Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 240
Filter
Add more filters











Publication year range
2.
EMBO J ; 43(16): 3327-3357, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38907032

ABSTRACT

Dynamin 1 mediates fission of endocytic synaptic vesicles in the brain and has two major splice variants, Dyn1xA and Dyn1xB, which are nearly identical apart from the extended C-terminal region of Dyn1xA. Despite a similar set of binding partners, only Dyn1xA is enriched at endocytic zones and accelerates vesicle fission during ultrafast endocytosis. Here, we report that Dyn1xA achieves this localization by preferentially binding to Endophilin A1 through a newly defined binding site within its long C-terminal tail extension. Endophilin A1 binds this site at higher affinity than the previously reported site, and the affinity is determined by amino acids within the Dyn1xA tail but outside the binding site. This interaction is regulated by the phosphorylation state of two serine residues specific to the Dyn1xA variant. Dyn1xA and Endophilin A1 colocalize in patches near the active zone, and mutations disrupting Endophilin A binding to the long tail cause Dyn1xA mislocalization and stalled endocytic pits on the plasma membrane during ultrafast endocytosis. Together, these data suggest that the specificity for ultrafast endocytosis is defined by the phosphorylation-regulated interaction of Endophilin A1 with the C-terminal extension of Dyn1xA.


Subject(s)
Dynamin I , Endocytosis , Protein Binding , Animals , Dynamin I/metabolism , Dynamin I/genetics , Phosphorylation , Mice , Binding Sites , Humans , Acyltransferases , Adaptor Proteins, Signal Transducing
3.
Nat Commun ; 15(1): 4060, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744819

ABSTRACT

Endocytosis requires a coordinated framework of molecular interactions that ultimately lead to the fission of nascent endocytic structures. How cytosolic proteins such as dynamin concentrate at discrete sites that are sparsely distributed across the plasma membrane remains poorly understood. Two dynamin-1 major splice variants differ by the length of their C-terminal proline-rich region (short-tail and long-tail). Using sptPALM in PC12 cells, neurons and MEF cells, we demonstrate that short-tail dynamin-1 isoforms ab and bb display an activity-dependent recruitment to the membrane, promptly followed by their concentration into nanoclusters. These nanoclusters are sensitive to both Calcineurin and dynamin GTPase inhibitors, and are larger, denser, and more numerous than that of long-tail isoform aa. Spatiotemporal modelling confirms that dynamin-1 isoforms perform distinct search patterns and undergo dimensional reduction to generate endocytic nanoclusters, with short-tail isoforms more robustly exploiting lateral trapping in the generation of nanoclusters compared to the long-tail isoform.


Subject(s)
Dynamin I , Endocytosis , Protein Isoforms , Animals , Dynamin I/metabolism , Dynamin I/genetics , Protein Isoforms/metabolism , Protein Isoforms/genetics , PC12 Cells , Rats , Neurons/metabolism , Mice , Cell Membrane/metabolism , Calcineurin/metabolism
4.
Brain Res ; 1838: 148987, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38718851

ABSTRACT

Dynamin is a microtubule (MT) binding protein playing a key role in vesicle endocytosis. In a brain slice model, tau loaded in presynaptic terminals assembles MTs, thereby impairing vesicle endocytosis via depletion of cytosolic dynamin. The peptide PHDP5, derived from the pleckstrin homology domain of dynamin 1, inhibits dynamin-MT interaction and rescues endocytosis and synaptic transmission impaired by tau when co-loaded in presynaptic terminals. We tested whether in vivo administration of PHDP5 could rescue the learning/memory deficits observed in Alzheimer's disease (AD) model mice. A modified PHDP5 incorporating a cell-penetrating peptide (CPP) and a FITC fluorescent marker was delivered intranasally to Tau609 transgenic (Tg) and 3xTg-AD mice. FITC-positive puncta were observed in the hippocampus of mice infused with PHDP5 or scrambled (SPHDP5) peptide, but not in saline-infused controls. In the Morris water maze (MWM) test for spatial learning/memory, AD model mice treated with FITC-PHDP5-CPP showed prominent improvements in learning and memory, performing close to the level of saline-infused WT mice control. In contrast, mice treated with a scrambled construct (FITC-SPHDP5-CPP) showed no significant improvement. We conclude that PHDP5 can be a candidate for human AD therapy.


Subject(s)
Alzheimer Disease , Memory Disorders , Spatial Learning , Animals , Male , Mice , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Disease Models, Animal , Hippocampus/metabolism , Hippocampus/drug effects , Maze Learning/drug effects , Maze Learning/physiology , Memory Disorders/drug therapy , Memory Disorders/metabolism , Mice, Transgenic , Microtubules/metabolism , Microtubules/drug effects , Spatial Learning/drug effects , tau Proteins/metabolism , Dynamin I/metabolism
5.
J Neurosci ; 44(25)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38641407

ABSTRACT

Vertebrate vision begins with light absorption by rod and cone photoreceptors, which transmit signals from their synaptic terminals to second-order neurons: bipolar and horizontal cells. In mouse rods, there is a single presynaptic ribbon-type active zone at which the release of glutamate occurs tonically in the dark. This tonic glutamatergic signaling requires continuous exo- and endocytosis of synaptic vesicles. At conventional synapses, endocytosis commonly requires dynamins: GTPases encoded by three genes (Dnm1-3), which perform membrane scission. Disrupting endocytosis by dynamin deletions impairs transmission at conventional synapses, but the impact of disrupting endocytosis and the role(s) of specific dynamin isoforms at rod ribbon synapses are understood incompletely. Here, we used cell-specific knock-outs (KOs) of the neuron-specific Dnm1 and Dnm3 to investigate the functional roles of dynamin isoforms in rod photoreceptors in mice of either sex. Analysis of synaptic protein expression, synapse ultrastructure, and retinal function via electroretinograms (ERGs) showed that dynamins 1 and 3 act redundantly and are essential for supporting the structural and functional integrity of rod ribbon synapses. Single Dnm3 KO showed no phenotype, and single Dnm1 KO only modestly reduced synaptic vesicle density without affecting vesicle size and overall synapse integrity, whereas double Dnm1/Dnm3 KO impaired vesicle endocytosis profoundly, causing enlarged vesicles, reduced vesicle density, reduced ERG responses, synaptic terminal degeneration, and disassembly and degeneration of postsynaptic processes. Concurrently, cone function remained intact. These results show the fundamental redundancy of dynamins 1 and 3 in regulating the structure and function of rod ribbon synapses.


Subject(s)
Dynamin III , Dynamin I , Electroretinography , Mice, Knockout , Retinal Rod Photoreceptor Cells , Synapses , Animals , Retinal Rod Photoreceptor Cells/physiology , Retinal Rod Photoreceptor Cells/metabolism , Retinal Rod Photoreceptor Cells/ultrastructure , Mice , Synapses/physiology , Synapses/metabolism , Synapses/ultrastructure , Male , Female , Dynamin I/metabolism , Dynamin I/genetics , Dynamin III/genetics , Dynamin III/metabolism , Mice, Inbred C57BL
6.
Proc Natl Acad Sci U S A ; 120(11): e2215250120, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36888655

ABSTRACT

Classical dynamins are best understood for their ability to generate vesicles by membrane fission. During clathrin-mediated endocytosis (CME), dynamin is recruited to the membrane through multivalent protein and lipid interactions between its proline-rich domain (PRD) with SRC Homology 3 (SH3) domains in endocytic proteins and its pleckstrin-homology domain (PHD) with membrane lipids. Variable loops (VL) in the PHD bind lipids and partially insert into the membrane thereby anchoring the PHD to the membrane. Recent molecular dynamics (MD) simulations reveal a novel VL4 that interacts with the membrane. Importantly, a missense mutation that reduces VL4 hydrophobicity is linked to an autosomal dominant form of Charcot-Marie-Tooth (CMT) neuropathy. We analyzed the orientation and function of the VL4 to mechanistically link data from simulations with the CMT neuropathy. Structural modeling of PHDs in the cryo-electron microscopy (cryo-EM) cryoEM map of the membrane-bound dynamin polymer confirms VL4 as a membrane-interacting loop. In assays that rely solely on lipid-based membrane recruitment, VL4 mutants with reduced hydrophobicity showed an acute membrane curvature-dependent binding and a catalytic defect in fission. Remarkably, in assays that mimic a physiological multivalent lipid- and protein-based recruitment, VL4 mutants were completely defective in fission across a range of membrane curvatures. Importantly, expression of these mutants in cells inhibited CME, consistent with the autosomal dominant phenotype associated with the CMT neuropathy. Together, our results emphasize the significance of finely tuned lipid and protein interactions for efficient dynamin function.


Subject(s)
Blood Proteins , Dynamins , Cryoelectron Microscopy , Dynamins/metabolism , Endocytosis/physiology , Lipids , Dynamin I/metabolism
7.
Eur J Med Chem ; 247: 115001, 2023 Feb 05.
Article in English | MEDLINE | ID: mdl-36577213

ABSTRACT

Wiskostatin (1-(3,6-dibromo-9H-carbazol-9-yl)-3-(dimethylamino)propan-2-ol) (1) is a carbazole-based compound reported as a specific and relatively potent inhibitor of the N-WASP actin remodelling complex (S-isomer EC50 = 4.35 µM; R-isomer EC50 = 3.44 µM). An NMR solution structure showed that wiskostatin interacts with a cleft in the regulatory GTPase binding domain of N-WASP. However, numerous studies have reported wiskostatin's actions on membrane transport and cytokinesis that are independent of the N-WASP-Arp2/3 complex pathway, but offer limited alternative explanation. The large GTPase, dynamin has established functional roles in these pathways. This study reveals that wiskostatin and its analogues, as well as other carbazole-based compounds, are inhibitors of helical dynamin GTPase activity and endocytosis. We characterise the effects of wiskostatin on in vitro dynamin GTPase activity, in-cell endocytosis, and determine the importance of wiskostatin functional groups on these activities through design and synthesis of libraries of wiskostatin analogues. We also examine whether other carbazole-based scaffolds frequently used in research or the clinic also modulate dynamin and endocytosis. Understanding off-targets for compounds used as research tools is important to be able to confidently interpret their action on biological systems, particularly when the target and off-targets affect overlapping mechanisms (e.g. cytokinesis and endocytosis). Herein we demonstrate that wiskostatin is a dynamin inhibitor (IC50 20.7 ± 1.2 µM) and a potent inhibitor of clathrin mediated endocytosis (IC50 = 6.9 ± 0.3 µM). Synthesis of wiskostatin analogues gave rise to 1-(9H-carbazol-9-yl)-3-((4-methylbenzyl)amino)propan-2-ol (35) and 1-(9H-carbazol-9-yl)-3-((4-chlorobenzyl)amino)propan-2-ol (43) as potent dynamin inhibitors (IC50 = 1.0 ± 0.2 µM), and (S)-1-(3,6-dibromo-9H-carbazol-9-yl)-3-(dimethylamino)propan-2-ol (8a) and (R)-1-(3,6-dibromo-9H-carbazol-9-yl)-3-(dimethylamino)propan-2-ol (8b) that are amongst the most potent inhibitors of clathrin mediated endocytosis yet reported (IC50 = 2.3 ± 3.3 and 2.1 ± 1.7 µM, respectively).


Subject(s)
Dynamin I , Dynamins , Dynamin I/chemistry , Dynamin I/metabolism , Dynamins/pharmacology , Carbazoles/pharmacology , GTP Phosphohydrolases , Actins , Clathrin/metabolism , Clathrin/pharmacology , Endocytosis
8.
Neuron ; 110(17): 2815-2835.e13, 2022 09 07.
Article in English | MEDLINE | ID: mdl-35809574

ABSTRACT

Dynamin mediates fission of vesicles from the plasma membrane during endocytosis. Typically, dynamin is recruited from the cytosol to endocytic sites, requiring seconds to tens of seconds. However, ultrafast endocytosis in neurons internalizes vesicles as quickly as 50 ms during synaptic vesicle recycling. Here, we demonstrate that Dynamin 1 is pre-recruited to endocytic sites for ultrafast endocytosis. Specifically, Dynamin 1xA, a splice variant of Dynamin 1, interacts with Syndapin 1 to form molecular condensates on the plasma membrane. Single-particle tracking of Dynamin 1xA molecules confirms the liquid-like property of condensates in vivo. When Dynamin 1xA is mutated to disrupt its interaction with Syndapin 1, the condensates do not form, and consequently, ultrafast endocytosis slows down by 100-fold. Mechanistically, Syndapin 1 acts as an adaptor by binding the plasma membrane and stores Dynamin 1xA at endocytic sites. This cache bypasses the recruitment step and accelerates endocytosis at synapses.


Subject(s)
Dynamin I , Synaptic Vesicles , Dynamin I/genetics , Dynamin I/metabolism , Dynamins/metabolism , Endocytosis/physiology , Nerve Tissue Proteins/metabolism , Synaptic Vesicles/metabolism
9.
Elife ; 112022 04 26.
Article in English | MEDLINE | ID: mdl-35471147

ABSTRACT

Elevation of soluble wild-type (WT) tau occurs in synaptic compartments in Alzheimer's disease. We addressed whether tau elevation affects synaptic transmission at the calyx of Held in slices from mice brainstem. Whole-cell loading of WT human tau (h-tau) in presynaptic terminals at 10-20 µM caused microtubule (MT) assembly and activity-dependent rundown of excitatory neurotransmission. Capacitance measurements revealed that the primary target of WT h-tau is vesicle endocytosis. Blocking MT assembly using nocodazole prevented tau-induced impairments of endocytosis and neurotransmission. Immunofluorescence imaging analyses revealed that MT assembly by WT h-tau loading was associated with an increased MT-bound fraction of the endocytic protein dynamin. A synthetic dodecapeptide corresponding to dynamin 1-pleckstrin-homology domain inhibited MT-dynamin interaction and rescued tau-induced impairments of endocytosis and neurotransmission. We conclude that elevation of presynaptic WT tau induces de novo assembly of MTs, thereby sequestering free dynamins. As a result, endocytosis and subsequent vesicle replenishment are impaired, causing activity-dependent rundown of neurotransmission.


Subject(s)
Alzheimer Disease , Synaptic Vesicles , Alzheimer Disease/metabolism , Animals , Dynamin I/genetics , Dynamin I/metabolism , Dynamins/metabolism , Endocytosis , Mice , Microtubules/metabolism , Synapses/metabolism , Synaptic Transmission , Synaptic Vesicles/metabolism
10.
Epilepsy Res ; 182: 106915, 2022 05.
Article in English | MEDLINE | ID: mdl-35390701

ABSTRACT

BACKGROUND AND PURPOSE: Epilepsy is a severe neurological and mental disorder, and not all patients adequately respond to the current treatments. Dynamin 1 plays a key role in synaptic endocytosis and the modulation of neurological function. MATERIAL AND METHODS: Cultured hippocampal neurons were used in the study. First, the viability of neurons was determined by the CCK-8 assay after culturing in magnesium-free medium, DMSO, dynasore (dynamin agonist), and PIP2 (dynamin antagonist). Then, the effect of dynasore on seizure activity was evaluated. Next, we tested the levels of phospho-dynamin 1/total dynamin 1 and dynamin 1 mRNA in the control group and four epilepsy groups. Moreover, the uptake of tetramethylrhodamine-dextran in the different groups was measured. RESULTS: Dephospho-dynamin 1 expression was significantly increased in hyperexcitable neurons, while there was no change in total dynamin 1 level. The level of dephospho-dynamin 1 in hyperexcitable neurons was reduced when cultured with dynasore but increased with PIP2 treatment. Activity-dependent bulk endocytosis (ADBE) was upregulated in hyperexcitable neurons. Along with a decrease in dephospho-dynamin 1 level, ADBE was also downregulated with dynasore treatment, while PIP2 did not affect ABDE. The close link between the dephosphorylation status of dynamin 1 and ADBE suggests that ADBE activation depends on dynamin 1 dephosphorylation. CONCLUSION: Dephospho-dynamin 1 triggers ADBE to meet the requirements of high-frequency discharges during epileptic seizures.


Subject(s)
Dynamin I , Epilepsy , Dynamin I/genetics , Dynamin I/metabolism , Dynamins/metabolism , Endocytosis/physiology , Epilepsy/metabolism , Hippocampus/metabolism , Humans , Neurons/metabolism , Seizures/metabolism
11.
Curr Pharm Biotechnol ; 23(13): 1612-1622, 2022.
Article in English | MEDLINE | ID: mdl-35331106

ABSTRACT

BACKGROUND: Atherosclerosis (AS) remains prevalent despite hyperlipidemia-lowering therapies. Although multiple functions of miR-199b-5p have been implicated in cancers, its role in endothelial apoptosis and AS remains unclear. This study aimed to examine the role of miR-199b-5p in mitochondrial dynamics and endothelial apoptosis. METHODS: Human umbilical vein endothelial cells (HUVECs) treated with oxidized low-density lipoprotein (ox-LDL) were subjected to other treatments, followed by a series analysis. We found that ox-LDL-treated HUVECs were associated with miR-199b-5p downregulation, increased reactive oxygen species level, reduced adenosine triphosphate (ATP) production, mitochondrial fission, and apoptosis, whereas enhanced miR-199b-5p expression or applied mitochondrial division inhibitor 1 (Mdivi-1) markedly reversed these changes. RESULTS: Mechanistically, A-kinase anchoring protein 1 (AKAP1) was confirmed as a downstream target of miR-199b-5p by dual-luciferase activity reporter assay. AKAP1 overexpression reversed the anti-apoptotic effects of miR-199b-5p through the enhanced interaction of AKAP1 and dynamin protein 1 (DRP1) in ox-LDL-treated HUVECs. Moreover, miR-199b-5p downregulation, AKAP1 upregulation, and excessive mitochondrial fission were verified in human coronary AS endothelial tissues. CONCLUSION: The miR-199b-5p-dependent regulation of AKAP1/DRP1 is required to inhibit hyperlipidemia- induced mitochondrial fission and endothelial injury and may be a promising therapeutic target for AS.


Subject(s)
Atherosclerosis , MicroRNAs , A Kinase Anchor Proteins/metabolism , A Kinase Anchor Proteins/pharmacology , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/pharmacology , Apoptosis , Atherosclerosis/metabolism , Dynamin I/metabolism , Dynamins/genetics , Dynamins/metabolism , Dynamins/pharmacology , Human Umbilical Vein Endothelial Cells , Humans , Lipoproteins, LDL/pharmacology , Luciferases/metabolism , Luciferases/pharmacology , MicroRNAs/genetics , MicroRNAs/metabolism , Mitochondrial Dynamics , Reactive Oxygen Species/metabolism
12.
Cell Calcium ; 103: 102564, 2022 05.
Article in English | MEDLINE | ID: mdl-35220002

ABSTRACT

Following calcium-triggered vesicle exocytosis, endocytosis regenerates vesicles to maintain exocytosis and thus synaptic transmission, which underlies neuronal circuit activities. Although most molecules involved in endocytosis have been identified, it remains rather poorly understood how endocytic machinery regulates vesicle size. Vesicle size, together with the transmitter concentration inside the vesicle, determines the amount of transmitter the vesicle can release, the quantal size, that may control the strength of synaptic transmission. Here, we report that, surprisingly, knockout of the GTPase dynamin 1, the most abundant brain dynamin isoform known to catalyze fission of the membrane pit's neck (the last step of endocytosis), not only significantly slowed endocytosis but also increased the synaptic vesicle diameter by as much as ∼40-64% at cultured hippocampal synapses. Furthermore, dynamin 1 knockout increased the size of membrane pits, the precursor for endocytic vesicle formation. These results suggest an important function of dynamin other than its well-known fission function - control of vesicle size at the pit formation stage.


Subject(s)
Dynamin I , Synapses , Dynamin I/genetics , Dynamin I/metabolism , Dynamins/metabolism , Endocytosis/physiology , Hippocampus/metabolism , Synapses/metabolism
13.
Inflammation ; 45(3): 1162-1173, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35064377

ABSTRACT

Neuropilin-1 (Nrp1) is highly expressed in macrophages and plays a critical role in acute and chronic inflammation-associated diseases, such as sepsis, type II diabetes, and metabolic syndrome. Therefore, it is of importance to understand the regulation of Nrp1. It is known that lipopolysaccharide (LPS) downregulates Nrp1 mRNA levels through the NF-κB signaling in macrophages. However, whether and how LPS regulates Nrp1 protein degradation remain unknown. Here, we show that LPS promotes Nrp1 protein decay through a lysosome-dependent manner. Liver kinase B1 (LKB1)-Rab7 does not mediate this process. However, the large GTPase dynamin-1 (Dyn1) but not Dyn2 is involved in LPS-accelerated Nrp1 degradation. Mechanistically, LPS activates Dyn1 by attenuating p-Dyn1 (Ser774) levels, implying increased Nrp1 endocytosis and consequent degradation. As a result, blocking Nrp1 degradation by Dyn1 siRNA attenuates LPS-induced inflammatory response. Collectively, our study shows that LPS promotes Nrp1 protein degradation via a Dyn1-dependent pathway, revealing a previously uncovered role of Dyn1 in LPS-promoted Nrp1 protein decay.


Subject(s)
Diabetes Mellitus, Type 2 , Neuropilin-1 , Dynamin I/metabolism , GTP Phosphohydrolases/metabolism , Humans , Lipopolysaccharides/metabolism , Lipopolysaccharides/pharmacology , Macrophages/metabolism , Proteolysis
14.
Oxid Med Cell Longev ; 2021: 8849131, 2021.
Article in English | MEDLINE | ID: mdl-34194609

ABSTRACT

METHODS: Subarachnoid hemorrhage (SAH) models of Sprague-Dawley rats were established with perforation method. T0901317 was injected intraperitoneally 1-hour post-SAH. GSK2033, an inhibitor of LXRs, and interferon regulatory factor (IRF-1) CRISPR activation were injected intracerebroventricularly to evaluate potential signaling pathway. The severity of SAH, neurobehavior test in both short- and long-term and apoptosis was measured with Western blot and immunofluorescence staining. RESULTS: Expression of LXR-α and IRF-1 increased and peaked at 24 h post-SAH, while LXR-ß remained unaffected in SAH+vehicle group compared with Sham group. Post-SAH T0901317 treatment attenuated neuronal impairments in both short- and long-term and decreased neuronal apoptosis, the expression of IRF-1, P53 upregulated modulator of apoptosis (PUMA), dynamin-1-like protein (Drp1), Bcl-2-associated X protein (Bax) and cleaved caspase-3, and increasing B-cell lymphoma 2 (Bcl-2) at 24 h from modeling. GSK2033 inhibited LXRs and reversed T0901317's neuroprotective effects. IRF-1 CRISPR activation upregulated the expression of IRF-1 and abolished the treatment effects of T0901317. CONCLUSION: T0901317 attenuated neuronal apoptosis via LXRs/IRF-1/PUMA/Drp1 pathway in SAH rats.


Subject(s)
Brain Injuries/genetics , Dynamin I/metabolism , Hydrocarbons, Fluorinated/therapeutic use , Liver X Receptors/metabolism , Subarachnoid Hemorrhage/drug therapy , Subarachnoid Hemorrhage/genetics , Sulfonamides/therapeutic use , Animals , Apoptosis , Humans , Hydrocarbons, Fluorinated/pharmacology , Male , Rats , Rats, Sprague-Dawley , Signal Transduction , Sulfonamides/pharmacology
15.
Mol Cell Endocrinol ; 535: 111398, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34274446

ABSTRACT

BACKGROUND: The mechanochemical enzyme dynamin mediates endocytosis and regulates neuroendocrine cell exocytosis. Enteroendocrine L cells co-secrete the anorectic gut hormones glucagon-like peptide 1 (GLP-1) and peptide YY (PYY) postprandially and is a potential therapeutic target for metabolic diseases. In the present study, we aimed to determine if dynamin is implicated in human L cell secretion. METHODS: Western blot was performed on the murine L cell line GLUTag. Static incubation of human colonic mucosae with activators and inhibitors of dynamin was carried out. GLP-1 and PYY contents of the secretion supernatants were assayed using ELISA. RESULTS AND CONCLUSION: s: Both dynamin I and II are expressed in GLUTag cells. The dynamin activator Ryngo 1-23 evoked significant GLP-1 and PYY release from human colonic mucosae while the dynamin inhibitor Dynole 3-42 significantly inhibited release triggered by known L cell secretagogues. Thus, the cell signaling regulator dynamin is able to bi-directionally regulate L cell hormone secretion in the human gut and may represent a novel target for gastrointestinal-targeted metabolic drug development.


Subject(s)
Dynamin II/metabolism , Dynamin I/metabolism , Enteroendocrine Cells/cytology , Glucagon-Like Peptide 1/metabolism , Intestinal Mucosa/cytology , Peptide YY/metabolism , Adult , Aged , Animals , Cells, Cultured , Culture Media/chemistry , Cyanoacrylates/pharmacology , Enteroendocrine Cells/drug effects , Enteroendocrine Cells/metabolism , Female , Humans , Indoles/pharmacology , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , L Cells , Male , Mice , Middle Aged , Tyrphostins/pharmacology
16.
Mol Biol Cell ; 32(14): 1306-1319, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33979205

ABSTRACT

The neuronal dynamin1 functions in the release of synaptic vesicles by orchestrating the process of GTPase-dependent membrane fission. Dynamin1 associates with the plasma membrane-localized phosphatidylinositol-4,5-bisphosphate (PIP2) through the centrally located pleckstrin homology domain (PHD). The PHD is dispensable as fission (in model membranes) can be managed, even when the PHD-PIP2 interaction is replaced by a generic polyhistidine- or polylysine-lipid interaction. However, the absence of the PHD renders a dramatic dampening of the rate of fission. These observations suggest that the PHD-PIP2-containing membrane interaction could have evolved to expedite fission to fulfill the requirement of rapid kinetics of synaptic vesicle recycling. Here, we use a suite of multiscale modeling approaches to explore PHD-membrane interactions. Our results reveal that 1) the binding of PHD to PIP2-containing membranes modulates the lipids toward fission-favoring conformations and softens the membrane, and 2) PHD associates with membrane in multiple orientations using variable loops as pivots. We identify a new loop (VL4), which acts as an auxiliary pivot and modulates the orientation flexibility of PHD on the membrane-a mechanism that we believe may be important for high-fidelity dynamin collar assembly. Together, these insights provide a molecular-level understanding of the catalytic role of PHD in dynamin-mediated membrane fission.


Subject(s)
Dynamin I/metabolism , Pleckstrin Homology Domains/physiology , Blood Proteins/metabolism , Blood Proteins/physiology , Catalysis , Cell Membrane/metabolism , Computational Biology/methods , Dynamin I/chemistry , Dynamin I/physiology , Dynamins/metabolism , Endocytosis/physiology , GTP Phosphohydrolases/metabolism , Guanosine Triphosphate/metabolism , Humans , Hydrolysis , Membranes/metabolism , Phosphatidylinositol 4,5-Diphosphate/metabolism , Phosphatidylinositols/metabolism , Phosphoproteins/metabolism , Phosphoproteins/physiology , Protein Multimerization , Protein Structure, Tertiary , Structure-Activity Relationship , Synaptic Vesicles/physiology
17.
Nat Commun ; 12(1): 2424, 2021 04 23.
Article in English | MEDLINE | ID: mdl-33893293

ABSTRACT

Endocytosis mediates the cellular uptake of micronutrients and cell surface proteins. Fast Endophilin-mediated endocytosis, FEME, is not constitutively active but triggered upon receptor activation. High levels of growth factors induce spontaneous FEME, which can be suppressed upon serum starvation. This suggested a role for protein kinases in this growth factor receptor-mediated regulation. Using chemical and genetic inhibition, we find that Cdk5 and GSK3ß are negative regulators of FEME. They antagonize the binding of Endophilin to Dynamin-1 and to CRMP4, a Plexin A1 adaptor. This control is required for proper axon elongation, branching and growth cone formation in hippocampal neurons. The kinases also block the recruitment of Dynein onto FEME carriers by Bin1. As GSK3ß binds to Endophilin, it imposes a local regulation of FEME. Thus, Cdk5 and GSK3ß are key regulators of FEME, licensing cells for rapid uptake by the pathway only when their activity is low.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Cyclin-Dependent Kinase 5/genetics , Endocytosis/genetics , Glycogen Synthase Kinase 3 beta/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cells, Cultured , Clathrin/metabolism , Cyclin-Dependent Kinase 5/metabolism , Dynamin I/genetics , Dynamin I/metabolism , Gene Expression Regulation , Glycogen Synthase Kinase 3 beta/metabolism , HEK293 Cells , HeLa Cells , Hippocampus/cytology , Hippocampus/metabolism , Humans , Mice, Inbred C57BL , Muscle Proteins/genetics , Muscle Proteins/metabolism , Neurons/metabolism , Protein Binding , RNA Interference
18.
Nat Chem Biol ; 17(5): 558-566, 2021 05.
Article in English | MEDLINE | ID: mdl-33649598

ABSTRACT

G-protein-coupled receptor-regulated cAMP production from endosomes can specify signaling to the nucleus by moving the source of cAMP without changing its overall amount. How this is possible remains unknown because cAMP gradients dissipate over the nanoscale, whereas endosomes typically localize micrometers from the nucleus. We show that the key location-dependent step for endosome-encoded transcriptional control is nuclear entry of cAMP-dependent protein kinase (PKA) catalytic subunits. These are sourced from punctate accumulations of PKA holoenzyme that are densely distributed in the cytoplasm and titrated by global cAMP into a discrete metastable state, in which catalytic subunits are bound but dynamically exchange. Mobile endosomes containing activated receptors collide with the metastable PKA puncta and pause in close contact. We propose that these properties enable cytoplasmic PKA to act collectively like a semiconductor, converting nanoscale cAMP gradients generated from endosomes into microscale elevations of free catalytic subunits to direct downstream signaling.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclic AMP/metabolism , Cytoplasm/metabolism , Endosomes/metabolism , Receptors, Adrenergic, beta-2/metabolism , Signal Transduction/genetics , Animals , Catalytic Domain , Cell Nucleus/metabolism , Cell Nucleus/ultrastructure , Clathrin Heavy Chains/antagonists & inhibitors , Clathrin Heavy Chains/genetics , Clathrin Heavy Chains/metabolism , Cyclic AMP-Dependent Protein Kinases/genetics , Cytoplasm/ultrastructure , Dynamin I/genetics , Dynamin I/metabolism , Endosomes/ultrastructure , Gene Expression Regulation , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , Holoenzymes/genetics , Holoenzymes/metabolism , Humans , Luciferases/genetics , Luciferases/metabolism , Protein Binding , Protein Subunits/genetics , Protein Subunits/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Rats , Receptors, Adrenergic, beta-2/genetics
19.
eNeuro ; 8(2)2021.
Article in English | MEDLINE | ID: mdl-33372033

ABSTRACT

Developmental epileptic encephalopathies (DEEs) are severe seizure disorders that occur in infants and young children, characterized by developmental delay, cognitive decline, and early mortality. Recent efforts have identified a wide variety of genetic variants that cause DEEs. Among these, variants in the DNM1 gene have emerged as definitive causes of DEEs, including infantile spasms and Lennox-Gastaut syndrome. A mouse model of Dnm1-associated DEE, known as "Fitful" (Dnm1Ftfl ), recapitulates key features of the disease, including spontaneous seizures, early lethality, and neuronal degeneration. Previous work showed that DNM1 is a key regulator of synaptic vesicle (SV) endocytosis and synaptic transmission and suggested that inhibitory neurotransmission may be more reliant on DNM1 function than excitatory transmission. The Dnm1Ftfl variant is thought to encode a dominant negative DNM1 protein; however, the effects of the Dnm1Ftfl variant on synaptic transmission are largely unknown. To understand these synaptic effects, we recorded from pairs of cultured mouse cortical neurons and characterized all four major connection types [excitation of excitation (E-E), inhibition of inhibition (I-I), E-I, I-E]. Miniature and spontaneous EPSCs and IPSCs were larger, but less frequent, at all Dnm1Ftfl synaptic types, and Dnm1Ftfl neurons had reduced expression of excitatory and inhibitory SV markers. Baseline evoked transmission, however, was reduced only at inhibitory synapses onto excitatory neurons, because of a smaller pool of releasable SVs. In addition to these synaptic alterations, Dnm1Ftfl neurons degenerated later in development, although their activity levels were reduced, suggesting that Dnm1Ftfl may impair synaptic transmission and neuronal health through distinct mechanisms.


Subject(s)
Lennox Gastaut Syndrome , Spasms, Infantile , Animals , Disease Models, Animal , Dynamin I/genetics , Dynamin I/metabolism , Mice , Spasms, Infantile/genetics , Synaptic Transmission
20.
FASEB J ; 34(12): 16449-16463, 2020 12.
Article in English | MEDLINE | ID: mdl-33070431

ABSTRACT

Dynamin 1 is a neuronal endocytic protein that participates in vesicle formation by scission of invaginated membranes. Dynamin 1 is also expressed in the kidney; however, its physiological significance to this organ remains unknown. Here, we show that dynamin 1 is crucial for microtubule organization and stabilization in glomerular podocytes. By immunofluorescence and immunoelectron microscopy, dynamin 1 was concentrated at microtubules at primary processes in rat podocytes. By immunofluorescence of differentiated mouse podocytes (MPCs), dynamin 1 was often colocalized with microtubule bundles, which radially arranged toward periphery of expanded podocyte. In dynamin 1-depleted MPCs by RNAi, α-tubulin showed a dispersed linear filament-like localization, and microtubule bundles were rarely observed. Furthermore, dynamin 1 depletion resulted in the formation of discontinuous, short acetylated α-tubulin fragments, and the decrease of microtubule-rich protrusions. Dynamins 1 and 2 double-knockout podocytes showed dispersed acetylated α-tubulin and rare protrusions. In vitro, dynamin 1 polymerized around microtubules and cross-linked them into bundles, and increased their resistance to the disassembly-inducing reagents Ca2+ and podophyllotoxin. In addition, overexpression and depletion of dynamin 1 in MPCs increased and decreased the nocodazole resistance of microtubules, respectively. These results suggest that dynamin 1 supports the microtubule bundle formation and participates in the stabilization of microtubules.


Subject(s)
Dynamin I/metabolism , Kidney/metabolism , Microtubules/metabolism , Podocytes/metabolism , Animals , Cells, Cultured , Endocytosis/physiology , Epithelial Cells/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microtubule-Associated Proteins/metabolism , Rats , Tubulin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL