Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Cell Biol ; 17(8): 1036-48, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26192440

ABSTRACT

Robust mechanisms to control cell proliferation have evolved to maintain the integrity of organ architecture. Here, we investigated how two critical proliferative pathways, Myc and E2f, are integrated to control cell cycles in normal and Rb-deficient cells using a murine intestinal model. We show that Myc and E2f1-3 have little impact on normal G1-S transitions. Instead, they synergistically control an S-G2 transcriptional program required for normal cell divisions and maintaining crypt-villus integrity. Surprisingly, Rb deficiency results in the Myc-dependent accumulation of E2f3 protein and chromatin repositioning of both Myc and E2f3, leading to the 'super activation' of a G1-S transcriptional program, ectopic S phase entry and rampant cell proliferation. These findings reveal that Rb-deficient cells hijack and redeploy Myc and E2f3 from an S-G2 program essential for normal cell cycles to a G1-S program that re-engages ectopic cell cycles, exposing an unanticipated addiction of Rb-null cells on Myc.


Subject(s)
Cell Cycle Checkpoints , Cell Proliferation , E2F Transcription Factors/metabolism , Epithelial Cells/metabolism , Intestine, Small/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Retinoblastoma Protein/deficiency , Animals , Binding Sites , Chromatin Assembly and Disassembly , E2F Transcription Factors/deficiency , E2F Transcription Factors/genetics , E2F1 Transcription Factor/genetics , E2F1 Transcription Factor/metabolism , E2F2 Transcription Factor/genetics , E2F2 Transcription Factor/metabolism , E2F3 Transcription Factor/genetics , E2F3 Transcription Factor/metabolism , Epithelial Cells/pathology , Female , G1 Phase Cell Cycle Checkpoints , G2 Phase Cell Cycle Checkpoints , Gene Expression Regulation , Genotype , Intestine, Small/pathology , Male , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Promoter Regions, Genetic , Proto-Oncogene Proteins c-myc/deficiency , Proto-Oncogene Proteins c-myc/genetics , Retinoblastoma Protein/genetics , S Phase Cell Cycle Checkpoints , Signal Transduction , Time Factors , Transcription, Genetic
2.
Oncogene ; 34(2): 217-25, 2015 Jan 08.
Article in English | MEDLINE | ID: mdl-24362522

ABSTRACT

HER2/Neu is amplified and overexpressed in a large proportion of human breast cancers, but the signaling pathways that contribute to tumor development and metastatic progression are not completely understood. Using gene expression data and pathway signatures, we predicted a role for activator E2F transcription factors in Neu-induced tumors. This was genetically tested by interbreeding Neu transgenics with knockouts of the three activator E2Fs. Loss of any E2F delayed Neu-induced tumor onset. E2F1 loss accelerated tumor growth, while E2F2 and E2F3 loss did not. Strikingly, it was observed that loss of E2F1 or E2F2 significantly reduced the metastatic capacity of the tumor and this was associated with a reduction in circulating tumor cells in the E2F2 knockout. Gene expression analysis between the tumors in the various E2F-mutant backgrounds revealed that there was extensive compensation by other E2F family members in the individual knockouts, underscoring the importance of the E2Fs in HER2/Neu-induced tumors. Extension to HER2-positive (HER2+) human breast cancer revealed a number of HER2+ subtypes based on E2F activity with differences in relapse-free survival times. Taken together, these data demonstrate that the E2F transcription factors are integral to HER2+ tumor development and progression.


Subject(s)
Breast Neoplasms/metabolism , E2F Transcription Factors/metabolism , Mammary Neoplasms, Experimental/metabolism , Receptor, ErbB-2/metabolism , Animals , Breast Neoplasms/enzymology , Breast Neoplasms/pathology , Carcinogenesis , Disease Models, Animal , E2F Transcription Factors/deficiency , E2F Transcription Factors/genetics , Female , Humans , Mammary Neoplasms, Experimental/enzymology , Mammary Neoplasms, Experimental/pathology , Mice , Mice, Knockout , Mice, Nude , Neoplasm Metastasis , Neoplastic Cells, Circulating/pathology , Signal Transduction
3.
Mol Cell Biol ; 34(17): 3229-43, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24934442

ABSTRACT

While the E2F transcription factors (E2Fs) have a clearly defined role in cell cycle control, recent work has uncovered new functions. Using genomic signature methods, we predicted a role for the activator E2F transcription factors in the mouse mammary tumor virus (MMTV)-polyomavirus middle T oncoprotein (PyMT) mouse model of metastatic breast cancer. To genetically test the hypothesis that the E2Fs function to regulate tumor development and metastasis, we interbred MMTV-PyMT mice with E2F1, E2F2, or E2F3 knockout mice. With the ablation of individual E2Fs, we noted alterations of tumor latency, histology, and vasculature. Interestingly, we noted striking reductions in metastatic capacity and in the number of circulating tumor cells in both the E2F1 and E2F2 knockout backgrounds. Investigating E2F target genes that mediate metastasis, we found that E2F loss led to decreased levels of vascular endothelial growth factor (Vegfa), Bmp4, Cyr61, Nupr1, Plod 2, P4ha1, Adamts1, Lgals3, and Angpt2. These gene expression changes indicate that the E2Fs control the expression of genes critical to angiogenesis, the remodeling of the extracellular matrix, tumor cell survival, and tumor cell interactions with vascular endothelial cells that facilitate metastasis to the lungs. Taken together, these results reveal that the E2F transcription factors play key roles in mediating tumor development and metastasis in addition to their well-characterized roles in cell cycle control.


Subject(s)
E2F Transcription Factors/physiology , Mammary Neoplasms, Experimental/etiology , Animals , Antigens, Polyomavirus Transforming , E2F Transcription Factors/deficiency , E2F Transcription Factors/genetics , E2F1 Transcription Factor/deficiency , E2F1 Transcription Factor/genetics , E2F1 Transcription Factor/physiology , E2F2 Transcription Factor/deficiency , E2F2 Transcription Factor/genetics , E2F2 Transcription Factor/physiology , E2F3 Transcription Factor/deficiency , E2F3 Transcription Factor/genetics , E2F3 Transcription Factor/physiology , Female , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/secondary , Mammary Neoplasms, Experimental/pathology , Mammary Neoplasms, Experimental/secondary , Mammary Tumor Virus, Mouse , Mice , Mice, Knockout , Neoplastic Cells, Circulating/pathology , Neovascularization, Pathologic/genetics , Retroviridae Infections/etiology , Retroviridae Infections/pathology , Signal Transduction , Tumor Microenvironment , Tumor Virus Infections/etiology , Tumor Virus Infections/pathology
4.
Transcription ; 4(2): 62-6, 2013.
Article in English | MEDLINE | ID: mdl-23412359

ABSTRACT

Recently, we showed that E2F7 and E2F8 (E2F7/8) are critical regulators of angiogenesis through transcriptional control of VEGFA in cooperation with HIF. (1) Here we investigate the existence of other novel putative angiogenic E2F7/8-HIF targets, and discuss the role of the RB-E2F pathway in regulating angiogenesis during embryonic and tumor development.


Subject(s)
E2F Transcription Factors/metabolism , Hypoxia-Inducible Factor 1/metabolism , Repressor Proteins/metabolism , Animals , Binding Sites , E2F Transcription Factors/deficiency , E2F Transcription Factors/genetics , Humans , Neoplasms/metabolism , Neoplasms/pathology , Neovascularization, Pathologic , Receptors, Vascular Endothelial Growth Factor/metabolism , Vascular Endothelial Growth Factor A/metabolism
5.
PLoS One ; 6(10): e26019, 2011.
Article in English | MEDLINE | ID: mdl-22022495

ABSTRACT

The retinoblastoma tumor suppressor (pRb) regulates cell cycle entry, progression and exit by controlling the activity of the E2F-family of transcription factors. During cell cycle exit pRb acts as a transcriptional repressor by associating with E2F proteins and thereby inhibiting their ability to stimulate the expression of genes required for S phase. Indeed, many tumors harbor mutations in the RB gene and the pRb-E2F pathway is compromised in nearly all types of cancers. In this report we show that both pRb and its interacting partners, the transcriptional factors E2F1-2-3, act as positive modulators of detoxification pathways important for metabolizing and clearing xenobiotics--such as toxins and drugs--from the body. Using a combination of conventional molecular biology techniques and microarray analysis of specific cell populations, we have analyzed the detoxification pathway in murine samples in the presence or absence of pRb and/or E2F1-2-3. In this report, we show that both pRb and E2F1-2-3 act as positive modulators of detoxification pathways in mice, challenging the conventional view of E2F1-2-3 as transcriptional repressors negatively regulated by pRb. These results suggest that mutations altering the pRb-E2F axis may have consequences beyond loss of cell cycle control by altering the ability of tissues to remove toxins and to properly metabolize anticancer drugs, and might help to understand the formation and progression rates of different types of cancer, as well as to better design appropriate therapies based on the particular genetic composition of the tumors.


Subject(s)
Inactivation, Metabolic , Metabolic Networks and Pathways , Retinoblastoma Protein/metabolism , Xenobiotics/metabolism , Animals , Animals, Newborn , Down-Regulation/genetics , E2F Transcription Factors/deficiency , E2F Transcription Factors/metabolism , Inactivation, Metabolic/genetics , Liver/metabolism , Metabolic Networks and Pathways/genetics , Mice , Mice, Knockout , RNA, Messenger/genetics , RNA, Messenger/metabolism , Retinoblastoma Protein/deficiency , Transcription, Genetic
6.
Nature ; 462(7275): 925-9, 2009 Dec 17.
Article in English | MEDLINE | ID: mdl-20016601

ABSTRACT

The activating E2f transcription factors (E2f1, E2f2 and E2f3) induce transcription and are widely viewed as essential positive cell cycle regulators. Indeed, they drive cells out of quiescence, and the 'cancer cell cycle' in Rb1 null cells is E2f-dependent. Absence of activating E2fs in flies or mammalian fibroblasts causes cell cycle arrest, but this block is alleviated by removing repressive E2f or the tumour suppressor p53, respectively. Thus, whether activating E2fs are indispensable for normal division is an area of debate. Activating E2fs are also well known pro-apoptotic factors, providing a defence against oncogenesis, yet E2f1 can limit irradiation-induced apoptosis. In flies this occurs through repression of hid (also called Wrinkled; Smac/Diablo in mammals). However, in mammals the mechanism is unclear because Smac/Diablo is induced, not repressed, by E2f1, and in keratinocytes survival is promoted indirectly through induction of DNA repair targets. Thus, a direct pro-survival function for E2f1-3 and/or its relevance beyond irradiation has not been established. To address E2f1-3 function in normal cells in vivo we focused on the mouse retina, which is a relatively simple central nervous system component that can be manipulated genetically without compromising viability and has provided considerable insight into development and cancer. Here we show that unlike fibroblasts, E2f1-3 null retinal progenitor cells or activated Müller glia can divide. We attribute this effect to functional interchangeability with Mycn. However, loss of activating E2fs caused downregulation of the p53 deacetylase Sirt1, p53 hyperacetylation and elevated apoptosis, establishing a novel E2f-Sirt1-p53 survival axis in vivo. Thus, activating E2fs are not universally required for normal mammalian cell division, but have an unexpected pro-survival role in development.


Subject(s)
Apoptosis , E2F Transcription Factors/deficiency , Retina/cytology , Retina/metabolism , Stem Cells/cytology , Stem Cells/metabolism , Acetylation , Animals , Cell Division , Cell Survival , Cyclin-Dependent Kinase Inhibitor p21/antagonists & inhibitors , Cyclin-Dependent Kinase Inhibitor p21/metabolism , E2F Transcription Factors/genetics , E2F Transcription Factors/metabolism , E2F1 Transcription Factor/deficiency , E2F1 Transcription Factor/genetics , E2F1 Transcription Factor/metabolism , E2F2 Transcription Factor/deficiency , E2F2 Transcription Factor/genetics , E2F2 Transcription Factor/metabolism , E2F3 Transcription Factor/deficiency , E2F3 Transcription Factor/genetics , E2F3 Transcription Factor/metabolism , Fibroblasts , Mice , Mice, Knockout , Neuroglia/cytology , Neuroglia/metabolism , Sirtuin 1/metabolism , Tumor Suppressor Protein p53/metabolism
7.
Nature ; 462(7275): 930-4, 2009 Dec 17.
Article in English | MEDLINE | ID: mdl-20016602

ABSTRACT

In the established model of mammalian cell cycle control, the retinoblastoma protein (Rb) functions to restrict cells from entering S phase by binding and sequestering E2f activators (E2f1, E2f2 and E2f3), which are invariably portrayed as the ultimate effectors of a transcriptional program that commit cells to enter and progress through S phase. Using a panel of tissue-specific cre-transgenic mice and conditional E2f alleles we examined the effects of E2f1, E2f2 and E2f3 triple deficiency in murine embryonic stem cells, embryos and small intestines. We show that in normal dividing progenitor cells E2f1-3 function as transcriptional activators, but contrary to the current view, are dispensable for cell division and instead are necessary for cell survival. In differentiating cells E2f1-3 function in a complex with Rb as repressors to silence E2f targets and facilitate exit from the cell cycle. The inactivation of Rb in differentiating cells resulted in a switch of E2f1-3 from repressors to activators, leading to the superactivation of E2f responsive targets and ectopic cell divisions. Loss of E2f1-3 completely suppressed these phenotypes caused by Rb deficiency. This work contextualizes the activator versus repressor functions of E2f1-3 in vivo, revealing distinct roles in dividing versus differentiating cells and in normal versus cancer-like cell cycles.


Subject(s)
Cell Differentiation , E2F Transcription Factors/metabolism , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Gene Expression Regulation , Repressor Proteins/metabolism , Alleles , Animals , Apoptosis , Cell Cycle/genetics , Cell Cycle/physiology , Cell Proliferation , E2F Transcription Factors/deficiency , E2F Transcription Factors/genetics , E2F1 Transcription Factor/deficiency , E2F1 Transcription Factor/genetics , E2F1 Transcription Factor/metabolism , E2F2 Transcription Factor/deficiency , E2F2 Transcription Factor/genetics , E2F2 Transcription Factor/metabolism , E2F3 Transcription Factor/deficiency , E2F3 Transcription Factor/genetics , E2F3 Transcription Factor/metabolism , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Female , Intestine, Small/cytology , Intestine, Small/metabolism , Mice , Mice, Transgenic , Repressor Proteins/deficiency , Repressor Proteins/genetics , Retinoblastoma Protein/deficiency , Retinoblastoma Protein/metabolism
8.
Trends Cell Biol ; 19(3): 111-8, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19201609

ABSTRACT

As major regulators of the cell cycle, apoptosis and differentiation, E2F transcription factors have been studied extensively in a broad range of organisms. The recent identification of atypical E2F family members further expands our structural, functional and molecular view of the cellular E2F activity. Unlike other family members, atypical E2Fs have a duplicated DNA-binding domain and control gene expression without heterodimerization with dimerization partner proteins. Recently, knockout strategies in plants and mammals have pinpointed that atypical E2Fs have a crucial role in plant cell size control, endocycle regulation, proliferation and apoptotic response upon DNA stress. Their position at the crossroads of proliferation and DNA stress response marks these novel E2F proteins as interesting study objects in the field of tumor biology.


Subject(s)
E2F Transcription Factors/chemistry , E2F Transcription Factors/physiology , Multigene Family/physiology , Animals , Arabidopsis/chemistry , Arabidopsis/genetics , Arabidopsis/physiology , Arabidopsis Proteins/biosynthesis , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Arabidopsis Proteins/physiology , E2F Transcription Factors/deficiency , E2F Transcription Factors/genetics , E2F7 Transcription Factor/chemistry , E2F7 Transcription Factor/deficiency , E2F7 Transcription Factor/physiology , Humans , Multigene Family/genetics , Repressor Proteins/chemistry , Repressor Proteins/genetics , Repressor Proteins/physiology
9.
Nature ; 454(7208): 1137-41, 2008 Aug 28.
Article in English | MEDLINE | ID: mdl-18594513

ABSTRACT

The E2F family is conserved from Caenorhabditis elegans to mammals, with some family members having transcription activation functions and others having repressor functions. Whereas C. elegans and Drosophila melanogaster have a single E2F activator protein and repressor protein, mammals have at least three activator and five repressor proteins. Why such genetic complexity evolved in mammals is not known. To begin to evaluate this genetic complexity, we targeted the inactivation of the entire subset of activators, E2f1, E2f2, E2f3a and E2f3b, singly or in combination in mice. We demonstrate that E2f3a is sufficient to support mouse embryonic and postnatal development. Remarkably, expression of E2f3b or E2f1 from the E2f3a locus (E2f3a(3bki) or E2f3a(1ki), respectively) suppressed all the postnatal phenotypes associated with the inactivation of E2f3a. We conclude that there is significant functional redundancy among activators and that the specific requirement for E2f3a during postnatal development is dictated by regulatory sequences governing its selective spatiotemporal expression and not by its intrinsic protein functions. These findings provide a molecular basis for the observed specificity among E2F activators during development.


Subject(s)
E2F Transcription Factors/metabolism , Embryonic Development , Growth , Animals , Cells, Cultured , E2F Transcription Factors/deficiency , E2F Transcription Factors/genetics , E2F1 Transcription Factor/deficiency , E2F1 Transcription Factor/genetics , E2F1 Transcription Factor/metabolism , E2F2 Transcription Factor/deficiency , E2F2 Transcription Factor/genetics , E2F2 Transcription Factor/metabolism , E2F3 Transcription Factor/deficiency , E2F3 Transcription Factor/genetics , E2F3 Transcription Factor/metabolism , Embryo Loss/genetics , Embryo, Mammalian/embryology , Embryo, Mammalian/metabolism , Embryonic Development/genetics , Gene Deletion , Genotype , Growth/genetics , Mice , Mice, Knockout , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...