Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.042
Filter
1.
Drug Des Devel Ther ; 18: 1583-1602, 2024.
Article in English | MEDLINE | ID: mdl-38765877

ABSTRACT

Background: Knee osteoarthritis (KOA) is a persistent degenerative condition characterized by the deterioration of cartilage. The Chinese herbal formula Radix Rehmanniae Praeparata- Angelica Sinensis-Radix Achyranthis Bidentatae (RAR) has often been used in effective prescriptions for KOA as the main functional drug, but its underlying mechanism remains unclear. Therefore, network pharmacology and verification experiments were employed to investigate the impact and mode of action of RAR in the treatment of KOA. Methods: The destabilization of the medial meniscus model (DMM) was utilized to assess the anti-KOA effect of RAR by using gait analysis, micro-computed tomography (Micro-CT), and histology. Primary chondrocytes were extracted from the rib cartilage of a newborn mouse. The protective effects of RAR on OA cells were evaluated using a CCK-8 assay. The antioxidative effect of RAR was determined by measuring reactive oxygen species (ROS), superoxide dismutase (SOD), and glutathione (GSH) production. Furthermore, network pharmacology and molecular docking were utilized to propose possible RAR targets for KOA, which were further verified through experiments. Results: In vivo, RAR significantly ameliorated DMM-induced KOA characteristics, such as subchondral bone sclerosis, cartilage deterioration, gait abnormalities, and the degree of knee swelling. In vitro, RAR stimulated chondrocyte proliferation and the expression of Col2a1, Comp, and Acan. Moreover, RAR treatment significantly reduced ROS accumulation in an OA cell model induced by IL-1ß and increased the activity of antioxidant enzymes (SOD and GSH). Network pharmacology analysis combined with molecular docking showed that Mapk1 might be a key therapeutic target. Subsequent research showed that RAR could downregulate Mapk1 mRNA levels in IL-1ß-induced chondrocytes and DMM-induced rats. Conclusion: RAR inhibited extracellular matrix (ECM) degradation and oxidative stress response via the MAPK signaling pathway in KOA, and Mapk1 may be a core target.


Subject(s)
Achyranthes , Angelica sinensis , Drugs, Chinese Herbal , Network Pharmacology , Osteoarthritis, Knee , Animals , Angelica sinensis/chemistry , Osteoarthritis, Knee/drug therapy , Osteoarthritis, Knee/pathology , Osteoarthritis, Knee/metabolism , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/isolation & purification , Mice , Achyranthes/chemistry , Rehmannia/chemistry , Molecular Docking Simulation , Cells, Cultured , Chondrocytes/drug effects , Chondrocytes/metabolism , Chondrocytes/pathology , Male , Mice, Inbred C57BL , Rats
2.
J Chromatogr A ; 1724: 464915, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38663319

ABSTRACT

Efficient enrichment of trace zearalenone (ZEN) from the complex traditional Chinese medicine (TCM) samples is quite difficult, but of great significance for TCM quality control. Herein, we reported a novel magnetic solid phase extraction (MSPE) strategy for ZEN enrichment using the amino- and hydroxyl dual-functionalized magnetic microporous organic network (Fe3O4@MON-NH2-OH) as an advanced adsorbent combined with the high-performance liquid chromatography (HPLC) determination. Efficient extraction of ZEN was achieved via the possible hydrogen bonding, hydrophobic, and π-π interactions between Fe3O4@MON-NH2-OH and ZEN. The adsorption capacity of Fe3O4@MON-NH2-OH for ZEN was 215.0 mg g-1 at the room temperature, which was much higher than most of the reported adsorbents. Under the optimal condition, the developed Fe3O4@MON-NH2-OH-MSPE-HPLC method exhibited wide linear range (5-2500 µg L-1), low limits of detection (1.4-35 µg L-1), less adsorbent consumption (5 mg), and large enhancement factor (95) for ZEN. The proposed method was successfully applied to detect trace ZEN from 10 kinds of real TCM samples. Conclusively, this work demonstrates the Fe3O4@MON-NH2-OH can effectively extract trace ZEN from the complex TCM matrices, which may open up a new way for the application of MONs in the enrichment and extraction of trace contaminants or active constituents from the complex TCM samples.


Subject(s)
Drugs, Chinese Herbal , Limit of Detection , Solid Phase Extraction , Zearalenone , Chromatography, High Pressure Liquid/methods , Zearalenone/analysis , Zearalenone/chemistry , Zearalenone/isolation & purification , Solid Phase Extraction/methods , Adsorption , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/isolation & purification , Medicine, Chinese Traditional , Porosity , Magnetite Nanoparticles/chemistry
3.
Phytochemistry ; 222: 114096, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38641141

ABSTRACT

Forsythiae Fructus (FF), the dried fruit of F. suspensa, is commonly used to treat fever, inflammation, etc in China or other Asian countries. FF is usually used as the core herb in traditional Chinese medicine preparations for the treatment of influenza, such as Shuang-huang-lian oral liquid and Yin-qiao powder, etc. Since the wide application and core role of FF, its research progress was summarized in terms of traditional uses, phytochemistry, pharmacology, pharmacokinetics, quality control, and toxicity. Meanwhile, the anti-influenza substances and mechanism of FF were emphasized. Till now, a total of 290 chemical components are identified in F. suspensa, and among them, 248 components were isolated and identified from FF, including 42 phenylethanoid glycosides, 48 lignans, 59 terpenoids, 14 flavonoids, 3 steroids, 24 cyclohexyl ethanol derivatives, 14 alkaloids, 26 organic acids, and 18 other types. FF and their pure compounds have the pharmacological activities of anti-virus, anti-inflammation, anti-oxidant, anti-bacteria, anti-tumor, neuroprotection, hepatoprotection, etc. Inhibition of TLR7, RIG-I, MAVS, NF-κB, MyD88 signaling pathway were the reported anti-influenza mechanisms of FF and phenylethanoid glycosides and lignans are the main active groups. However, the bioavailability of phenylethanoid glycosides and lignans of FF in vivo was low, which needed to be improved. Simultaneously, the un-elucidated compounds and anti-influenza substances of FF strongly needed to be explored. The current quality control of FF was only about forsythoside A and phillyrin, more active components should be taken into consideration. Moreover, there are no reports of toxicity of FF yet, but the toxicity of FF should be not neglected in clinical applications.


Subject(s)
Forsythia , Quality Control , Forsythia/chemistry , Humans , Fruit/chemistry , Phytochemicals/pharmacology , Phytochemicals/chemistry , Phytochemicals/isolation & purification , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/isolation & purification , Animals , Molecular Structure
4.
Chem Biodivers ; 21(5): e202400098, 2024 May.
Article in English | MEDLINE | ID: mdl-38462532

ABSTRACT

Curcumae Radix (CuR) is a traditional Chinese medicine that has been used in China for more than 1,000 years. It has the traditional efficacy of activating blood and relieving pain, promoting qi and relieving depression, clearing heart and cooling blood, and promoting gallbladder and removing jaundice. Based on this, many domestic and foreign scholars have conducted systematic studies on its chemical composition, pharmacological effects, toxicity and quality control. Currently, 250 compounds, mainly including terpenoids and curcuminoids, have been isolated and identified from CuR, which has pharmacological activities, including antitumor, anti-inflammatory and analgesic, antidepressant, hepatoprotective, hemostatic, hematopoietic, and treatment of diabetes mellitus. In modern clinical practice, CuR is widely used in the treatment of tumors, breast hyperplasia, hepatitis, and stroke. However, the generation of toxicity and clinical application of CuR and Caryophylli Flos, the determination of the concoction process of artifacts, the determination of specific Quality Marker, and the establishment of the quality control system of CuR, are problems that need to be solved urgently at present.


Subject(s)
Curcuma , Quality Control , Humans , Curcuma/chemistry , Medicine, Chinese Traditional , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/isolation & purification , Animals , Phytochemicals/chemistry , Phytochemicals/pharmacology , Phytochemicals/isolation & purification
5.
Chem Biodivers ; 21(5): e202400337, 2024 May.
Article in English | MEDLINE | ID: mdl-38470409

ABSTRACT

Rice sheath blight (RSB), caused by Rhizoctonia solani, is a significant disease of rice. The negative effects of chemical fungicides have created an urgent need for low-toxicity botanical fungicides. Our previous research revealed that the ethanol crude extract of Moutan Cortex (MC) exhibited superior antifungal activity against R. solani at 1000 µg/mL, resulting in a 100 % inhibition rate. The antifungal properties were mainly found in the petroleum ether extract. However, the active ingredients of the extract are still unclear. In this study, gas chromatography-mass spectrometry (GC-MS) was utilised for the analysis of its chemical components. The mycelium growth rate method was utilized to detect the antifungal activity. The findings indicated that paeonol constituted the primary active component, with a content of more than 96 %. Meanwhile, paeonol was the most significant antifungal active ingredient, the antifungal activity of paeonol (EC50=44.83 µg/mL) was much higher than that of ß-sitosterol and ethyl propionate against R. solani. Observation under an optical microscope revealed that paeonol resulted in abnormal mycelial morphology. This study provided theoretical support for identifying monomer antifungal compounds and developing biological fungicides for R. solani.


Subject(s)
Antifungal Agents , Microbial Sensitivity Tests , Paeonia , Rhizoctonia , Rhizoctonia/drug effects , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Paeonia/chemistry , Acetophenones/pharmacology , Acetophenones/chemistry , Acetophenones/isolation & purification , Gas Chromatography-Mass Spectrometry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/isolation & purification , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Dose-Response Relationship, Drug
6.
Eur J Med Chem ; 245(Pt 1): 114892, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36334326

ABSTRACT

Cistanche deserticola is a traditional and precious Chinese herbal medicine, known as "desert ginseng", with anti-inflammatory, anti-oxidant, improving immunity, nourishing the kidneys and other pharmacological effects. Its chemical components mainly include phenylethanol glycosides, iridoids, polysaccharides and volatile components, among which polysaccharides have received extensive attention due to their biological activities such as regulating immune activity, anti-aging, anti-spleen deficiency and antitumor. In recent years, a large number of research have been carried out on the extraction and isolation, chemical structure analysis and biological activity of Cistanche deserticola polysaccharides. The methods of polysaccharide extraction mainly include traditional extraction method, ultrasonic assisted method, microwave assisted method and enzyme assisted method, etc. The extracted polysaccharides were analyzed by chemical methods including methylation, acid hydrolysis and Smith degradation and spectroscopy methods such as NMR and IR. A variety of polysaccharides with new structures were obtained, and some polysaccharides with known structures were also investigated for their biological activities and their structure-activity relationships. However, the relationship between polysaccharides structure and their biological activities is still unclear due to the large number of polysaccharide components, their complex structures and the lack of systematic research and analysis on them. It is expected that the subsequent study of polysaccharide structure and active conformational relationship will be highly valuable for the application of Cistanche deserticola in pharmaceutical sciences and health food.


Subject(s)
Cistanche , Drugs, Chinese Herbal , Polysaccharides , Cistanche/chemistry , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/isolation & purification , Drugs, Chinese Herbal/pharmacology , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Polysaccharides/pharmacology
7.
Molecules ; 27(4)2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35209103

ABSTRACT

Wuliangye baijiu is one of the most famous Chinese liquors with a protected geographical indication. This study used LiChrolut® EN-based solid-phase extraction (SPE) and fractionation combined with comprehensive two-dimensional chromatography-time-of-flight mass spectrometry (GC×GC-TOFMS) to unveil its volatile composition. The volatiles were isolated with LiChrolut® EN-based SPE and traditional liquid-liquid extraction (LLE). The neutral/basic fractions from LLE and the SPE were fractionated on a LiChrolut® EN SPE column and analyzed by comprehensive GC×GC-TOFMS. Compared with LLE, more esters and alcohols were detected in the SPE-based extraction. The SPE fractionation and GC×GC-TOFMS analysis resulted in the identification of about 500 volatile compounds in more than 3000 peaks of the Wuliangye baijiu. The approach simplifies the complex baijiu composition into functional group-based fractions for reliable identification and analysis. This study provided a confidence volatile identification approach for Chinese baijiu based on the SPE fractionation GC×GC-TOFMS.


Subject(s)
Drugs, Chinese Herbal/analysis , Drugs, Chinese Herbal/isolation & purification , Gas Chromatography-Mass Spectrometry , Solid Phase Microextraction , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Volatile Organic Compounds/analysis , Volatile Organic Compounds/isolation & purification , Gas Chromatography-Mass Spectrometry/methods , Solid Phase Microextraction/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
8.
Bioengineered ; 13(3): 5480-5508, 2022 03.
Article in English | MEDLINE | ID: mdl-35184680

ABSTRACT

The pandemic of coronavirus disease 2019 (COVID-19) caused by the SARS-coronavirus 2(SARS-CoV-2) virus has become the greatest global public health crisis in recent years,and the COVID-19 epidemic is still continuing. However, due to the lack of effectivetherapeutic drugs, the treatment of corona viruses is facing huge challenges. In thiscontext, countries with a tradition of using herbal medicine such as China have beenwidely using herbal medicine for prevention and nonspecific treatment of corona virusesand achieved good responses. In this review, we will introduce the application of herbalmedicine in the treatment of corona virus patients in China and other countries, andreview the progress of related molecular mechanisms and antiviral activity ingredients ofherbal medicine, in order to provide a reference for herbal medicine in the treatment ofcorona viruses. We found that herbal medicines are used in the prevention and fightagainst COVID-19 in countries on all continents. In China, herbal medicine has beenreported to relieve some of the clinical symptoms of mild patients and shorten the length of hospital stay. However, as most herbal medicines for the clinical treatment of COVID-19still lack rigorous clinical trials, the clinical and economic value of herbal medicines in theprevention and treatment of COVID-19 has not been fully evaluated. Future work basedon large-scale randomized, double-blind clinical trials to evaluate herbal medicines andtheir active ingredients in the treatment of new COVID-19 will be very meaningful.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Drugs, Chinese Herbal/therapeutic use , Plants, Medicinal/chemistry , SARS-CoV-2/drug effects , Antiviral Agents/isolation & purification , COVID-19/pathology , COVID-19/virology , China , Drugs, Chinese Herbal/isolation & purification , Herbal Medicine/methods , Humans , Medicine, Chinese Traditional/methods , SARS-CoV-2/growth & development , SARS-CoV-2/pathogenicity
9.
Bioorg Med Chem Lett ; 61: 128613, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35176471

ABSTRACT

Aggregation of amyloid ß42 (Aß42) is one of the hallmarks of Alzheimer's disease (AD). Inhibition of Aß42 aggregation is thus a promising approach for AD therapy. Kampo medicine has been widely used to combat dementias such as AD. Crude drug known as Shoyaku is an ingredient of Kampo that could have potential as a natural source of novel drugs. However, given that a mixture of compounds, rather than singular compounds, could contribute to the biological functions of crude drug, there are very limited studies on the structure and mechanism of each constituent in crude drug which may have anti-Aß42 aggregation properties. Herein we provide an efficient method, using LC-MS combined with principal component analysis (PCA), to search for activity-dependent compounds that inhibit Aß42 aggregation from 46 crude drug extracts originating from 18 plants. Only 5 extracts (Kakou, Kayou, Gusetsu, Rensu, and Renbou) from lotus demonstrated differentially inhibitory activities depending on the part of the plant from which they are derived (e.g. petiole, leaf, root node, stamen, and receptacle, respectively). To compare the anti-aggregative properties of compounds of active crude drug with those of inactive crude drug, these extracts were subjected to LC-MS measurement, followed by PCA. From 12 candidate compounds identified from the analysis, glucuronized and glucosidized quercetin, as well as 6 flavonoids (datiscetin, kaempferol, morin, robinetin, quercetin, and myricitrin), including catechol or flatness moiety suppressed Aß42 aggregation, whereas curcumol, a sesquiterpene, did not. In conclusion, this study offers a new activity-differential methodology to identify bioactive natural products in crude drugs that inhibit Aß42 aggregation and that could be applied to future AD therapies.


Subject(s)
Alzheimer Disease/drug therapy , Amyloid beta-Peptides/antagonists & inhibitors , Drugs, Chinese Herbal/pharmacology , Neuroprotective Agents/pharmacology , Plant Extracts/pharmacology , Principal Component Analysis , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Chromatography, Liquid , Dose-Response Relationship, Drug , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/isolation & purification , Humans , Mass Spectrometry , Medicine, Kampo , Molecular Structure , Neuroprotective Agents/chemistry , Neuroprotective Agents/isolation & purification , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plants, Medicinal/chemistry , Protein Aggregates/drug effects , Structure-Activity Relationship
10.
PLoS One ; 17(2): e0263614, 2022.
Article in English | MEDLINE | ID: mdl-35130311

ABSTRACT

OBJECTIVE: Endometriosis is a common benign disease in women of reproductive age. Qu's formula (QUF) is a patented Chinese herbal medicine for treating endometriosis that has been proven to be effective in treating and preventing the recurrence of endometriosis. This study is aimed to discover its molecular mechanism and to explore the potential drug targets. METHODS: A QUF target and endometriosis-related gene set was identified by the Traditional Chinese Medicine Systems Pharmacology (TCMSP) and Bioinformatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine (BATMAN-TCM) databases and five disease-gene databases. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed, and a protein-protein interaction (PPI) network was established to discover the potential mechanism. MalaCards was searched for targets and signaling pathways related to endometriosis, and the search results were also used to identify the key factors in QUF. Molecular docking was performed to visualize the interactions between the effective molecules and proteins encoded by critical genes. Cell experiments and molecular dynamics (MD) simulations were used to further validate the therapeutic effects of the active compounds in QUF on endometriosis. RESULTS: A compound-target network with 117 nodes (94 genes and 23 active compounds) and 224 edges was generated. The results of GO and KEGG analyses indicated that QUF could act by regulating the immune response, apoptosis and proliferation, oxidative stress, and angiogenesis. VEGFA, CXCL8, CCL2, IL1B and PTGS2 were selected for molecular docking analysis from two critical subnetworks with high correlation scores in MalaCards, and the active compounds of QUF had binding potential and high affinity for them. The mRNA expression levels of CCL2, IL1B and PTGS2 significantly decreased after treatment with quercetin. MD simulations showed that the combinations of quercetin and these proteins were relatively stable. CONCLUSION: The network pharmacological strategy integrates molecular docking to unravel the molecular mechanism by which QUF protects against endometriosis. Our findings not only confirm the clinical effectiveness of QUF but also provide a foundation for further experimental study.


Subject(s)
Drugs, Chinese Herbal , Endometriosis/drug therapy , Peritoneal Diseases/drug therapy , Algorithms , Cells, Cultured , Computational Biology , Databases, Chemical , Drug Discovery/methods , Drugs, Chinese Herbal/isolation & purification , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Endometriosis/pathology , Female , Gene Ontology , Humans , Medicine, Chinese Traditional/methods , Molecular Docking Simulation , Molecular Dynamics Simulation , Network Pharmacology , Peritoneal Diseases/pathology , Protein Interaction Maps , Signal Transduction/drug effects
11.
J Ethnopharmacol ; 289: 115021, 2022 May 10.
Article in English | MEDLINE | ID: mdl-35091012

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Rehmannioside A is derived from Rehmannia glutinosa Libosch, which is widely used as an important ingredient in diverse traditional Chinese medicines to treat diseases caused by "kidney deficiency" such as cerebral arteriosclerosis, aging-related stroke and dementia in China. Recent studies have proved that Rehmannia glutinosa Libosch and Rehmannioside A can improve memory capability and recover nerve damage. AIM OF THE STUDY: To investigate the effect of Rehmannioside A on cognitive impairment after ischemia in rats and SH-SY5Y cells, and further evaluate the anti-oxidative and anti-ferroptosis mechanisms. MATERIALS AND METHODS: Differentially expressed proteins (DEPs) in patients after cerebral ischemic stroke were revealed by a RayBio protein array. Cognitive impairment model was established by middle cerebral artery occlusion and reperfusion (MCAO) 14 days in rats. Rehmannioside A was administered intraperitoneally injection at dose of 80 mg/kg. The SH-SY5Y cells were exposed to H2O2 for 24 h and treated with Rehmannioside A (80 µM) for 24 h. The neuroprotecion of Rehmannioside A were evaluated by infarct volume (TTC), neurological defects (Garcia score) and learning memory (Morris water maze test) in vivo, and cell viability (CCK-8 or LDH) in vitro. Superoxide dismutase (SOD), malondialdehyde (MDA) and myeloperoxidase (MPO) activity of rats, glutathione (GSH), oxidized glutathione (GSSG) and nicotinamide adenine dinucleotide phosphate (NADPH) of cells were detected by biochemical assay. Intracellular reactive oxygen species (ROS) were measured by DCFH-DA assay. Myeloperoxidase (MPO), PI3 kinase (PI3K), p-PI3K, Akt, p-Akt, heme oxygenase-1 (HO-1), nuclear factor-E2-related factor 2 (Nrf2), SLC7A11, glutathione peroxidase 4 (GPX4) of the cerebral cortex in rats or SH-SY5Y cells were examined by western blotting. RESULTS: Compared with model group, the cognitive impairment and neurological deficits of Rehmannioside A group were significantly improved, and the cerebral infarction was reduced in MCAO rats. Moreover, the cell viability obviously increased and the H2O2-induced toxicity was reduced in Rehmannioside A group. Further research indicated that the expression of p-PI3K, p-Akt, nuclear Nrf2, HO-1 and SLC7A11 in Rehmannioside A group was significantly higher than model group. CONCLUSION: Rehmannioside A has neuroprotection effect and improves cognitive impairment after cerebral ischemia by inhibiting ferroptosis and activating PI3K/AKT/Nrf2 and SLC7A11/GPX4 signaling pathway. These findings provide valuable insight into the pathogenesis and therapeutic target of ischemic stroke.


Subject(s)
Brain Ischemia , Cognitive Dysfunction , Drugs, Chinese Herbal , Neuroprotective Agents , Rehmannia , Animals , Humans , Male , Rats , Brain Ischemia/drug therapy , Case-Control Studies , Cell Line, Tumor , Cell Survival/drug effects , Cognitive Dysfunction/drug therapy , Ferroptosis/drug effects , Infarction, Middle Cerebral Artery , Neuroprotective Agents/isolation & purification , Neuroprotective Agents/pharmacology , NF-E2-Related Factor 2/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats, Sprague-Dawley , Rehmannia/chemistry , Signal Transduction/drug effects , Drugs, Chinese Herbal/isolation & purification , Drugs, Chinese Herbal/pharmacology
12.
Article in English | MEDLINE | ID: mdl-35066245

ABSTRACT

In this study, a temperature-sensitive molecularly imprinted polymer was prepared by using the bifunctional monomer with the critical phase transition characteristics. Infrared spectrometry, scanning electron microscopy, and specific surface area testing were used to characterize the polymers. Then, the recognizing properties of the polymers were studied. Based on the prepared smart polymers, an SPE-HPLC analytical method for the determination of quinolizidine alkaloids in the extracts of Sophora flavescens was established and verified. Finally, the smart polymers were applied to the enrichment of quinolizidine alkaloids in plant extracts. By changing the temperature and solvents of the solid phase extraction conditions, the extraction process can increase the concentration of quinolizidine alkaloids by 4.3 to 5.2 folds. The extraction process has mild conditions and less time consumption, avoiding the use of a large number of toxic reagents, which indicate that the extraction process are more efficient and environmentally friendly.


Subject(s)
Alkaloids/analysis , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/analysis , Molecularly Imprinted Polymers/chemistry , Quinolizines/analysis , Solid Phase Extraction/methods , Alkaloids/isolation & purification , Drugs, Chinese Herbal/isolation & purification , Molecularly Imprinted Polymers/chemical synthesis , Quinolizines/isolation & purification , Solid Phase Extraction/instrumentation , Sophora/chemistry , Matrines
13.
Sci Rep ; 12(1): 159, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34997010

ABSTRACT

Huangqin decoction (HQD) is a Traditional Chinese Medicine formula for ulcerative colitis. However, the pharmacology and molecular mechanism of HQD on ulcerative colitis is still unclear. Combined microarray analysis, network pharmacology, and molecular docking for revealing the therapeutic targets and molecular mechanism of HQD against ulcerative colitis. TCMSP, DrugBank, Swiss Target Prediction were utilized to search the active components and effective targets of HQD. Ulcerative colitis effective targets were obtained by microarray data from the GEO database (GSE107499). Co-targets between HQD and ulcerative colitis are obtained by Draw Venn Diagram. PPI (Protein-protein interaction) network was constructed by the STRING database. To obtain the core target, topological analysis is exploited by Cytoscape 3.7.2. GO and KEGG enrichment pathway analysis was performed to Metascape platform, and molecular docking through Autodock Vina 1.1.2 finished. 161 active components with 486 effective targets of HQD were screened. 1542 ulcerative colitis effective targets were obtained with |Log2FC|> 1 and adjusted P-value < 0.05. The Venn analysis was contained 79 co-targets. Enrichment analysis showed that HQD played a role in TNF signaling pathway, IL-17 signaling pathway, Th17 cell differentiation, etc. IL6, TNF, IL1B, PTGS2, ESR1, and PPARG with the highest degree from PPI network were successfully docked with 19 core components of HQD, respectively. According to ZINC15 database, quercetin (ZINC4175638), baicalein (ZINC3871633), and wogonin (ZINC899093) recognized as key compounds of HQD on ulcerative colitis. PTGS2, ESR1, and PPARG are potential therapeutic targets of HQD. HQD can act on multiple targets through multi-pathway, to carry out its therapeutic role in ulcerative colitis.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Colitis, Ulcerative/drug therapy , Colon/drug effects , Computational Biology , Drugs, Chinese Herbal/pharmacology , Gastrointestinal Agents/pharmacology , Network Pharmacology , Scutellaria baicalensis , Systems Integration , Anti-Inflammatory Agents/isolation & purification , Colitis, Ulcerative/immunology , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/pathology , Colon/immunology , Colon/metabolism , Colon/pathology , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Cytokines/metabolism , Databases, Genetic , Drugs, Chinese Herbal/isolation & purification , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Flavanones/isolation & purification , Flavanones/pharmacology , Gastrointestinal Agents/isolation & purification , Gene Regulatory Networks , Humans , Molecular Docking Simulation , Oligonucleotide Array Sequence Analysis , PPAR gamma/genetics , PPAR gamma/metabolism , Protein Interaction Maps , Quercetin/isolation & purification , Quercetin/pharmacology , Scutellaria baicalensis/chemistry , Th17 Cells/drug effects , Th17 Cells/immunology , Th17 Cells/metabolism
14.
Rapid Commun Mass Spectrom ; 36(3): e9223, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34773922

ABSTRACT

RATIONALE: A series of photodegradation impurities and a series of degradation impurities produced in autoclaving in xinfujunsu injection were discovered, and these unknown impurities were separated and characterized thoroughly using liquid chromatography tandem quadrupole time-of-flight mass spectrometry. METHODS: The column was a Platisil 5 µm ODS (4.6 × 250 mm, 5 µm). For the analysis of degradation impurities caused by light irradiation and autoclaving, the mobile phase was composed of 0.01 M ammonium formate aqueous solution and acetonitrile/isopropanol (90:10, V/V). Full scan LC-MS and LC-MS2 was carried out to obtain as much structural information as possible. The fragmentation behavior of actinomycin D, actinomycin S3 , and its impurities was studied and used to obtain information about the structures of these impurities. RESULTS: Based on MS2 spectral data and exact mass measurements, the chemical structures of two series of degradation impurities were characterized, among which five unknown impurities were photodegradation impurities and seven unknown impurities were degradation impurities produced in autoclaving of xinfujunsu injection. CONCLUSIONS: Based on characterization of impurities, this study also revealed the cause of impurity production and provided guidance for enterprises to improve the process and drug packaging material to reduce impurity content. Furthermore, this study also provided scientific basis for further improvement of official monographs in pharmacopoeias.


Subject(s)
Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/radiation effects , Tandem Mass Spectrometry/methods , Dactinomycin/analogs & derivatives , Dactinomycin/chemistry , Drug Contamination , Drugs, Chinese Herbal/isolation & purification , Hot Temperature , Light , Photolysis
15.
Bioorg Chem ; 119: 105546, 2022 02.
Article in English | MEDLINE | ID: mdl-34954573

ABSTRACT

Pulmonary fibrosis is a progressive interstitial lung disease with poor prognosis. Anemarrhenae Rhizoma is a traditional Chinese herbal medicine and has been applied in clinical practice for a long history. Recently, components of Anemarrhenae Rhizoma were reported to possess anti-inflammatory and immunomodulatory features; however, the effect of them on pulmonary fibrosis remains unknown. In this study, we explored the therapeutic effect of total extract of Anemarrhenae Rhizoma (TEAR) on bleomycin-induced pulmonary fibrosis. Pulmonary fibrosis rat model was established by a single intratracheal instillation of bleomycin, three doses of TEAR were intragastrically administered for consecutive 28 days. Subsequent to sacrificing of rats, pulmonary fibrosis was observed in rats treated with bleomycin, but administration of TEAR attenuated lung fibrosis, as evidenced by the improved lung histopathological damage and decreased weight loss and lung index. Moreover, TEAR treatment inhibited the inflammatory response in lung fibrosis, which was shown by the reduced nitrogen oxide level and myeloperoxidase activity. Furthermore, TEAR modulated the redox balance in lung tissue by alleviated lipid peroxidation and enhanced enzymatic antioxidants activity. Meanwhile, TEAR protected the rats from fibrosis in a dose-dependent manner, and the anti-fibrotic activity of TEAR may be related to the modulation of TGF-ß1/Smad signaling pathway. Collectively, TEAR alleviates bleomycin-induced pulmonary fibrosis, indicating perspectives for development of a potential agent for lung fibrosis therapy.


Subject(s)
Anemarrhena/chemistry , Drugs, Chinese Herbal/therapeutic use , Flavonoids/therapeutic use , Pulmonary Fibrosis/drug therapy , Rhizome/chemistry , Saponins/therapeutic use , Animals , Bleomycin , Dose-Response Relationship, Drug , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/isolation & purification , Flavonoids/chemistry , Flavonoids/isolation & purification , Male , Medicine, Chinese Traditional , Molecular Structure , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/pathology , Rats , Rats, Sprague-Dawley , Saponins/chemistry , Saponins/isolation & purification , Structure-Activity Relationship
16.
J Ethnopharmacol ; 283: 114648, 2022 Jan 30.
Article in English | MEDLINE | ID: mdl-34543684

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Isatidis Radix (called Banlangen, BLG in Chinese) and Isatidis Folium (called Daqingye, DQY in Chinese) are common traditional edible-medicinal herbs in detoxifying for thousands of years, have been traditionally applied in traditional Chinese medicine for centuries. Both of them are bitter in taste, coolness in nature, acting on the heart and stomach channels. They are often used to treat influenza and other viral infectious diseases in clinic, as well as could treat fever, dizziness, and cough and sore throat caused by lung heat. AIMS OF THE REVIEW: This review aimed at summarizing the latest and comprehensive information of BLG and DQY on the ethnopharmacology, phytochemistry, pharmacology, toxicity and clinical application to explore the therapeutic potential of them. In addition, outlooks and perspective for possible future researches that related are also discussed. MATERIALS AND METHODS: Related information concerning BLG and DQY were gathered from the internet database of Google Scholar, PubMed, Baidu Scholar, GeenMedical, CNKI and Web of Science, as well as other relevant textbooks, reviews, and documents (e.g., Chinese Pharmacopoeia, 2020 edition, Chinese herbal classic books and PhD and MSc thesis, etc.). Among of them with the keywords including "Isatis indigotica" "Isatidis Radix", "Isatidis Folium", "phytochemistry", "pharmacology", "toxicology", "clinical application" etc. and their combinations. RESULTS: To date, 39 Chinese patent medicines containing BLG and/or DQY have been developed on basis of the data of NMPA. Besides, 304 and 142 compounds have been found in BLG and DQY, respectively. The main chemical differences between BLG and DQY were concentrated on alkaloids and lignans, such as indican, indirubin, (R, S)-epigoitrin, 4(3H)-quinazolinone, clemastanin B and isatindigotindolines A-D. In 2020 Edition ChP, (R, S)-goitrin and indirubin are now used as the official marker to monitor the quality of BLG and DQY, respectively. Modern pharmacology has mainly studied some monomer components such as 4(3H)-quinazolinone, clemastanin B, erucic acid and adenosine, etc., all of which have shown good effects. These active compounds can resist various viruses, such as influenza virus, respiratory syncytial virus, herpes simplex virus, etc.. By regulating the level of immunity and a variety of inflammatory factors, inhibit the growth and reproduction of the virus. At the same time, it is worth noting that different components of BLG and DQY lead to BLG is more powerful in antiviral and immunomodulatory activity than DQY, while DQY possesses a higher intensity than BLG in anti-oxidant activity. CONCLUSION: By collecting and collating a large number of literature and various data websites, we concluded that the common compounds are mainly alkaloids. Recent findings regarding the phytochemical and pharmacological properties of BLG and DQY have confirmed their traditional uses in antiviral, antibacterial and treatment immune diseases. Without doubt, their significant differences on ethnopharmacology, phytochemistry and pharmacology can be used as evidence of separate list of BLG and DQY. For shortcomings, some comprehensive studies should be well designed for further utilization of BLG and DQY.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Isatis/chemistry , Animals , Drugs, Chinese Herbal/isolation & purification , Ethnopharmacology , Humans , Medicine, Chinese Traditional , Phytochemicals/isolation & purification , Phytochemicals/pharmacology , Plant Leaves , Plant Roots
17.
Molecules ; 26(24)2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34946576

ABSTRACT

Corydalis yanhusuo extract (YHS) has been used for centuries across Asia for pain relief. The extract is made up of more than 160 compounds and has been identified as alkaloids, organic acids, volatile oils, amino acids, alcohols, and sugars. However, the most crucial biological active constituents of YHS are alkaloids; more than 80 have been isolated and identified. This review paper aims to provide a comprehensive review of the phytochemical and pharmacological effects of these alkaloids that have significant ties to analgesia.


Subject(s)
Alkaloids/therapeutic use , Analgesics/therapeutic use , Corydalis/chemistry , Drugs, Chinese Herbal/therapeutic use , Pain/drug therapy , Plant Extracts/therapeutic use , Alkaloids/chemistry , Alkaloids/isolation & purification , Analgesics/chemistry , Analgesics/isolation & purification , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/isolation & purification , Humans , Molecular Structure , Plant Extracts/chemistry , Plant Extracts/isolation & purification
18.
Molecules ; 26(22)2021 Nov 11.
Article in English | MEDLINE | ID: mdl-34833900

ABSTRACT

BACKGROUND: Danshen (DS), the dry root of Salvia miltiorrhiza Bge., has been used in traditional Chinese medicine (TCM) for many years to promote blood circulation and to inhibit thrombosis. However, the active ingredients responsible for the anti-thrombotic effect and the underlying mechanisms are yet to be fully elucidated. METHODS: Molecular docking was used to predict the active ingredients in DS and their potential targets by calculating the scores of docking between DS ingredients and thrombosis-related proteins. Then, a chemical-induced zebrafish thrombosis model was applied to confirm their anti-thrombotic effects. RESULT: The molecular docking results indicated that compared to the control ligand, higher docking scores were observed for several compounds in DS, among which salvianolic acid B (SAB), lithospermic acid (LA), rosmarinic acid (MA), and luteolin-7-O-ß-d-glucoside (LG) could attenuate zebrafish caudal vein thrombosis and recover the decrease in heart red blood cells (RBCs) in a dose-dependent manner. CONCLUSIONS: Our study showed that it is possible to screen the potential active components in natural products by combining the molecular docking method and zebrafish in vivo model.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Fibrinolytic Agents/pharmacology , Salvia miltiorrhiza/chemistry , Animals , Disease Models, Animal , Drug Evaluation, Preclinical , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/isolation & purification , Fibrinolytic Agents/chemistry , Fibrinolytic Agents/isolation & purification , Humans , Medicine, Chinese Traditional , Molecular Docking Simulation , Molecular Structure , Plants, Medicinal/chemistry , Thrombosis/blood , Thrombosis/drug therapy , Zebrafish
19.
Molecules ; 26(21)2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34771043

ABSTRACT

Neural stem cells (NSCs) exist in the central nervous system of adult animals and capable of self-replication. NSCs have two basic functions, namely the proliferation ability and the potential for multi-directional differentiation. In this study, based on the bioassay-guided fractionation, we aim to screen active components in Cuscuta chinensis to promote the proliferation of NSCs. CCK-8 assays were used as an active detection method to track the active components. On the basis of isolating active fraction and monomer compounds, the structures of these were identified by LC-MS and (1H, 13C) NMR. Moreover, active components were verified by pharmacodynamics and network pharmacology. The system solvent extraction method combined with the traditional isolation method were used to ensure that the fraction TSZE-EA-G6 of Cuscuta chinensis exhibited the highest activity. Seven chemical components were identified from the TSZE-EA-G6 fraction by UPLC-QE-Orbitrap-MS technology, which were 4-O-p-coumarinic acid, chlorogenic acid, 5-O-p-coumarinic acid, hyperoside, astragalin, isochlorogenic acid C, and quercetin-3-O-galactose-7-O-glucoside. Using different chromatographic techniques, five compounds were isolated in TSZE-EA-G6 and identified as kaempferol, kaempferol-3-O-glucoside (astragalin), quercetin-3-O-galactoside (hyperoside), chlorogenic acid, and sucrose. The activity study of these five compounds showed that the proliferation rate of kaempferol had the highest effects; at a certain concentration (25 µg/mL, 3.12 µg/mL), the proliferation rate could reach 87.44% and 59.59%, respectively. Furthermore, research results using network pharmacology techniques verified that kaempferol had an activity of promoting NSCs proliferation and the activity of flavonoid aglycones might be greater than that of flavonoid glycosides. In conclusion, this research shows that kaempferol is the active component in Cuscuta chinensis to promote the proliferation of NSCs.


Subject(s)
Cuscuta/chemistry , Drugs, Chinese Herbal/pharmacology , Neural Stem Cells/drug effects , Animals , Cell Proliferation/drug effects , Chemical Fractionation , Chromatography, High Pressure Liquid , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/isolation & purification , Female , Mass Spectrometry , Neural Stem Cells/cytology , Rats
20.
Drug Des Devel Ther ; 15: 4585-4601, 2021.
Article in English | MEDLINE | ID: mdl-34785888

ABSTRACT

PURPOSE: This study aimed to explore the underlying mechanisms of Shenyankangfu tablet (SYKFT) in the treatment of glomerulonephritis (GN) based on network pharmacology, machine learning, molecular docking, and experimental validation. METHODS: The active ingredients and potential targets of SYKFT were obtained through the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform, the targets of GN were obtained through GeneCards, etc. Perl and Cytoscape were used to construct an herb-active ingredient-target network. Then, the clusterProfiler package of R was used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. We also used the STRING platform and Cytoscape to construct a protein-protein interaction (PPI) network, as well as the SwissTargetPrediction server to predict the target protein of the core active ingredient based on machine-learning model. Molecular-docking analysis was further performed using AutoDock Vina and Pymol. Finally, we verified the effect of SYKFT on GN in vivo. RESULTS: A total of 154 active ingredients and 255 targets in SYKFT were screened, and 135 targets were identified to be related to GN. GO enrichment analysis indicated that biological processes were primarily associated with oxidative stress and cell proliferation. KEGG pathway analysis showed that these targets were involved mostly in infection-related and GN-related pathways. PPI network analysis identified 13 core targets of SYKFT. Results of machine-learning model suggested that STAT3 and AKT1 may be the key target. Results of molecular docking suggested that the main active components of SYKFT can be combined with various target proteins. In vivo experiments confirmed that SYKFT may alleviate renal pathological injury by regulating core genes, thereby reducing urinary protein. CONCLUSION: This study demonstrated for the first time the multicomponent, multitarget, and multipathway characteristics of SYKFT for GN treatment.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Drugs, Chinese Herbal/pharmacology , Glomerulonephritis/drug therapy , Machine Learning , Molecular Docking Simulation , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Cell Proliferation/drug effects , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/isolation & purification , Glomerulonephritis/metabolism , Glomerulonephritis/pathology , Humans , Medicine, Chinese Traditional , Oxidative Stress/drug effects , Tablets
SELECTION OF CITATIONS
SEARCH DETAIL
...