Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
MAbs ; 13(1): 1974150, 2021.
Article in English | MEDLINE | ID: mdl-34486490

ABSTRACT

This study describes the characterization of conjugation sites for a random, lysine conjugated 2-iminothiolane (2-IT) based antibody-drug-conjugate synthesized from an IgG1 antibody and a duocarmycin analog-based payload-linker. Of the 80 putative lysine sites, 78 were found to be conjugated via tryptic peptide mapping and LC-HRMS. Surprisingly, seven cysteine-linked conjugated peptides were also detected resulting from the conjugation of cysteine residues derived from the four inter-chain disulfide bonds during the reaction. This unexpected finding could be attributed to the free thiols of the 2-IT thiolated antibody intermediates and/or the 4-mercaptobutanamide by-product resulting from the hydrolysis of 2-IT. These free thiols could cause the four inter-chain disulfide bonds of the antibody to scramble via intra- or inter-molecular attack. The presence of only pair of non-reactive (unconjugated) lysine residues, along with the four intact intra-chain disulfide bonds, is attributed to their poor accessibility, which is consistent with solvent accessibility modeling analysis. We also discovered a major by-product derived from the hydrolysis of the amidine moiety of the N-terminus conjugate. In contrast, the amidine moiety in lysine-linked conjugates appeared stable. Based on our results, we propose plausible formation mechanisms of cysteine-linked conjugates and the hydrolysis of the N-terminus conjugate, which provide scientific insights that are beneficial to process development and drug quality control.


Subject(s)
Cysteine/chemistry , Drug Discovery/methods , Immunoconjugates/chemistry , Lysine/chemistry , Duocarmycins/analogs & derivatives , Humans , Immunoglobulin G/chemistry
2.
Bioconjug Chem ; 31(9): 2136-2146, 2020 09 16.
Article in English | MEDLINE | ID: mdl-32697078

ABSTRACT

Engineering cysteines at specific sites in antibodies to create well-defined ADCs for the treatment of cancer is a promising approach to increase the therapeutic index and helps to streamline the manufacturing process. Here, we report the development of an in silico screening procedure to select for optimal sites in an antibody to which a hydrophobic linker-drug can be conjugated. Sites were identified inside the cavity that is naturally present in the Fab part of the antibody. Conjugating a linker-drug to these sites demonstrated the ability of the antibody to shield the hydrophobic character of the linker-drug while resulting ADCs maintained their cytotoxic potency in vitro. Comparison of site-specific ADCs versus randomly conjugated ADCs in an in vivo xenograft model revealed improved efficacy and exposure. We also report a selective reducing agent that is able to reduce the engineered cysteines while leaving the interchain disulfides in the oxidized state. This enables us to manufacture site-specific ADCs without introducing impurities associated with the conventional reduction/oxidation procedure for site-specific conjugation.


Subject(s)
Antibiotics, Antineoplastic/chemistry , Cysteine/chemistry , Duocarmycins/analogs & derivatives , Immunoconjugates/chemistry , Animals , Antibiotics, Antineoplastic/therapeutic use , Cell Line, Tumor , Duocarmycins/therapeutic use , Humans , Hydrophobic and Hydrophilic Interactions , Immunoconjugates/therapeutic use , Immunoglobulin G/chemistry , Immunoglobulin G/therapeutic use , Mice , Models, Molecular , Neoplasms/drug therapy , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...