Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 165
Filter
1.
mBio ; 15(7): e0112824, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38904384

ABSTRACT

The injectisome encoded by Salmonella pathogenicity island 2 (SPI-2) had been thought to translocate 28 effectors. Here, we used a proteomic approach to characterize the secretome of a clinical strain of invasive non-typhoidal Salmonella enterica serovar Enteritidis that had been mutated to cause hyper-secretion of the SPI-2 injectisome effectors. Along with many known effectors, we discovered the novel SseM protein. sseM is widely distributed among the five subspecies of Salmonella enterica, is found in many clinically relevant serovars, and is co-transcribed with pipB2, a SPI-2 effector gene. The translocation of SseM required a functional SPI-2 injectisome. Following expression in human cells, SseM interacted with five components of the dystrophin-associated protein complex (DAPC), namely, ß-2-syntrophin, utrophin/dystrophin, α-catulin, α-dystrobrevin, and ß-dystrobrevin. The interaction between SseM and ß-2-syntrophin and α-dystrobrevin was verified in Salmonella Typhimurium-infected cells and relied on the postsynaptic density-95/discs large/zonula occludens-1 (PDZ) domain of ß-2-syntrophin and a sequence corresponding to a PDZ-binding motif (PBM) in SseM. A ΔsseM mutant strain had a small competitive advantage over the wild-type strain in the S. Typhimurium/mouse model of systemic disease. This phenotype was complemented by a plasmid expressing wild-type SseM from S. Typhimurium or S. Enteritidis and was dependent on the PBM of SseM. Therefore, a PBM within a Salmonella effector mediates interactions with the DAPC and modulates the systemic growth of bacteria in mice. Furthermore, the ΔsseM mutant strain displayed enhanced replication in bone marrow-derived macrophages, demonstrating that SseM restrains intracellular bacterial growth to modulate Salmonella virulence. IMPORTANCE: In Salmonella enterica, the injectisome machinery encoded by Salmonella pathogenicity island 2 (SPI-2) is conserved among the five subspecies and delivers proteins (effectors) into host cells, which are required for Salmonella virulence. The identification and functional characterization of SPI-2 injectisome effectors advance our understanding of the interplay between Salmonella and its host(s). Using an optimized method for preparing secreted proteins and a clinical isolate of the invasive non-typhoidal Salmonella enterica serovar Enteritidis strain D24359, we identified 22 known SPI-2 injectisome effectors and one new effector-SseM. SseM modulates bacterial growth during murine infection and has a sequence corresponding to a postsynaptic density-95/discs large/zonula occludens-1 (PDZ)-binding motif that is essential for interaction with the PDZ-containing host protein ß-2-syntrophin and other components of the dystrophin-associated protein complex (DAPC). To our knowledge, SseM is unique among Salmonella effectors in containing a functional PDZ-binding motif and is the first bacterial protein to target the DAPC.


Subject(s)
Bacterial Proteins , Salmonella enteritidis , Animals , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Humans , Mice , Virulence , Salmonella enteritidis/genetics , Salmonella enteritidis/metabolism , Salmonella enteritidis/pathogenicity , Virulence Factors/metabolism , Virulence Factors/genetics , Salmonella Infections/microbiology , Dystrophin-Associated Proteins/metabolism , Dystrophin-Associated Proteins/genetics , Genomic Islands , Salmonella typhimurium/genetics , Salmonella typhimurium/metabolism , Salmonella typhimurium/pathogenicity , Proteomics , Disease Models, Animal , Membrane Proteins/metabolism , Membrane Proteins/genetics
2.
Eur J Cell Biol ; 103(2): 151409, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38579603

ABSTRACT

Neuromuscular junctions transmit signals from the nervous system to skeletal muscles, triggering their contraction, and their proper organization is essential for breathing and voluntary movements. αDystrobrevin-1 is a cytoplasmic component of the dystrophin-glycoprotein complex and has pivotal functions in regulating the integrity of muscle fibers and neuromuscular junctions. Previous studies identified that αDystrobrevin-1 functions in the organization of the neuromuscular junction and that its phosphorylation in the C-terminus is required in this process. Our proteomic screen identified several putative αDystrobrevin-1 interactors recruited to the Y730 site in phosphorylated and unphosphorylated states. Amongst various actin-modulating proteins, we identified the Arp2/3 complex regulator cortactin. We showed that similarly to αDystrobrevin-1, cortactin is strongly enriched at the neuromuscular postsynaptic machinery and obtained results suggesting that these two proteins interact in cell homogenates and at the neuromuscular junctions. Analysis of synaptic morphology in cortactin knockout mice showed abnormalities in the slow-twitching soleus muscle and not in the fast-twitching tibialis anterior. However, muscle strength examination did not reveal apparent deficits in knockout animals.


Subject(s)
Cortactin , Dystrophin-Associated Proteins , Mice, Knockout , Neuromuscular Junction , Animals , Neuromuscular Junction/metabolism , Cortactin/metabolism , Cortactin/genetics , Mice , Dystrophin-Associated Proteins/metabolism , Dystrophin-Associated Proteins/genetics , Muscle, Skeletal/metabolism , Humans , Phosphorylation
3.
Hum Mol Genet ; 33(13): 1107-1119, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38507070

ABSTRACT

The dystrophin-glycoprotein complex (DGC) plays a crucial role in maintaining the structural integrity of the plasma membrane and the neuromuscular junction. In this study, we investigated the impact of the deficiency of α-dystrobrevin (αdbn), a component of the DGC, on the homeostasis of intracellular organelles, specifically mitochondria and the sarcoplasmic reticulum (SR). In αdbn deficient muscles, we observed a significant increase in the membrane-bound ATP synthase complex levels, a marker for mitochondria in oxidative muscle fiber types compared to wild-type. Furthermore, examination of muscle fibers deficient in αdbn using electron microscopy revealed profound alterations in the organization of mitochondria and the SR within certain myofibrils of muscle fibers. This included the formation of hyper-branched intermyofibrillar mitochondria with extended connections, an extensive network spanning several myofibrils, and a substantial increase in the number/density of subsarcolemmal mitochondria. Concurrently, in some cases, we observed significant structural alterations in mitochondria, such as cristae loss, fragmentation, swelling, and the formation of vacuoles and inclusions within the mitochondrial matrix cristae. Muscles deficient in αdbn also displayed notable alterations in the morphology of the SR, along with the formation of distinct anomalous concentric SR structures known as whorls. These whorls were prevalent in αdbn-deficient mice but were absent in wild-type muscles. These results suggest a crucial role of the DGC αdbn in regulating intracellular organelles, particularly mitochondria and the SR, within muscle cells. The remodeling of the SR and the formation of whorls may represent a novel mechanism of the unfolded protein response (UPR) in muscle cells.


Subject(s)
Dystrophin-Associated Proteins , Dystrophin , Mitochondria , Sarcoplasmic Reticulum , Animals , Mice , Dystrophin/genetics , Dystrophin/metabolism , Dystrophin/deficiency , Dystrophin-Associated Proteins/genetics , Dystrophin-Associated Proteins/metabolism , Glycoproteins/metabolism , Glycoproteins/genetics , Glycoproteins/deficiency , Mice, Knockout , Mitochondria/metabolism , Mitochondria/ultrastructure , Mitochondria/genetics , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/ultrastructure , Muscle, Skeletal/metabolism , Muscle, Skeletal/ultrastructure , Myofibrils/metabolism , Myofibrils/ultrastructure , Sarcoplasmic Reticulum/metabolism , Sarcoplasmic Reticulum/ultrastructure
4.
Acta Neuropathol ; 145(4): 479-496, 2023 04.
Article in English | MEDLINE | ID: mdl-36799992

ABSTRACT

DTNA encodes α-dystrobrevin, a component of the macromolecular dystrophin-glycoprotein complex (DGC) that binds to dystrophin/utrophin and α-syntrophin. Mice lacking α-dystrobrevin have a muscular dystrophy phenotype, but variants in DTNA have not previously been associated with human skeletal muscle disease. We present 12 individuals from four unrelated families with two different monoallelic DTNA variants affecting the coiled-coil domain of α-dystrobrevin. The five affected individuals from family A harbor a c.1585G > A; p.Glu529Lys variant, while the recurrent c.1567_1587del; p.Gln523_Glu529del DTNA variant was identified in the other three families (family B: four affected individuals, family C: one affected individual, and family D: two affected individuals). Myalgia and exercise intolerance, with variable ages of onset, were reported in 10 of 12 affected individuals. Proximal lower limb weakness with onset in the first decade of life was noted in three individuals. Persistent elevations of serum creatine kinase (CK) levels were detected in 11 of 12 affected individuals, 1 of whom had an episode of rhabdomyolysis at 20 years of age. Autism spectrum disorder or learning disabilities were reported in four individuals with the c.1567_1587 deletion. Muscle biopsies in eight affected individuals showed mixed myopathic and dystrophic findings, characterized by fiber size variability, internalized nuclei, and slightly increased extracellular connective tissue and inflammation. Immunofluorescence analysis of biopsies from five affected individuals showed reduced α-dystrobrevin immunoreactivity and variably reduced immunoreactivity of other DGC proteins: dystrophin, α, ß, δ and γ-sarcoglycans, and α and ß-dystroglycans. The DTNA deletion disrupted an interaction between α-dystrobrevin and syntrophin. Specific variants in the coiled-coil domain of DTNA cause skeletal muscle disease with variable penetrance. Affected individuals show a spectrum of clinical manifestations, with severity ranging from hyperCKemia, myalgias, and exercise intolerance to childhood-onset proximal muscle weakness. Our findings expand the molecular etiologies of both muscular dystrophy and paucisymptomatic hyperCKemia, to now include monoallelic DTNA variants as a novel cause of skeletal muscle disease in humans.


Subject(s)
Autism Spectrum Disorder , Muscular Dystrophies , Neuropeptides , Mice , Humans , Animals , Child , Dystrophin/genetics , Dystrophin/metabolism , Autism Spectrum Disorder/metabolism , Muscular Dystrophies/metabolism , Dystroglycans/metabolism , Alternative Splicing , Muscle, Skeletal/pathology , Neuropeptides/genetics , Neuropeptides/metabolism , Dystrophin-Associated Proteins/genetics , Dystrophin-Associated Proteins/metabolism
5.
Hum Mol Genet ; 31(14): 2370-2385, 2022 07 21.
Article in English | MEDLINE | ID: mdl-35157076

ABSTRACT

α-syntrophin (α-syn) and α-dystrobrevin (α-dbn), two components of the dystrophin-glycoprotein complex, are essential for the maturation and maintenance of the neuromuscular junction (NMJ) and mice deficient in either α-syn or α-dbn exhibit similar synaptic defects. However, the functional link between these two proteins and whether they exert distinct or redundant functions in the postsynaptic organization of the NMJ remain largely unknown. We generated and analyzed the synaptic phenotype of double heterozygote (α-dbn+/-, α-syn+/-), and double homozygote knockout (α-dbn-/-; α-syn-/-) mice and examined the ability of individual molecules to restore their defects in the synaptic phenotype. We showed that in double heterozygote mice, NMJs have normal synaptic phenotypes and no signs of muscular dystrophy. However, in double knockout mice (α-dbn-/-; α-syn-/-), the synaptic phenotype (the density, the turnover and the distribution of AChRs within synaptic branches) is more severely impaired than in single α-dbn-/- or α-syn-/- mutants. Furthermore, double mutant and single α-dbn-/- mutant mice showed more severe exercise-induced fatigue and more significant reductions in grip strength than single α-syn-/- mutant and wild-type. Finally, we showed that the overexpression of the transgene α-syn-GFP in muscles of double mutant restores primarily the abnormal extensions of membrane containing AChRs that extend beyond synaptic gutters and lack synaptic folds, whereas the overexpression of α-dbn essentially restores the abnormal dispersion of patchy AChR aggregates in the crests of synaptic folds. Altogether, these data suggest that α-syn and α-dbn act in parallel pathways and exert distinct functions on the postsynaptic structural organization of NMJs.


Subject(s)
Dystrophin , Receptors, Cholinergic , Animals , Calcium-Binding Proteins , Dystrophin/genetics , Dystrophin/metabolism , Dystrophin-Associated Proteins/genetics , Dystrophin-Associated Proteins/metabolism , Glycoproteins/metabolism , Membrane Proteins , Mice , Muscle Proteins/genetics , Muscle Proteins/metabolism , Muscle, Skeletal/metabolism , Receptors, Cholinergic/genetics , Receptors, Cholinergic/metabolism , Synapses/genetics , Synapses/metabolism
6.
Cell Mol Life Sci ; 79(2): 109, 2022 Jan 30.
Article in English | MEDLINE | ID: mdl-35098363

ABSTRACT

Duchenne muscular dystrophy (DMD), the most severe form of dystrophinopathies, is a fatal X-linked recessive neuromuscular disorder characterized by progressive muscle degeneration and various extents of intellectual disabilities. Physiological and pathological roles of the responsible gene, dystrophin, in the brain remain elusive due to the presence of multiple dystrophin products, mainly full-length dystrophin, Dp427, and the short product, Dp71. In this study, we generated a Dp71-specific hemagglutinin (HA) peptide tag-insertion mice to enable specific detection of intrinsic Dp71 expression by anti-HA-tag antibodies. Immunohistochemical detections in the transgenic mice demonstrated Dp71 expression not only at the blood-brain barrier, where astrocytic endfeet surround the microvessels, but also at the inhibitory postsynapse of hippocampal dentate granule neurons. Interestingly, hippocampal cornu ammonis (CA)1 pyramidal neurons were negative for Dp71, although Dp427 detected by anti-dystrophin antibody was clearly present at the inhibitory postsynapse, suggesting cell-type dependent dystrophin expressions. Precise examination using the primary hippocampal culture validated exclusive localization of Dp71 at the inhibitory postsynaptic compartment but not at the excitatory synapse in neurons. We further performed interactome analysis and found that Dp71 formed distinct molecular complexes, i.e. synapse-associated Dp71 interacted with dystroglycan (Dg) and dystrobrevinß (Dtnb), whereas glia-associated Dp71 did with Dg and dystrobrevinα (Dtna). Thus, our data indicate that Dp71 and its binding partners are relevant to the inhibitory postsynaptic function of hippocampal granule neurons and the novel Dp71-transgenic mouse provides a valuable tool to understand precise physiological expressions and functions of Dp71 and its interaction proteins in vivo and in vitro.


Subject(s)
Dystroglycans/metabolism , Dystrophin-Associated Proteins/metabolism , Dystrophin/metabolism , Neuroglia/metabolism , Neuropeptides/metabolism , Synapses/metabolism , Animals , Blood-Brain Barrier/metabolism , Cells, Cultured , Dystroglycans/genetics , Dystrophin/genetics , Dystrophin-Associated Proteins/genetics , HEK293 Cells , Hippocampus/cytology , Hippocampus/metabolism , Humans , Mice, Transgenic , Microscopy, Confocal , Neurons/metabolism , Neuropeptides/genetics , Protein Binding
7.
Int J Mol Sci ; 22(23)2021 Dec 02.
Article in English | MEDLINE | ID: mdl-34884867

ABSTRACT

Duchenne muscular dystrophy (DMD) is a lethal X-linked recessive disorder caused by mutations in the DMD gene and the subsequent lack of dystrophin protein. Recently, phosphorodiamidate morpholino oligomer (PMO)-antisense oligonucleotides (ASOs) targeting exon 51 or 53 to reestablish the DMD reading frame have received regulatory approval as commercially available drugs. However, their applicability and efficacy remain limited to particular patients. Large animal models and exon skipping evaluation are essential to facilitate ASO development together with a deeper understanding of dystrophinopathies. Using recombinant adeno-associated virus-mediated gene targeting and somatic cell nuclear transfer, we generated a Yucatan miniature pig model of DMD with an exon 52 deletion mutation equivalent to one of the most common mutations seen in patients. Exon 52-deleted mRNA expression and dystrophin deficiency were confirmed in the skeletal and cardiac muscles of DMD pigs. Accordingly, dystrophin-associated proteins failed to be recruited to the sarcolemma. The DMD pigs manifested early disease onset with severe bodywide skeletal muscle degeneration and with poor growth accompanied by a physical abnormality, but with no obvious cardiac phenotype. We also demonstrated that in primary DMD pig skeletal muscle cells, the genetically engineered exon-52 deleted pig DMD gene enables the evaluation of exon 51 or 53 skipping with PMO and its advanced technology, peptide-conjugated PMO. The results show that the DMD pigs developed here can be an appropriate large animal model for evaluating in vivo exon skipping efficacy.


Subject(s)
Dystrophin/genetics , Exons , Muscle, Skeletal/pathology , Muscular Dystrophy, Duchenne/genetics , Animals , Animals, Genetically Modified , Dependovirus/genetics , Disease Models, Animal , Dystrophin-Associated Proteins/genetics , Dystrophin-Associated Proteins/metabolism , Female , Gene Deletion , Male , Muscle Fibers, Skeletal/pathology , Nuclear Transfer Techniques , Oligonucleotides, Antisense/genetics , Sarcolemma/metabolism , Swine , Swine, Miniature
8.
Acta Neuropathol Commun ; 9(1): 171, 2021 10 21.
Article in English | MEDLINE | ID: mdl-34674769

ABSTRACT

The extracellular matrix (ECM) of the cerebral vasculature provides a pathway for the flow of interstitial fluid (ISF) and solutes out of the brain by intramural periarterial drainage (IPAD). Failure of IPAD leads to protein elimination failure arteriopathies such as cerebral amyloid angiopathy (CAA). The ECM consists of a complex network of glycoproteins and proteoglycans that form distinct basement membranes (BM) around different vascular cell types. Astrocyte endfeet that are localised against the walls of blood vessels are tethered to these BMs by dystrophin associated protein complex (DPC). Alpha-dystrobrevin (α-DB) is a key dystrophin associated protein within perivascular astrocyte endfeet; its deficiency leads to a reduction in other dystrophin associated proteins, loss of AQP4 and altered ECM. In human dementia cohorts there is a positive correlation between dystrobrevin gene expression and CAA. In the present study, we test the hypotheses that (a) the positive correlation between dystrobrevin gene expression and CAA is associated with elevated expression of α-DB at glial-vascular endfeet and (b) a deficiency in α-DB results in changes to the ECM and failure of IPAD. We used human post-mortem brain tissue with different severities of CAA and transgenic α-DB deficient mice. In human post-mortem tissue we observed a significant increase in vascular α-DB with CAA (CAA vrs. Old p < 0.005, CAA vrs. Young p < 0.005). In the mouse model of α-DB deficiency, there was early modifications to vascular ECM (collagen IV and BM thickening) that translated into reduced IPAD efficiency. Our findings highlight the important role of α-DB in maintaining structure and function of ECM, particularly as a pathway for the flow of ISF and solutes out of the brain by IPAD.


Subject(s)
Cerebral Amyloid Angiopathy/metabolism , Cerebral Amyloid Angiopathy/pathology , Dystrophin-Associated Proteins/metabolism , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Adult , Aged , Aged, 80 and over , Animals , Cerebrovascular Circulation/physiology , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged
9.
RNA ; 27(10): 1173-1185, 2021 10.
Article in English | MEDLINE | ID: mdl-34215685

ABSTRACT

RNA binding proteins (RBPs) take part in all steps of the RNA life cycle and are often essential for cell viability. Most RBPs have a modular organization and comprise a set of canonical RNA binding domains. However, in recent years a number of high-throughput mRNA interactome studies on yeast, mammalian cell lines, and whole organisms have uncovered a multitude of novel mRNA interacting proteins that lack classical RNA binding domains. Whereas a few have been confirmed to be direct and functionally relevant RNA binders, biochemical and functional validation of RNA binding of most others is lacking. In this study, we used a combination of NMR spectroscopy and biochemical studies to test the RNA binding properties of six putative RBPs. Half of the analyzed proteins showed no interaction, whereas the other half displayed weak chemical shift perturbations upon titration with RNA. One of the candidates we found to interact weakly with RNA in vitro is Drosophila melanogaster end binding protein 1 (EB1), a master regulator of microtubule plus-end dynamics. Further analysis showed that EB1's RNA binding occurs on the same surface as that with which EB1 interacts with microtubules. RNA immunoprecipitation and colocalization experiments suggest that EB1 is a rather nonspecific, opportunistic RNA binder. Our data suggest that care should be taken when embarking on an RNA binding study involving these unconventional, novel RBPs, and we recommend initial and simple in vitro RNA binding experiments.


Subject(s)
Drosophila Proteins/metabolism , Dystrophin-Associated Proteins/metabolism , Microtubule-Associated Proteins/metabolism , RNA-Binding Proteins/metabolism , RNA/metabolism , Thioredoxins/metabolism , Transcription Factors/metabolism , Tripartite Motif Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , Binding Sites , Cloning, Molecular , Drosophila Proteins/chemistry , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Dystrophin-Associated Proteins/chemistry , Dystrophin-Associated Proteins/genetics , Electrophoretic Mobility Shift Assay , Escherichia coli/genetics , Escherichia coli/metabolism , Female , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Microtubule-Associated Proteins/chemistry , Microtubule-Associated Proteins/genetics , Microtubules/metabolism , Microtubules/ultrastructure , Models, Molecular , Ovary/cytology , Ovary/metabolism , Poly U/chemistry , Poly U/genetics , Poly U/metabolism , Protein Binding , RNA/chemistry , RNA/genetics , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Thioredoxins/chemistry , Thioredoxins/genetics , Transcription Factors/chemistry , Transcription Factors/genetics , Tripartite Motif Proteins/chemistry , Tripartite Motif Proteins/genetics , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/genetics
10.
J Biol Chem ; 296: 100516, 2021.
Article in English | MEDLINE | ID: mdl-33676892

ABSTRACT

Cells can switch between Rac1 (lamellipodia-based) and RhoA (blebbing-based) migration modes, but the molecular mechanisms regulating this shift are not fully understood. Diacylglycerol kinase ζ (DGKζ), which phosphorylates diacylglycerol to yield phosphatidic acid, forms independent complexes with Rac1 and RhoA, selectively dissociating each from their common inhibitor RhoGDI. DGKζ catalytic activity is required for Rac1 dissociation but is dispensable for RhoA dissociation; instead, DGKζ stimulates RhoA release via a kinase-independent scaffolding mechanism. The molecular determinants that mediate the selective targeting of DGKζ to Rac1 or RhoA signaling complexes are unknown. Here, we show that protein kinase Cα (PKCα)-mediated phosphorylation of the DGKζ MARCKS domain increased DGKζ association with RhoA and decreased its interaction with Rac1. The same modification also enhanced DGKζ interaction with the scaffold protein syntrophin. Expression of a phosphomimetic DGKζ mutant stimulated membrane blebbing in mouse embryonic fibroblasts and C2C12 myoblasts, which was augmented by inhibition of endogenous Rac1. DGKζ expression in differentiated C2 myotubes, which have low endogenous Rac1 levels, also induced substantial membrane blebbing via the RhoA-ROCK pathway. These events were independent of DGKζ catalytic activity, but dependent upon a functional C-terminal PDZ-binding motif. Rescue of RhoA activity in DGKζ-null cells also required the PDZ-binding motif, suggesting that syntrophin interaction is necessary for optimal RhoA activation. Collectively, our results define a switch-like mechanism whereby DGKζ phosphorylation by PKCα plays a role in the interconversion between Rac1 and RhoA signaling pathways that underlie different cellular migration modes.


Subject(s)
Cell Movement , Diacylglycerol Kinase/physiology , Dystrophin-Associated Proteins/metabolism , Myristoylated Alanine-Rich C Kinase Substrate/metabolism , Neuropeptides/metabolism , Protein Kinase C-alpha/pharmacology , rac1 GTP-Binding Protein/metabolism , rhoA GTP-Binding Protein/metabolism , Animals , Diglycerides/metabolism , Dystrophin-Associated Proteins/genetics , Fibroblasts/cytology , Fibroblasts/drug effects , Fibroblasts/metabolism , Mice , Mice, Knockout , Myristoylated Alanine-Rich C Kinase Substrate/genetics , Neuropeptides/genetics , Protein Domains , rac1 GTP-Binding Protein/genetics , rhoA GTP-Binding Protein/genetics
11.
Adv Med Sci ; 66(1): 52-71, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33387942

ABSTRACT

The dystrophin-glycoprotein complex (DGC), situated at the sarcolemma dynamically remodels during cardiac disease. This review examines DGC remodeling as a common denominator in diseases affecting heart function and health. Dystrophin and the DGC serve as broad cytoskeletal integrators that are critical for maintaining stability of muscle membranes. The presence of pathogenic variants in genes encoding proteins of the DGC can cause absence of the protein and/or alterations in other complex members leading to muscular dystrophies. Targeted studies have allowed the individual functions of affected proteins to be defined. The DGC has demonstrated its dynamic function, remodeling under a number of conditions that stress the heart. Beyond genetic causes, pathogenic processes also impinge on the DGC, causing alterations in the abundance of dystrophin and associated proteins during cardiac insult such as ischemia-reperfusion injury, mechanical unloading, and myocarditis. When considering new therapeutic strategies, it is important to assess DGC remodeling as a common factor in various heart diseases. The DGC connects the internal F-actin-based cytoskeleton to laminin-211 of the extracellular space, playing an important role in the transmission of mechanical force to the extracellular matrix. The essential functions of dystrophin and the DGC have been long recognized. DGC based therapeutic approaches have been primarily focused on muscular dystrophies, however it may be a beneficial target in a number of disorders that affect the heart. This review provides an account of what we now know, and discusses how this knowledge can benefit persistent health conditions in the clinic.


Subject(s)
Dystrophin-Associated Proteins/metabolism , Dystrophin/metabolism , Heart Diseases/pathology , Membrane Glycoproteins/metabolism , Muscular Dystrophies/pathology , Animals , Heart Diseases/classification , Heart Diseases/metabolism , Humans , Muscular Dystrophies/metabolism
12.
Esophagus ; 18(2): 315-325, 2021 04.
Article in English | MEDLINE | ID: mdl-32737801

ABSTRACT

BACKGROUND: Esophageal cancer (EC) ranks the eighth in morbidity and the sixth in mortality around the whole world, which is an aggressive malignancy. To authenticate potential therapeutic targets for EC is therefore imperative. Although miR-301b might display changed expression in esophageal adenocarcinoma by utilizing Taqman miRNA profiling analysis, much less is known about the impact of miR-301b in EC. METHODS AND RESULTS: By analyzing the data of 187 cancer tissues and 13 normal samples from TCGA database, we discovered that miR-301b was highly expressed in EC tissues. Then, RT-qPCR determined that miR-301b was up-regulated in EC cell lines (ECA109, JAR, TE-1 and OE33). Besides, miR-301b expression level was higher in ESCC cell line-TE-1 cells and lower in ESCC cell line-ECA109 cells compared to other EC cell lines. Hence, ECA109 cell line was used to up-regulate miR-301b expression while TE-1 cell line was applied to down-regulate miR-301b expression in the subsequent experiments. Additionally, OE33, as an ECA cell line, was applied to upregulate miR-301b expression to reflect the influence of miR-301b overexpression on EC progression. More interestingly, miR-301b appeared to act as a promoting effect on the proliferation of EC cells, which was tested by CCK8. Dystrobrevin alpha (DTNA) was a targeting gene of miR-301b, which was predicted by the websites of miRanda, miRWalk and TargetScan. Additionally, DTNA was low expressed in EC tissues and was an independent predictor of EC. Meanwhile, the low expression of DTNA was related to worse overall survival in EC patients. The Pearson correlation coefficient analyzed that DTNA expression was negatively correlated with miR-301b. Furthermore, RT-qPCR and western blotting assays ulteriorly indicated that DTNA was negatively modulated by miR-301b. The facilitating impact of miR-301b re-expression on ECA109 and OE33 cell growth, invasion and migration was receded by DTNA over-expression, whilst the repressive effect of miR-301b ablation on TE-1 cell growth, invasion and migration was inversed by DTNA silencing. Overexpression of miR-301b accelerated EC cell growth, migration and invasion through targeting DTNA. CONCLUSIONS: Above all, we concluded that miR-301b was concerned with the progression of EC via regulating DTNA, suggesting that miR-301b and its target gene, DTNA, might serve as predictive biomarkers for EC therapy.


Subject(s)
Dystrophin-Associated Proteins , Esophageal Neoplasms , MicroRNAs , Neuropeptides , Cell Line, Tumor , Cell Movement , Cell Proliferation/genetics , Dystrophin-Associated Proteins/genetics , Dystrophin-Associated Proteins/metabolism , Esophageal Neoplasms/genetics , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/pathology , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplasm Invasiveness , Neuropeptides/genetics , Neuropeptides/metabolism
13.
Neuroscience ; 452: 138-152, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33186610

ABSTRACT

The schizophrenia-susceptibility gene, dystrobrevin-binding protein 1 (DTNBP1), encodes the dysbindin protein and mediates neurotransmission and neurodevelopment in normal subjects. Functional studies show that DTNBP1 loss may cause deficient presynaptic vesicle transmission, which is related to multiple psychiatric disorders. However, the functional mechanism of dysbindin-mediated synaptic vesicle transmission has not been investigated systematically. In this study, we performed electrophysiological recordings in calyx of Held synapses. We found that excitatory postsynaptic current (EPSC) and miniature EPSC (mEPSC) amplitudes were unchanged in dysbindin-deficient synapses, but readily releasable pool (RRP) size and calcium dependent vesicle replenishment were affected during high-frequency stimulation. Moreover, dysbindin loss accompanied slightly decreases in Munc18-1 and snapin expression levels, which are associated with vesicle priming and synaptic homeostasis under high-frequency stimulation. Together, we inferred that dysbindin directly interacts with Munc18-1 and snapin to mediate calcium dependent RRP replenishment. Dysbindin loss may lead to RRP replenishment dysregulation during high-frequency stimulation, potentially causing cognitive impairment in schizophrenia.


Subject(s)
Dysbindin/genetics , Schizophrenia , Synaptic Vesicles , Dystrophin-Associated Proteins/metabolism , Humans , Schizophrenia/genetics , Synapses/metabolism , Synaptic Transmission , Synaptic Vesicles/metabolism
14.
Life Sci ; 258: 118029, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32619495

ABSTRACT

OBJECTIVE: Hepatitis B virus (HBV) infection causes liver fibrosis, cirrhosis and hepatocellular carcinoma (HCC) development, but the underlying mechanism remains poorly understood. This study aimed to investigate the roles and molecular mechanisms of Dystrobrevin-α (DTNA) in HBV-induced liver cirrhosis and HCC pathogenesis. METHODS: DTNA expression was bioinformatically analyzed using the GEO database. DTNA expression was silenced by transfection with shRNAs. Cell proliferation and apoptosis were evaluated by MTT and flow cytometry respectively. The expression of genes in mRNA or protein levels was assessed by quantitative RT-PCR and western blotting. The interaction between proteins was predicted with the String and GCBI online softwares, and then confirmed by co-immunoprecipitation. Animal models were established by injecting nude mice with AVV8-HBV1.3 vector. RESULTS: Bioinformatics analysis showed a significantly increase in DTNA expression in HBV-positive liver cirrhosis and HCC patients. HBV infection caused a significantly increase in DTNA expression in HCC cell lines HepAD38 and HepG2.2.15. DTNA knockdown suppressed proliferation and promoted apoptosis of HBV-infected HepAD38 and HepG2.2.15 cells. HBV induced elevated expression of fibrosis-related genes Collagen II and TGFß1 in LO-2 cells, which were suppressed by DTNA knockdown. DTNA directly binded with STAT3 protein to promote STAT3 phosphorylation and TGFß1 expression and repress P53 expression in HBV-infected HepAD38 and LO-2 cells. The DTNA/STAT3 axis was activated during HBV-induced fibrosis, cirrhosis and HCC development in mouse model. CONCLUSION: DTNA binds with and further activates STAT3 to induce TGFß1 expression and repress P53 expression, thus promoting HBV-induced liver fibrosis, cirrhosis and hepatocellular carcinoma progression.


Subject(s)
Carcinoma, Hepatocellular/virology , Disease Progression , Dystrophin-Associated Proteins/metabolism , Hepatitis B virus/physiology , Liver Neoplasms/virology , Neuropeptides/metabolism , STAT3 Transcription Factor/metabolism , Transforming Growth Factor beta1/metabolism , Tumor Suppressor Protein p53/metabolism , Animals , Apoptosis , Carcinoma, Hepatocellular/pathology , Cell Proliferation , Disease Models, Animal , Female , Gene Knockdown Techniques , Hep G2 Cells , Hepatitis B , Humans , Liver Cirrhosis/complications , Liver Neoplasms/pathology , Mice, Inbred BALB C , Mice, Nude , Protein Binding , Signal Transduction
15.
J Biol Chem ; 295(31): 10677-10688, 2020 07 31.
Article in English | MEDLINE | ID: mdl-32532815

ABSTRACT

The maintenance of a high density of the acetylcholine receptor (AChR) is the hallmark of the neuromuscular junction. Muscle-specific anchoring protein (αkap) encoded within the calcium/calmodulin-dependent protein kinase IIα (CAMK2A) gene is essential for the maintenance of AChR clusters both in vivo and in cultured muscle cells. The underlying mechanism by which αkap is maintained and regulated remains unknown. Here, using human cell lines, fluorescence microscopy, and pulldown and immunoblotting assays, we show that α-dystrobrevin (α-dbn), an intracellular component of the dystrophin glycoprotein complex, directly and robustly promotes the stability of αkap in a concentration-dependent manner. Mechanistically, we found that the phosphorylatable tyrosine residues of α-dbn are essential for the stability of α-dbn itself and its interaction with αkap, with substitution of three tyrosine residues in the α-dbn C terminus with phenylalanine compromising the αkap-α-dbn interaction and significantly reducing both αkap and α-dbn accumulation. Moreover, the αkap-α-dbn interaction was critical for αkap accumulation and stability. We also found that the absence of either αkap or α-dbn markedly reduces AChRα accumulation and that overexpression of α-dbn or αkap in cultured muscle cells promotes the formation of large agrin-induced AChR clusters. Collectively, these results indicate that the stability of αkap and α-dbn complex plays an important role in the maintenance of high-level expression of AChRs.


Subject(s)
A Kinase Anchor Proteins/metabolism , Dystrophin-Associated Proteins/metabolism , Multiprotein Complexes/metabolism , Neuropeptides/metabolism , Receptors, Cholinergic/biosynthesis , A Kinase Anchor Proteins/genetics , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Dystrophin-Associated Proteins/genetics , HEK293 Cells , HeLa Cells , Humans , Mice , Multiprotein Complexes/genetics , Neuropeptides/genetics , Protein Domains , Protein Stability , Receptors, Cholinergic/genetics
16.
Mol Brain ; 13(1): 40, 2020 03 16.
Article in English | MEDLINE | ID: mdl-32178707

ABSTRACT

Retinal Müller cells are highly polarized macroglial cells with accumulation of the aquaporin-4 (AQP4) water channel and the inwardly rectifying potassium channel Kir4.1 at specialized endfoot membrane domains abutting microvessels and corpus vitreum. Proper water and potassium homeostasis in retina depends on these membrane specializations. Here we show that targeted deletion of ß1-syntrophin leads to a partial loss of AQP4 from perivascular Müller cell endfeet and that a concomitant deletion of both α1- and ß1-syntrophin causes a near complete loss of AQP4 from both perivascular and subvitreal endfoot membranes. α1-syntrophin is normally very weakly expressed in Müller cell endfeet but ß1-syntrophin knockout mice display an increased amount of α1-syntrophin at these sites. We suggest that upregulation of perivascular α1-syntrophin restricts the effect of ß1-syntrophin deletion. The present findings indicate that ß1-syntrophin plays an important role in maintaining the functional polarity of Müller cells and that α1-syntrophin can partially substitute for ß1-syntrophin in AQP4 anchoring. Functional polarization of Müller cells thus depends on an interplay between two syntrophin isoforms.


Subject(s)
Dystrophin-Associated Proteins/metabolism , Ependymoglial Cells/metabolism , Retina/cytology , Animals , Aquaporin 4/genetics , Aquaporin 4/metabolism , Gene Deletion , Male , Mice, Inbred C57BL , Mice, Knockout , Protein Isoforms/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Retina/ultrastructure
17.
Cell Death Dis ; 10(5): 354, 2019 05 01.
Article in English | MEDLINE | ID: mdl-31043586

ABSTRACT

Neuronal nitric oxide synthase (nNOS) plays a crucial role in the maintenance of correct skeletal muscle function due, at least in part, to S-nitrosylation of specific protein targets. Similarly, we recently provided evidence for a muscular phenotype in mice lacking the denitrosylase S-nitrosoglutathione reductase (GSNOR). Here, we demonstrate that nNOS and GSNOR are concomitantly expressed during differentiation of C2C12. They colocalizes at the sarcolemma and co-immunoprecipitate in cells and in myofibers. We also provide evidence that GSNOR expression decreases in mouse models of muscular dystrophies and of muscle atrophy and wasting, i.e., aging and amyotrophic lateral sclerosis, suggesting a more general regulatory role of GSNOR in skeletal muscle homeostasis.


Subject(s)
Aging/genetics , Alcohol Dehydrogenase/genetics , Homeostasis/genetics , Muscle Development/genetics , Muscular Dystrophies/genetics , Nitric Oxide Synthase Type I/genetics , Aging/metabolism , Alcohol Dehydrogenase/antagonists & inhibitors , Alcohol Dehydrogenase/deficiency , Animals , Cell Differentiation , Cell Line, Transformed , Disease Models, Animal , Dystrophin-Associated Proteins/genetics , Dystrophin-Associated Proteins/metabolism , Gene Expression Regulation , Humans , Mice , Mice, Inbred mdx , Mice, Knockout , Muscle, Skeletal/enzymology , Muscle, Skeletal/pathology , Muscular Dystrophies/metabolism , Muscular Dystrophies/pathology , Myoblasts/cytology , Myoblasts/enzymology , Nitric Oxide/metabolism , Nitric Oxide Synthase Type I/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Sarcolemma/enzymology , Signal Transduction , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism
18.
Cell Physiol Biochem ; 52(5): 1151-1165, 2019.
Article in English | MEDLINE | ID: mdl-30990585

ABSTRACT

BACKGROUND/AIMS: Adipocyte hypertrophy in obesity is associated with inflammation and adipose tissue fibrosis which both contribute to metabolic diseases. Mechanisms regulating lipid droplet expansion are poorly understood. Knock down of the scaffold protein beta 2 syntrophin (SNTB2) increases lipid droplet size of 3T3-L1 adipocytes and the physiological relevance of SNTB2 in adipose tissue morphology and metabolic health was analyzed herein. METHODS: Wild type and SNTB2-/- mice were challenged with 24 weeks high fat diet. Adipose tissue morphology and expression of various genes / proteins including collagens and caveolin-1 was examined. Glucose, insulin, fasting and fed free fatty acids were measured in serum. SNTB2 expression was determined in adipose tissues of patients. RESULTS: Upon high fat diet SNTB2-/- mice displayed reduced adiposity and adipocyte hypertrophy. Expression of various proteins was normal in the different white fat depots of SNTB2-/- mice while caveolin-1 protein and collagen mRNA levels were diminished. Null mice had reduced systemic glucose while fasting and postprandial insulin and insulin response were normal. Fatty acid clearance in the fed state and after insulin injection was enhanced. SNTB2 and caveolin-1 were increased in fat of ob/ob mice. However, no correlation between body mass index and SNTB2 protein in adipose tissues of seven patients was found. In subcutaneous but not in visceral fat the ratio of SNTB2 to alpha syntrophin protein, which affects lipid droplet size in the opposite manner, was associated with BMI. In subcutaneous fat of extremely obese patients SNTB2 mRNA levels were not correlated with weight loss after bariatric surgery. CONCLUSION: Current study shows that high SNTB2 in obese adipose tissues restricts adipocyte growth and thereby may contribute to metabolic diseases.


Subject(s)
Adipocytes/metabolism , Dietary Fats/pharmacology , Dystrophin-Associated Proteins , Lipid Metabolism , Obesity/metabolism , Postprandial Period , Adipocytes/pathology , Adult , Aged , Animals , Caveolin 1/genetics , Caveolin 1/metabolism , Dystrophin-Associated Proteins/genetics , Dystrophin-Associated Proteins/metabolism , Female , Humans , Male , Mice , Mice, Knockout , Middle Aged , Obesity/genetics , Obesity/pathology
19.
Biochim Biophys Acta Mol Basis Dis ; 1865(6): 1579-1591, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30904609

ABSTRACT

Evolutionarily conserved homeostatic systems have been shown to modulate synaptic efficiency at the neuromuscular junctions of organisms. While advances have been made in identifying molecules that function presynaptically during homeostasis, limited information is currently available on how postsynaptic alterations affect presynaptic function. We previously identified a role for postsynaptic Dystrophin in the maintenance of evoked neurotransmitter release. We herein demonstrated that Dystrobrevin, a member of the Dystrophin Glycoprotein Complex, was delocalized from the postsynaptic region in the absence of Dystrophin. A newly-generated Dystrobrevin mutant showed elevated evoked neurotransmitter release, increased bouton numbers, and a readily releasable pool of synaptic vesicles without changes in the function or numbers of postsynaptic glutamate receptors. In addition, we provide evidence to show that the highly conserved Cdc42 Rho GTPase plays a key role in the postsynaptic Dystrophin/Dystrobrevin pathway for synaptic homeostasis. The present results give novel insights into the synaptic deficits underlying Duchenne Muscular Dystrophy affected by a dysfunctional Dystrophin Glycoprotein complex.


Subject(s)
Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Dystrophin-Associated Proteins/genetics , Dystrophin/genetics , Neuromuscular Junction/genetics , cdc42 GTP-Binding Protein/genetics , Animals , Animals, Genetically Modified , Disease Models, Animal , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Dystrophin/deficiency , Dystrophin-Associated Proteins/metabolism , Gene Expression Regulation , Homeostasis/genetics , Humans , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/pathology , Neuromuscular Junction/metabolism , Neuromuscular Junction/pathology , Synaptic Potentials/genetics , Synaptic Transmission , Synaptic Vesicles/metabolism , cdc42 GTP-Binding Protein/metabolism
20.
Cell Prolif ; 52(2): e12562, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30515904

ABSTRACT

Syntrophins are a family of 59 kDa peripheral membrane-associated adapter proteins, containing multiple protein-protein and protein-lipid interaction domains. The syntrophin family consists of five isoforms that exhibit specific tissue distribution, distinct sub-cellular localization and unique expression patterns implying their diverse functional roles. These syntrophin isoforms form multiple functional protein complexes and ensure proper localization of signalling proteins and their binding partners to specific membrane domains and provide appropriate spatiotemporal regulation of signalling pathways. Syntrophins consist of two PH domains, a PDZ domain and a conserved SU domain. The PH1 domain is split by the PDZ domain. The PH2 and the SU domain are involved in the interaction between syntrophin and the dystrophin-glycoprotein complex (DGC). Syntrophins recruit various signalling proteins to DGC and link extracellular matrix to internal signalling apparatus via DGC. The different domains of the syntrophin isoforms are responsible for modulation of cytoskeleton. Syntrophins associate with cytoskeletal proteins and lead to various cellular responses by modulating the cytoskeleton. Syntrophins are involved in many physiological processes which involve cytoskeletal reorganization like insulin secretion, blood pressure regulation, myogenesis, cell migration, formation and retraction of focal adhesions. Syntrophins have been implicated in various pathologies like Alzheimer's disease, muscular dystrophy, cancer. Their role in cytoskeletal organization and modulation makes them perfect candidates for further studies in various cancers and other ailments that involve cytoskeletal modulation. The role of syntrophins in cytoskeletal organization and modulation has not yet been comprehensively reviewed till now. This review focuses on syntrophins and highlights their role in cytoskeletal organization, modulation and dynamics via its involvement in different cell signalling networks.


Subject(s)
Cytoskeleton/metabolism , Dystrophin-Associated Proteins/metabolism , Animals , Cytoskeletal Proteins/analysis , Cytoskeletal Proteins/metabolism , Dystrophin-Associated Proteins/analysis , Glycoproteins/analysis , Glycoproteins/metabolism , Humans , PDZ Domains , Protein Conformation , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL