic effect of combined exposure is antagonistic in nature. The antagonism is more pronounced when the following mode of exposure was used: exposure to non-ionizing pulsed magnetic field for 5 h followed by exposure to γ-radiation at doses of 3, 10, and 60 Gy. In case of reverse sequence of exposures, the antagonistic effect was statistically significant after exposure to γ-radiation at doses of 3 and 10 Gy, whereas at a dose of 20 Gy, a synergistic interaction was noted.


Subject(s)
Drosophila melanogaster , Gamma Rays , Animals , Drosophila melanogaster/radiation effects , Drosophila melanogaster/genetics , Gamma Rays/adverse effects , Electromagnetic Radiation , Dose-Response Relationship, Radiation , Electromagnetic Fields/adverse effects , Embryo, Nonmammalian/radiation effects , Radiation, Ionizing , Mutation/radiation effects , Mutagenesis/radiation effects
2.
PLoS One ; 19(5): e0303115, 2024.
Article in English | MEDLINE | ID: mdl-38776353

ABSTRACT

The detrimental effects of ultraviolet C (UVC) radiation on living organisms, with a specific focus on the fruit fly Drosophila melanogaster, were examined. This study investigated the impact of heightened UVC radiation exposure on D. melanogaster by assessing mortality and fertility rates, studying phenotypic mutations, and investigating the associated molecular mechanisms. The findings of this study revealed that UVC radiation increases mortality rates and decreases fertility rates in D. melanogaster. Additionally, phenotypic wing mutations were observed in the exposed flies. Furthermore, the study demonstrated that UVC radiation downregulates the expression of antioxidant genes, including superoxide dismutase (SOD), manganese-dependent superoxide dismutase (Mn-SOD), zinc-dependent superoxide dismutase (Cu-Zn-SOD), and the G protein-coupled receptor methuselah (MTH) gene. These results suggest that UVC radiation exerts a destructive effect on D. melanogaster by inducing oxidative stress, which is marked by the overexpression of harmful oxidative processes and a simultaneous reduction in antioxidant gene expression. In conclusion, this study underscores the critical importance of comprehending the deleterious effects of UVC radiation, not only to safeguard human health on Earth, but also to address the potential risks associated with space missions, such as the ongoing Emirate astronaut program.


Subject(s)
Drosophila melanogaster , Fertility , Mutation , Ultraviolet Rays , Animals , Drosophila melanogaster/radiation effects , Drosophila melanogaster/genetics , Ultraviolet Rays/adverse effects , Fertility/radiation effects , Fertility/genetics , Mutation/radiation effects , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Oxidative Stress/radiation effects , Oxidative Stress/genetics , Male , Female , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Antioxidants/metabolism , Gene Expression Regulation/radiation effects
3.
Rev. colomb. radiol ; 4(2): 73-6, mayo-ago. 1992.
Article in Spanish | LILACS | ID: lil-293669

ABSTRACT

En este artículo se describre la investigación en la cual fueron sometidas moscas de la fruta D. Melanogaster de las cepas White y vestigial a un campo de Resonancia Magnética por 171 horas con el fin de determinar, posibles alteraciones en el nivel genético


Subject(s)
Animals , Drosophila melanogaster/radiation effects , Magnetic Resonance Spectroscopy/adverse effects , Radiation Effects , Rebound Effect
SELECTION OF CITATIONS
SEARCH DETAIL