Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.088
Filter
1.
Mol Nutr Food Res ; 68(9): e2300889, 2024 May.
Article in English | MEDLINE | ID: mdl-38676468

ABSTRACT

SCOPE: Epidemiological studies have linked excessive red and processed meat intake to gut disorders. Under laboratory conditions, high heme content is considered the primary health risk factor for red meat. However, heme in meat is present in myoglobin, which is an indigestible protein, suggesting the different functions between myoglobin and heme. This study aims to explore how dietary myoglobin and heme affect gut health and microbiota differently. METHODS AND RESULTS: Histological and biochemical assessments as well as 16S rRNA sequencing are performed. Moderate myoglobin intake (equivalent to the recommended intake of 150 g meat per day for human) has beneficial effects on the duodenal barrier. However, a too high myoglobin diet (equivalent to intake of 3000 g meat per day for human) triggers duodenum injury and alters the microbial community. The hemin diet destroys intestinal tissue and ileal microbiota more significantly. The in vitro experiments further confirm that free heme exhibits high toxicity to beneficial gut bacteria while myoglobin promotes the growth and metabolism of Limosilactobacillus reuteri. CONCLUSION: Moderate intake of myoglobin or hemin is beneficial to intestinal health and microbiota, but too high amounts lead to tissue inflammation and injury in the small intestine by reshaping ileal microbiota.


Subject(s)
Gastrointestinal Microbiome , Hemin , Inflammation , Myoglobin , Gastrointestinal Microbiome/drug effects , Animals , Myoglobin/metabolism , Hemin/pharmacology , Male , Diet/methods , Intestine, Small/drug effects , Intestine, Small/metabolism , Limosilactobacillus reuteri , Duodenum/metabolism , RNA, Ribosomal, 16S/genetics , Heme
2.
Int J Biol Macromol ; 267(Pt 1): 131690, 2024 May.
Article in English | MEDLINE | ID: mdl-38688790

ABSTRACT

In the current study, how pectin retards the digestibility of wheat gluten was investigated using a static in vitro gastric-duodenal model. The degree of protein hydrolysis was estimated using the o-phthaldialdehyde method, while the in vitro digestograms were mathematically fitted using a single first-order kinetics model. Peptides' profile, free amino acids compositions, gluten-pectin interactions and their effects on enzymatic activities of proteolytic enzymes as well as on the gluten secondary structures under digestive conditions were studied using combined techniques. Results showed that pectin could retard gluten digestibility through 1). preferential absorption to insoluble gluten aggregates by electrostatic interactions; 2). increasing the helix and reducing the ß-sheet content of the solubilized gluten protein fractions in terms of their secondary molecular structures; 3). reducing pepsin activity by forming negatively charged pectin-gluten mixtures which then interacted with the positively charged pepsin molecules. The deeper insight into gluten-pectin interactions and their influences on gluten digestibility under gastrointestinal conditions provides important clues for developing effective forms of dietary fiber to improve the nutritional benefits of plant protein in individuals.


Subject(s)
Digestion , Glutens , Pectins , Pepsin A , Pectins/chemistry , Pectins/pharmacology , Glutens/chemistry , Digestion/drug effects , Hydrolysis , Pepsin A/chemistry , Pepsin A/metabolism , Duodenum/metabolism , Duodenum/drug effects , Triticum/chemistry , Proteolysis , Amino Acids/chemistry , Kinetics
3.
Biomaterials ; 308: 122559, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38583366

ABSTRACT

Lipid nanoparticles (LNPs) have recently emerged as successful gene delivery platforms for a diverse array of disease treatments. Efforts to optimize their design for common administration methods such as intravenous injection, intramuscular injection, or inhalation, revolve primarily around the addition of targeting ligands or the choice of ionizable lipid. Here, we employed a multi-step screening method to optimize the type of helper lipid and component ratios in a plasmid DNA (pDNA) LNP library to efficiently deliver pDNA through intraduodenal delivery as an indicative route for oral administration. By addressing different physiological barriers in a stepwise manner, we down-selected effective LNP candidates from a library of over 1000 formulations. Beyond reporter protein expression, we assessed the efficiency in non-viral gene editing in mouse liver mediated by LNPs to knockdown PCSK9 and ANGPTL3 expression, thereby lowering low-density lipoprotein (LDL) cholesterol levels. Utilizing an all-in-one pDNA construct with Strep. pyogenes Cas9 and gRNAs, our results showcased that intraduodenal administration of selected LNPs facilitated targeted gene knockdown in the liver, resulting in a 27% reduction in the serum LDL cholesterol level. This LNP-based all-in-one pDNA-mediated gene editing strategy highlights its potential as an oral therapeutic approach for hypercholesterolemia, opening up new possibilities for DNA-based gene medicine applications.


Subject(s)
Gene Editing , Lipids , Liver , Nanoparticles , Animals , Gene Editing/methods , Liver/metabolism , Nanoparticles/chemistry , Lipids/chemistry , Mice , Plasmids/genetics , Plasmids/administration & dosage , Gene Transfer Techniques , Mice, Inbred C57BL , Proprotein Convertase 9/genetics , Proprotein Convertase 9/metabolism , Humans , DNA/administration & dosage , DNA/genetics , Duodenum/metabolism
4.
Development ; 151(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38587174

ABSTRACT

The gastrointestinal (GI) tract is complex and consists of multiple organs with unique functions. Rare gene variants can cause congenital malformations of the human GI tract, although the molecular basis of these has been poorly studied. We identified a patient with compound-heterozygous variants in RFX6 presenting with duodenal malrotation and atresia, implicating RFX6 in development of the proximal intestine. To identify how mutations in RFX6 impact intestinal patterning and function, we derived induced pluripotent stem cells from this patient to generate human intestinal organoids (HIOs). We identified that the duodenal HIOs and human tissues had mixed regional identity, with gastric and ileal features. CRISPR-mediated correction of RFX6 restored duodenal identity. We then used gain- and loss-of-function and transcriptomic approaches in HIOs and Xenopus embryos to identify that PDX1 is a downstream transcriptional target of RFX6 required for duodenal development. However, RFX6 had additional PDX1-independent transcriptional targets involving multiple components of signaling pathways that are required for establishing early regional identity in the GI tract. In summary, we have identified RFX6 as a key regulator in intestinal patterning that acts by regulating transcriptional and signaling pathways.


Subject(s)
Gene Expression Regulation, Developmental , Homeodomain Proteins , Organoids , Regulatory Factor X Transcription Factors , Trans-Activators , Humans , Regulatory Factor X Transcription Factors/genetics , Regulatory Factor X Transcription Factors/metabolism , Animals , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Trans-Activators/metabolism , Trans-Activators/genetics , Organoids/metabolism , Organoids/embryology , Duodenum/metabolism , Duodenum/embryology , Intestines/embryology , Intestinal Atresia/genetics , Induced Pluripotent Stem Cells/metabolism , Body Patterning/genetics , Signal Transduction/genetics , Mutation/genetics
5.
Obes Surg ; 34(5): 1665-1673, 2024 May.
Article in English | MEDLINE | ID: mdl-38512643

ABSTRACT

INTRODUCTION: Duodenal-jejunal bypass (DJB) is an experimental procedure in metabolic surgery that does not have a restrictive component. Changes in bile acid (BA) dynamics and intestinal microbiota are possibly related to metabolic improvement after DJB. Our previous studies involving obese diabetic rats showed the crucial role of the biliopancreatic limb (BPL) in metabolic improvement after DJB caused by BA reabsorption. We established a new DJB procedure to prevent bile from flowing into the BPL and aimed to elucidate the importance of bile in the BPL after DJB. METHODS: Otsuka Long-Evans Tokushima Fatty rats with diabetes were divided into three groups: two DJB groups and a sham group (n = 11). Duodenal-jejunal anastomosis was performed proximal to the papilla of Vater in the DJB group (n = 11). However, the DJB-D group (n = 11) underwent a new procedure with duodenal-jejunal anastomosis distal to the papilla of Vater for preventing bile flow into the BPL. RESULTS: Glucose metabolism improved and weight gain was suppressed in the DJB group, but not in the DJB-D and sham groups. Serum BA level and conjugated BA concentration were elevated in the DJB group. The gut microbiota was altered only in the DJB group; the abundance of Firmicutes and Bacteroidetes decreased and that of Actinobacteria increased. However, the DJB-D group exhibited no apparent change in the gut microbiota, similar to the sham group. CONCLUSION: BAs are essential in the BPL for metabolic improvement after DJB; they can improve the gut microbiota in these processes.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Gastric Bypass , Obesity, Morbid , Rats , Animals , Bile , Diabetes Mellitus, Experimental/surgery , Diabetes Mellitus, Type 2/surgery , Diabetes Mellitus, Type 2/metabolism , Obesity, Morbid/surgery , Jejunum/surgery , Jejunum/metabolism , Duodenum/surgery , Duodenum/metabolism , Bile Acids and Salts/metabolism , Blood Glucose/metabolism , Gastric Bypass/methods
6.
Nat Cell Biol ; 26(2): 250-262, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38321203

ABSTRACT

A key aspect of nutrient absorption is the exquisite division of labour across the length of the small intestine, with individual nutrients taken up at different proximal:distal positions. For millennia, the small intestine was thought to comprise three segments with indefinite borders: the duodenum, jejunum and ileum. By examining the fine-scale longitudinal transcriptional patterns that span the mouse and human small intestine, we instead identified five domains of nutrient absorption that mount distinct responses to dietary changes, and three regional stem cell populations. Molecular domain identity can be detected with machine learning, which provides a systematic method to computationally identify intestinal domains in mice. We generated a predictive model of transcriptional control of domain identity and validated the roles of Ppar-δ and Cdx1 in patterning lipid metabolism-associated genes. These findings represent a foundational framework for the zonation of absorption across the mammalian small intestine.


Subject(s)
Duodenum , Intestine, Small , Humans , Mice , Animals , Intestine, Small/metabolism , Duodenum/metabolism , Intestines , Jejunum/metabolism , Ileum/metabolism , Mammals
7.
Peptides ; 174: 171168, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38320643

ABSTRACT

The duodenum is an important source of endocrine and paracrine signals controlling digestion and nutrient disposition, notably including the main incretin hormone glucose-dependent insulinotropic polypeptide (GIP). Bariatric procedures that prevent nutrients from contact with the duodenal mucosa are particularly effective interventions to reduce body weight and improve glycaemic control in obesity and type 2 diabetes. These procedures take advantage of increased nutrient delivery to more distal regions of the intestine which enhances secretion of the other incretin hormone glucagon-like peptide-1 (GLP-1). Preclinical experiments have shown that either an increase or a decrease in the secretion or action of GIP can decrease body weight and blood glucose in obesity and non-insulin dependent hyperglycaemia, but clinical studies involving administration of GIP have been inconclusive. However, a synthetic dual agonist peptide (tirzepatide) that exerts agonism at receptors for GIP and GLP-1 has produced marked weight-lowering and glucose-lowering effects in people with obesity and type 2 diabetes. This appears to result from chronic biased agonism in which the novel conformation of the peptide triggers enhanced signalling by the GLP-1 receptor through reduced internalisation while reducing signalling by the GIP receptor directly or via functional antagonism through increased internalisation and degradation.


Subject(s)
Diabetes Mellitus, Type 2 , Incretins , Receptors, Gastrointestinal Hormone , Humans , Incretins/therapeutic use , Diabetes Mellitus, Type 2/metabolism , Gastric Inhibitory Polypeptide/metabolism , Glucagon-Like Peptide 1/metabolism , Obesity/drug therapy , Obesity/metabolism , Blood Glucose/metabolism , Duodenum/metabolism , Peptides/therapeutic use , Enteroendocrine Cells/metabolism , Receptors, G-Protein-Coupled , Glucagon-Like Peptide-1 Receptor/metabolism
8.
Immun Inflamm Dis ; 12(2): e1186, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38353316

ABSTRACT

BACKGROUND: Celiac disease (CD) is a chronic autoimmune disorder characterized by an abnormal immune response to gluten, a protein found in wheat, barley, and rye. It is well established that the integrity of epithelial tight junctions (TJs) and adherens junctions (AJs) plays a crucial role in the pathogenesis of CD. These junctional complexes contribute to the apical-basal polarity of the intestinal epithelial cells, which is crucial for their proper functioning. METHODS: Sixty CD subjects, and 50 controls were enrolled in the current study. Mucosal samples were obtained from the distal duodenum, total RNA was extracted and complementary DNA was synthesized. The relative expression levels of the desired genes were evaluated by quantitative real-time polymerase chain reaction based on ΔΔCt method. The gene-gene interaction network was also constructed using GeneMANIA. RESULTS: CRB3 (p = .0005), LKB1 (p < .0001), and SCRIB (p = .0005) had lower expression in CD patients compared to controls, while PRKCZ expression did not differ between groups (p > .05). CRB3 represented a significant diagnostic value for differentiating CD patients from the control group (p = .02). CONCLUSION: The aim of the current study was to evaluate the changes in the mRNA expression levels of SCRIB, PRKCZ, LKB1, and CRB3 genes in the small intestinal biopsy samples of CD patients in comparison to the healthy control subjects. Our data uncover the importance of polarity-related genes (especially CRB3) in CD pahtomechanism, that may facilitate the planning of the future studies looking for finding innovative diagnostic and therapeutic strategies for CD.


Subject(s)
Celiac Disease , Humans , Celiac Disease/diagnosis , Celiac Disease/genetics , Glutens/metabolism , Duodenum/metabolism , Duodenum/pathology , Biopsy , RNA, Messenger/genetics , RNA, Messenger/metabolism
9.
Poult Sci ; 103(4): 103538, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38387293

ABSTRACT

The early posthatch period is crucial to intestinal development, shaping long-term growth, metabolism, and health of the chick. The objective of this study was to determine the effect of genetic selection on morphological characteristics and gene expression during early intestinal development. Populations of White Plymouth Rocks have been selected for high weight (HWS) and low weight (LWS) for over 63 generations, and some LWS display symptoms of anorexia. Intestinal structure and function of these populations were compared to a commercial broiler Cobb 500 (Cobb) during the perihatch period. Egg weights, yolk-free embryo BW, yolk weights, and jejunal samples from HWS, LWS, and Cobb were collected on embryonic day (e) 17, e19, day of hatch, day (d) 3, d5, and d7 posthatch for histology and gene expression analysis. The RNAscope in-situ hybridization method was used to localize expression of the stem cell marker, olfactomedin 4 (Olfm4). Villus height (VH), crypt depth (CD), and VH/CD were measured from Olfm4 stained images using ImageJ. mRNA abundance for Olfm4, stem cell marker Lgr5, peptide transporter PepT1, goblet cell marker Muc2, marker of proliferation Ki67, and antimicrobial peptide LEAP2 were examined. Two-factor ANOVA was performed for measurements and Turkey's HSD was used for mean separation when appropriate. Cobb were heaviest and LWS the lightest (P < 0.01). at each timepoint. VH increased in Cobb and CD increased in HWS compared to LWS (P < 0.01). PepT1 mRNA was upregulated in LWS (P < 0.01), and Muc2 mRNA was decreased in both HWS and LWS compared to Cobb (P < 0.01). Selection for high or low 8-wk body weight has caused differences in intestinal gene expression and morphology when compared to a commercial broiler.


Subject(s)
Chickens , Duodenum , Animals , In Situ Hybridization/veterinary , Duodenum/metabolism , RNA, Messenger/genetics , Body Weight
10.
Part Fibre Toxicol ; 21(1): 5, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38321545

ABSTRACT

BACKGROUND: Currently, society and industry generate huge amounts of plastics worldwide. The ubiquity of microplastics is obvious, but its impact on the animal and human organism remains not fully understood. The digestive tract is one of the first barriers between pathogens and xenobiotics and a living organism. Its proper functioning is extremely important in order to maintain homeostasis. The aim of this study was to determine the effect of microplastic on enteric nervous system and histological structure of swine duodenum. The experiment was carried out on 15 sexually immature gilts, approximately 8 weeks old. The animals were randomly divided into 3 study groups (n = 5/group). The control group received empty gelatin capsules once a day for 28 days, the first research group received daily gelatin capsules with polyethylene terephthalate (PET) particles as a mixture of particles of various sizes (maximum particle size 300 µm) at a dose of 0.1 g/animal/day. The second study group received a dose ten times higher-1 g/animal/day. RESULTS: A dose of 1 g/day/animal causes more changes in the enteric nervous system and in the histological structure of duodenum. Statistically significant differences in the expression of cocaine and amphetamine regulated transcript, galanin, neuronal nitric oxide synthase, substance P, vesicular acetylcholine transporter and vasoactive intestinal peptide between control and high dose group was noted. The histopathological changes were more frequently observed in the pigs receiving higher dose of PET. CONCLUSION: Based on this study it may be assumed, that oral intake of microplastic might have potential negative influence on digestive tract, but it is dose-dependent.


Subject(s)
Microplastics , Plastics , Humans , Swine , Animals , Female , Polyethylene Terephthalates/metabolism , Polyethylene Terephthalates/pharmacology , Gelatin/metabolism , Gelatin/pharmacology , Duodenum/metabolism , Neurons
11.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38219027

ABSTRACT

Six female littermate piglets were used in an experiment to evaluate the mRNA expression in tissues from piglets given one or two 1 mL injections of iron dextran (200 mg Fe/mL). All piglets in the litter were administered the first 1 mL injection < 24 h after birth. On day 7, piglets were paired by weight (mean body weight = 1.72 ±â€…0.13 kg) and one piglet from each pair was randomly selected as control (CON) and the other received a second injection (+Fe). At weaning on day 22, each piglet was anesthetized, and samples of liver and duodenum were taken from the anesthetized piglets and preserved until mRNA extraction. differential gene expression data were analyzed with a fold change cutoff (FC) of |1.2| P < 0.05. Pathway analysis was conducted with Z-score cutoff of P < 0.05. In the duodenum 435 genes were significantly changed with a FC ≥ |1.2| P < 0.05. In the duodenum, Claudin 1 and Claudin 2 were inversely affected by + Fe. Claudin 1 (CLDN1) plays a key role in cell-to-cell adhesion in the epithelial cell sheets and was upregulated (FC = 4.48, P = 0.0423). Claudin 2 (CLDN2) is expressed in cation leaky epithelia, especially during disease or inflammation and was downregulated (FC = -1.41, P = 0.0097). In the liver, 362 genes were expressed with a FC ≥ |1.2| P < 0.05. The gene most affected by a second dose of 200 mg Fe was hepcidin antimicrobial peptide (HAMP) with a FC of 40.8. HAMP is a liver-produced hormone that is the main circulating regulator of Fe absorption and distribution across tissues. It also controls the major flows of Fe into plasma by promoting endocytosis and degradation of ferroportin (SLC4A1). This leads to the retention of Fe in Fe-exporting cells and decreased flow of Fe into plasma. Gene expression related to metabolic pathway changes in the duodenum and liver provides evidence for the improved feed conversion and growth rates in piglets given two iron injections preweaning with contemporary pigs in a companion study. In the duodenum, there is a downregulation of gene clusters associated with gluconeogenesis (P < 0.05). Concurrently, there was a decrease in the mRNA expression of genes for enzymes required for urea production in the liver (P < 0.05). These observations suggest that there may be less need for gluconeogenesis, and possibly less urea production from deaminated amino acids. The genomic and pathway analyses provided empirical evidence linking gene expression with phenotypic observations of piglet health and growth improvements.


Iron deficiency anemia (IDA) in neonatal piglets is a problem that occurs unless there is intervention with exogenous iron. The most common method to prevent IDA is with an iron injection within 48 h of birth. However, the iron from the first injection will only support normal iron status in the piglets for ~4 kg of growth. As a result, with faster-growing piglets and larger litters, many piglets weaned today are iron deficient which results in slower growth and poor immunity. Pigs never fully recover nor grow at the same rate as those that have sufficient iron status. The aim of this study was to evaluate the effects of one or two injections of iron dextran on the differences in gene expression and metabolic pathway changes in the small intestine and liver of nursing piglets. At weaning, samples of liver and duodenum underwent genome-wide RNA sequencing. The data obtained were statistically analyzed to determine which genes and metabolic pathways were affected. There were 362 and 435 genes significantly changed in the liver and duodenum, respectively, due to a second dose of iron dextran on day 7 after birth.


Subject(s)
Dextrans , Iron , Animals , Female , Swine , Iron/metabolism , Weaning , Dextrans/metabolism , Claudin-1/metabolism , Claudin-2/metabolism , Lactation , Iron-Dextran Complex , Liver/metabolism , Duodenum/metabolism , RNA, Messenger/metabolism , Urea/metabolism , Gene Expression
12.
Am J Physiol Cell Physiol ; 326(2): C317-C330, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38073487

ABSTRACT

Small organic molecules in the intestinal lumen, particularly short-chain fatty acids (SCFAs) and glucose, have long been postulated to enhance calcium absorption. Here, we used 45Ca radioactive tracer to determine calcium fluxes across the rat intestine after exposure to glucose and SCFAs. Confirming previous reports, glucose was found to increase the apical-to-basolateral calcium flux in the cecum. Under apical glucose-free conditions, SCFAs (e.g., butyrate) stimulated the cecal calcium fluxes by approximately twofold, while having no effect on proximal colon. Since SCFAs could be absorbed into the circulation, we further determined whether basolateral SCFA exposure rendered some positive actions. It was found that exposure of duodenum and cecum on the basolateral side to acetate or butyrate increased calcium fluxes. Under butyrate-rich conditions, cecal calcium transport was partially diminished by Na+/H+ exchanger 3 (NHE3) inhibitor (tenapanor) and nonselective transient receptor potential vanilloid subfamily 6 (TRPV6) inhibitor (miconazole). To confirm the contribution of TRPV6 to SCFA-stimulated calcium transport, we synthesized another TRPV6 inhibitor that was demonstrated by in silico molecular docking and molecular dynamics to occlude TRPV6 pore and diminish the glucose- and butyrate-induced calcium fluxes. Therefore, besides corroborating the importance of luminal molecules in calcium absorption, our findings provided foundation for development of more effective calcium-rich nutraceuticals in combination with various absorptive enhancers, e.g., glucose and SCFAs.NEW & NOTEWORTHY Organic molecules in the intestinal lumen, e.g., glucose and short-chain fatty acids (SCFAs), the latter of which are normally produced by microfloral fermentation, can stimulate calcium absorption dependent on transient receptor potential vanilloid subfamily 6 (TRPV6) and Na+/H+ exchanger 3 (NHE3). A selective TRPV6 inhibitor synthesized and demonstrated by in silico docking and molecular dynamics to specifically bind to the pore domain of TRPV6 was used to confirm a significant contribution of this channel. Our findings corroborate physiological significance of nutrients and SCFAs in enhancing calcium absorption.


Subject(s)
Calcium , Fatty Acids, Volatile , Rats , Animals , Sodium-Hydrogen Exchanger 3/metabolism , Calcium/metabolism , Molecular Docking Simulation , Fatty Acids, Volatile/pharmacology , Fatty Acids, Volatile/metabolism , Butyrates/pharmacology , Carrier Proteins/metabolism , Duodenum/metabolism , Glucose/metabolism , Intestinal Absorption
13.
Sci Rep ; 13(1): 21641, 2023 12 08.
Article in English | MEDLINE | ID: mdl-38062108

ABSTRACT

Pyloric gland adenoma (PGA) is a duodenal neoplasm expressing MUC6 and is often associated with high-grade dysplasia and adenocarcinoma. MUC6 secreted from the pyloric gland cells carries unique O-glycans exhibiting terminal α1,4-linked N-acetylglucosamine residues (αGlcNAc). The small peptide trefoil factor 2 (TFF2) is also secreted from pyloric gland cells and binds to αGlcNAc. We recently demonstrated that αGlcNAc serves as a tumor suppressor for gastric neoplasm including PGA, but the significance of TFF2 expression remains unknown. We examined 20 lesions representing low- and high-grade PGA in 22 cases by immunohistochemistry for αGlcNAc, TFF2, MUC6, MUC5AC, MUC2 and p53. αGlcNAc, TFF2 and MUC6 were co-expressed on the cell surface and a dot-like pattern in the cytosol in low-grade PGA lesions. High-grade PGA also expressed MUC6, but reduced αGlcNAc and TFF2 expression. The ratios of αGlcNAc or TFF2 to MUC6 score in high-grade PGA were significantly lower than low-grade PGA (P < 0.001). Co-expression of αGlcNAc-glycosylated MUC6 and TFF2 in PGA suggests the existence of αGlcNAc/TFF2 form complex in PGA cells, a finding consistent with our observations in non-neoplastic Brunner's gland cells. The decreased αGlcNAc and TFF2 expression are associated with high grade atypical cells, indicative of the malignant potential of PGA.


Subject(s)
Adenoma , Biomarkers, Tumor , Humans , Glycosylation , Mucin-6/metabolism , Trefoil Factor-2/metabolism , Biomarkers, Tumor/metabolism , Duodenum/metabolism , Gastric Mucosa/metabolism , Adenoma/pathology
14.
Biomaterials ; 302: 122336, 2023 11.
Article in English | MEDLINE | ID: mdl-37778055

ABSTRACT

Duodenal ablation improves glycaemic control and weight loss, so it has been applied using hydrothermal catheters in obese and type 2 diabetes patients, indicating similar mechanisms and therapeutic effects as bariatric surgeries. Endoscopic photodynamic therapy is an innovative procedure that easily accessible to endocrine or gastrointestinal organs, so it is critical for the sprayed photosensitizer (PS) to long-term interact with target tissues for enhancing its effects. Surfactant-like PS was more stable in a wide range of pH and 2.8-fold more retained in the duodenum at 1 h than hydrophilic PS due to its amphiphilic property. Endoscopic duodenal ablation using surfactant-like PS was performed in high fat diet induced rat models, demonstrating body weight loss, enhanced insulin sensitivity, and modulation of incretin hormones. Locoregional ablation of duodenum could affect the profiles of overall intestinal cells secreting meal-stimulated hormones and further the systemic glucose and lipid metabolism, regarding gut-brain axis. Our strategy suggests a potential for a treatment of minimally invasive bariatric and metabolic therapy if accompanied by detailed clinical trials.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Animals , Rats , Diabetes Mellitus, Type 2/metabolism , Incretins , Photosensitizing Agents/therapeutic use , Surface-Active Agents , Obesity/surgery , Duodenum/surgery , Duodenum/metabolism , Blood Glucose/metabolism
15.
Dev Biol ; 504: 113-119, 2023 12.
Article in English | MEDLINE | ID: mdl-37739117

ABSTRACT

Beclin1 (Becn1) is a multifunctional protein involved in autophagy regulation, membrane trafficking, and tumor suppression. In this study, we examined the roles of Becn1 in the pancreas development by generating mice with conditional deletion of Becn1 in the pancreas using pancreatic transcriptional factor 1a (Ptf1a)-Cre mice (Becn1f/f; Ptf1aCre/+). Surprisingly, loss of Becn1 in the pancreas resulted in severe pancreatic developmental defects, leading to insufficient exocrine and endocrine pancreatic function. Approximately half of Becn1f/f; Ptf1aCre/+ mice died immediately after birth. However, duodenum and neural tissue development were almost normal, indicating that pancreatic insufficiency was the cause of death. These findings demonstrated a novel role for Becn1 in pancreas morphogenesis, differentiation, and growth, and suggested that loss of this factor leaded to pancreatic agenesis at birth.


Subject(s)
Gene Expression Regulation, Developmental , Pancreas , Animals , Mice , Beclin-1/genetics , Beclin-1/metabolism , Duodenum/metabolism , Pancreas/metabolism , Transcription Factors/metabolism
16.
Eur J Pharm Biopharm ; 191: 68-77, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37625656

ABSTRACT

Characterising the small intestine absorptive membrane is essential to enable prediction of the systemic exposure of oral formulations. In particular, the ontogeny of key intestinal Drug Metabolising Enzymes and Transporter (DMET) proteins involved in drug disposition needs to be elucidated to allow for accurate prediction of the PK profile of drugs in the paediatric cohort. Using pinch biopsies from the paediatric duodenum (n = 36; aged 11 months to 15 years), the abundance of 21 DMET proteins and two enterocyte markers were quantified via LC-MS/MS. An established LCMS nanoflow method was translated to enable analysis on a microflow LC system, and a new stable-isotope-labelled QconCAT standard developed to enable quantification of these proteins. Villin-1 was used to standardise abundancy values. The observed abundancies and ontogeny profiles, agreed with adult LC-MS/MS-based data, and historic paediatric data obtained via western blotting. A linear trend with age was observed for duodenal CYP3A4 and CES2 only. As this work quantified peptides on a pinch biopsy coupled with a microflow method, future studies using a wider population range are very feasible. Furthermore, this DMET ontogeny data can be used to inform paediatric PBPK modelling and to enhance the understanding of oral drug absorption and gut bioavailability in paediatric populations.


Subject(s)
Proteomics , Tandem Mass Spectrometry , Adult , Humans , Child , Chromatography, Liquid/methods , Proteomics/methods , Tandem Mass Spectrometry/methods , Membrane Transport Proteins/metabolism , Duodenum/metabolism
17.
Cells ; 12(14)2023 07 18.
Article in English | MEDLINE | ID: mdl-37508551

ABSTRACT

Based on indirect evidence, increased mucosal translocation of gut-derived microbial macromolecules has been proposed as an important pathomechanism in HIV infection. Here, we quantified macromolecule translocation across intestinal mucosa from treatment-naive HIV-infected patients, HIV-infected patients treated by combination antiretroviral therapy, and HIV-negative controls and analyzed the translocation pathways involved. Macromolecule permeability was quantified by FITC-Dextran 4000 (FD4) and horseradish peroxidase (HRP) flux measurements. Translocation pathways were addressed using cold inhibition experiments. Tight junction proteins were characterized by immunoblotting. Epithelial apoptosis was quantified and translocation pathways were further characterized by flux studies in T84 cell monolayers using inducers and inhibitors of apoptosis and endocytosis. In duodenal mucosa of untreated but not treated HIV-infected patients, FD4 and HRP permeabilities were more than a 4-fold increase compared to the HIV-negative controls. Duodenal macromolecule permeability was partially temperature-dependent and associated with epithelial apoptosis without altered expression of the analyzed tight junction proteins. In T84 monolayers, apoptosis induction increased, and both apoptosis and endocytosis inhibitors reduced macromolecule permeability. Using quantitative analysis, we demonstrate the increased macromolecule permeability of the intestinal mucosa in untreated HIV-infected patients. Combining structural and mechanistic studies, we identified two pathways of increased macromolecule translocation in HIV infection: transcytosis and passage through apoptotic leaks.


Subject(s)
HIV Infections , Humans , HIV Infections/metabolism , Intestinal Mucosa/metabolism , Tight Junction Proteins/metabolism , Duodenum/metabolism , Transcytosis
18.
J Agric Food Chem ; 71(31): 12080-12093, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37507341

ABSTRACT

The structure and properties of resistant starch (RS) and its digestive products were assessed in mice. Digestion of recrystallized (group RS3, including RS3a and RS3b) and control RS (RS2, RS4, and RS5) in the stomach, duodenum, and ileum of mice was systematically analyzed along with in vivo digestive degradation of RS3. RS3a and RS3b significantly reduced the release of blood glucose. During in vivo digestion, the proportion of ultrashort and A chains in the RS3a and RS3b digestive residues gradually increased, whereas the proportion of B1 and B2 chains gradually reduced. B3+ chain proportions did not change. The final digestive residues in the ileum (RS3a-I90 and RS3b-I90) maintained a high proportion of suitable chain length, accounting for more than 60%. The crystalline structure of RS3a-I90 was weakened, indicating the hydrolysis of partial crystal structure. In comparison, RS3b-I90 maintained an orderly crystalline structure, indicating its higher resistance to enzymatic hydrolysis. In vivo experiments showed that RS could maintain the normal growth of mice and effectively control weight gain. RS3a significantly increased the concentrations of acetic, propionic, and butyric acids, while reducing the abundance of Firmicutes to Bacteroidetes ratio, further confirming the benefits of RS3 in gastrointestinal health.


Subject(s)
Gastrointestinal Microbiome , Resistant Starch , Blood Glucose , Digestion , Duodenum/metabolism , Ileum/metabolism , Starch/chemistry , Stomach , Animals , Mice
19.
Environ Toxicol ; 38(11): 2595-2607, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37466184

ABSTRACT

BACKGROUND: Exosomes are applied as biomarkers in several diseases according to their disease-specific profiles. However, the exosomes effects in functional dyspepsia (FD) are still fragmentary. Here we examined the role of Eosinophil and mast cell derived-exosomes in FD progression. METHODS: Fifty FD subjects and age- and sex-matched healthy controls were included in this retrospective cohort study. Duodenal mucosa and gastric juice were collected to analyze molecular difference. Eosinophil and mast cell were evaluated by immunofluorescence and microarray was subjected to examine the expression levels of NEAT1, miR-211-5p, and glial cell line-derived neurotrophic factor (GDNF), which were subsequently were tested by quantitative reverse transcription PCR (RT-qPCR) validation cohorts. CCK-8 assays, and wound healing assays were used to evaluate integrity of intestinal mucosal barrier in vitro. Rats' weights and gastric emptying rates were used as evaluation of FD severity in vivo. RESULTS: Eosinophil and mast cell were enriched and secreted more exosomes in duodenal mucosa of FD patients. We identified differential lncRNAs that were consistently and significantly up regulated in FD cases. Of these, NEAT1 was further validated by RT-qPCR and had closely relationship with GDNF. MiR-211-5p level was found to be reduced in FD and negatively related with NEAT1 and GDNF. Furthermore, NEAT1and GDNF relived FD while miR-211-5p made symptoms worse. The NEAT1/miR-211-5p/GDNF axis had a good predictive ability for FD. CONCLUSIONS: The NEAT1/miR-211-5p/GDNF could be a potential FD biomarker.


Subject(s)
Exosomes , MicroRNAs , RNA, Long Noncoding , Humans , Rats , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Retrospective Studies , Glial Cell Line-Derived Neurotrophic Factor/genetics , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Eosinophils , Mast Cells/metabolism , Exosomes/genetics , Duodenum/metabolism , Intestinal Mucosa/metabolism , RNA, Long Noncoding/metabolism
20.
J Comp Pathol ; 204: 23-29, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37329660

ABSTRACT

Differentiating between canine inflammatory bowel disease (IBD) and intestinal T-cell lymphoma by histopathological examination of endoscopically-derived intestinal biopsies can be challenging and involves an invasive procedure requiring specialized equipment and training. A rapid, non-invasive method of diagnosis, such as blood or faecal analysis for a conserved and stable biomarker, would be a useful adjunct or replacement. Studies on dogs and humans with various types of lymphoma have shown altered microRNA (miRNA) expression patterns in blood, faeces and tissues indicating their potential use as biomarkers of disease. The present study used residual archived endoscopically-derived, formalin-fixed, paraffin-embedded (FFPE) duodenal tissue taken from pet dogs undergoing routine investigation of gastrointestinal disease. The dogs had previously been diagnosed with either normal/minimal intestinal inflammation, severe IBD or intestinal T-cell lymphoma. Next generation sequencing with qPCR validation was used to elucidate differentially expressed miRNAs between groups. Our results show that miRNA can be extracted from archived endoscopically-derived FFPE tissues from the canine duodenum and used to differentiate normal/minimally inflamed canine duodenal tissue from severe lymphoplasmacytic IBD and T-cell lymphoma.


Subject(s)
Dog Diseases , Inflammatory Bowel Diseases , Lymphoma, T-Cell , MicroRNAs , Humans , Dogs , Animals , Intestines/pathology , Inflammatory Bowel Diseases/veterinary , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/metabolism , Duodenum/metabolism , Duodenum/pathology , Lymphoma, T-Cell/veterinary , Biomarkers/metabolism , MicroRNAs/metabolism , Dog Diseases/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...