Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters










Publication year range
1.
J Virol ; 95(19): e0056621, 2021 09 09.
Article in English | MEDLINE | ID: mdl-34260270

ABSTRACT

Cytotoxic CD4 T lymphocytes (CD4-CTL) are important in antiviral immunity. For example, we have previously shown that in mice, CD4-CTL are important to control ectromelia virus (ECTV) infection. How viral infections induce CD4-CTL responses remains incompletely understood. We demonstrate here that not only ECTV but also vaccinia virus and lymphocytic choriomeningitis virus induce CD4-CTL, though the response to ECTV is stronger. Using ECTV, we also demonstrate that in contrast to CD8-CTL, CD4-CTL differentiation requires constant virus replication and ceases once the virus is controlled. We also show that major histocompatibility complex class II molecules on CD11c+ cells are required for CD4-CTL differentiation and for mousepox resistance. Transcriptional analysis indicated that antiviral CD4-CTL and noncytolytic T helper 1 (Th1) CD4 T cells have similar transcriptional profiles, suggesting that CD4-CTL are terminally differentiated classical Th1 cells. Interestingly, CD4-CTL and classical Th1 cells expressed similar mRNA levels of the transcription factors ThPOK and GATA-3, necessary for CD4 T cell linage commitment, and Runx3, required for CD8 T cell development and effector function. However, at the protein level, CD4-CTL had higher levels of the three transcription factors, suggesting that further posttranscriptional regulation is required for CD4-CTL differentiation. Finally, CRISPR/Cas9-mediated deletion of Runx3 in CD4 T cells inhibited CD4-CTL but not classical Th1 cell differentiation in response to ECTV infection. These results further our understanding of the mechanisms of CD4-CTL differentiation during viral infection and the role of posttranscriptionally regulated Runx3 in this process. IMPORTANCE While it is well established that cytotoxic CD4 T cells (CD4-CTLs) directly contribute to viral clearance, it remains unclear how CD4-CTL are induced. We now show that CD4-CTLs require sustained antigen presentation and are induced by CD11c-expressing antigen-presenting cells. Moreover, we show that CD4-CTLs are derived from the terminal differentiation of classical T helper 1 (Th1) subset of CD4 cells. Compared to Th1 cells, CD4-CTLs upregulate protein levels of the transcription factors ThPOK, Runx3, and GATA-3 posttranscriptionally. Deletion of Runx3 in differentiated CD4 T cells prevents induction of CD4-CTLs but not classical Th1 cells. These results advance our knowledge of how CD4-CTLs are induced during viral infection.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Ectromelia, Infectious/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocytes, Cytotoxic/immunology , Th1 Cells/immunology , Virus Diseases/immunology , Animals , Antigen-Presenting Cells/immunology , CD11 Antigens/analysis , CD4-Positive T-Lymphocytes/metabolism , Cell Differentiation , Core Binding Factor Alpha 3 Subunit/metabolism , Cytotoxicity, Immunologic , Ectromelia virus/physiology , Ectromelia, Infectious/virology , Histocompatibility Antigens Class II/analysis , Liver/immunology , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Spleen/immunology , T-Lymphocyte Subsets/metabolism , T-Lymphocytes, Cytotoxic/metabolism , Th1 Cells/metabolism , Transcriptome , Virus Replication
2.
J Exp Med ; 218(5)2021 05 03.
Article in English | MEDLINE | ID: mdl-33765134

ABSTRACT

Natural killer (NK) cell activation depends on the signaling balance of activating and inhibitory receptors. CD94 forms inhibitory receptors with NKG2A and activating receptors with NKG2E or NKG2C. We previously demonstrated that CD94-NKG2 on NK cells and its ligand Qa-1b are important for the resistance of C57BL/6 mice to lethal ectromelia virus (ECTV) infection. We now show that NKG2C or NKG2E deficiency does not increase susceptibility to lethal ECTV infection, but overexpression of Qa-1b in infected cells does. We also demonstrate that Qa-1b is down-regulated in infected and up-regulated in bystander inflammatory monocytes and B cells. Moreover, NK cells activated by ECTV infection kill Qa-1b-deficient cells in vitro and in vivo. Thus, during viral infection, recognition of Qa-1b by activating CD94/NKG2 receptors is not critical. Instead, the levels of Qa-1b expression are down-regulated in infected cells but increased in some bystander immune cells to respectively promote or inhibit their killing by activated NK cells.


Subject(s)
B-Lymphocytes/immunology , Cytotoxicity, Immunologic/immunology , Ectromelia virus/immunology , Histocompatibility Antigens Class I/immunology , Killer Cells, Natural/immunology , Virus Diseases/immunology , Animals , B-Lymphocytes/metabolism , B-Lymphocytes/virology , Bystander Effect/immunology , Cytotoxicity, Immunologic/genetics , Ectromelia virus/physiology , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/metabolism , Killer Cells, Natural/metabolism , Killer Cells, Natural/virology , Male , Mice, Inbred C57BL , Mice, Knockout , NK Cell Lectin-Like Receptor Subfamily C/genetics , NK Cell Lectin-Like Receptor Subfamily C/immunology , NK Cell Lectin-Like Receptor Subfamily C/metabolism , NK Cell Lectin-Like Receptor Subfamily D/genetics , NK Cell Lectin-Like Receptor Subfamily D/immunology , NK Cell Lectin-Like Receptor Subfamily D/metabolism , Virus Diseases/virology
3.
Proc Natl Acad Sci U S A ; 117(43): 26885-26894, 2020 10 27.
Article in English | MEDLINE | ID: mdl-33046647

ABSTRACT

Ectromelia virus (ECTV) causes mousepox, a surrogate mouse model for smallpox caused by variola virus in humans. Both orthopoxviruses encode tumor necrosis factor receptor (TNFR) homologs or viral TNFR (vTNFR). These homologs are termed cytokine response modifier (Crm) proteins, containing a TNF-binding domain and a chemokine-binding domain called smallpox virus-encoded chemokine receptor (SECRET) domain. ECTV encodes one vTNFR known as CrmD. Infection of ECTV-resistant C57BL/6 mice with a CrmD deletion mutant virus resulted in uniform mortality due to excessive TNF secretion and dysregulated inflammatory cytokine production. CrmD dampened pathology, leukocyte recruitment, and inflammatory cytokine production in lungs including TNF, IL-6, IL-10, and IFN-γ. Blockade of TNF, IL-6, or IL-10R function with monoclonal antibodies reduced lung pathology and provided 60 to 100% protection from otherwise lethal infection. IFN-γ caused lung pathology only when both the TNF-binding and SECRET domains were absent. Presence of the SECRET domain alone induced significantly higher levels of IL-1ß, IL-6, and IL-10, likely overcoming any protective effects that might have been afforded by anti-IFN-γ treatment. The use of TNF-deficient mice and those that express only membrane-associated but not secreted TNF revealed that CrmD is critically dependent on host TNF for its function. In vitro, recombinant Crm proteins from different orthopoxviruses bound to membrane-associated TNF and dampened inflammatory gene expression through reverse signaling. CrmD does not affect virus replication; however, it provides the host advantage by enabling survival. Host survival would facilitate virus spread, which would also provide an advantage to the virus.


Subject(s)
Ectromelia virus/physiology , Host-Pathogen Interactions , Receptors, Tumor Necrosis Factor/metabolism , Respiratory Tract Infections/virology , Viral Proteins/metabolism , Animals , Cell Line , Chlorocebus aethiops , Female , Lung/pathology , Male , Mice , Mice, Inbred C57BL , Respiratory Tract Infections/pathology , Viral Load
4.
Immunol Invest ; 49(3): 232-248, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31240969

ABSTRACT

Ectromelia virus (ECTV), an orthopoxvirus, undergoes productive replication in conventional dendritic cells (cDCs), resulting in the inhibition of their innate and adaptive immune functions. ECTV replication rate in cDCs is increased due to downregulation of the expression of cathepsins - cystein proteases that orchestrate several steps during DC maturation. Therefore, this study was aimed to determine if downregulation of cathepsins, such as B, L or S, disrupts cDC capacity to induce activating signals in T cells or whether infection of cDCs with ECTV further weakens their functions as antigen-presenting cells. Our results showed that cDCs treated with siRNA against cathepsin B, L and S synthesize similar amounts of pro-inflammatory cytokines and exhibit comparable ability to mature and stimulate alloreactive CD4+ T cells, as untreated wild type (WT) cells. Moreover, ECTV inhibitory effect on cDC innate and adaptive immune functions, observed especially after LPS treatment, was comparable in both cathepsin-silenced and WT cells. Taken together, the absence of cathepsins B, L and S has minimal, if any, impact on the inhibitory effect of ECTV on cDC immune functions. We assume that the virus-mediated inhibition of cathepsin expression in cDCs represents more a survival mechanism than an immune evasion strategy.


Subject(s)
Cathepsins/deficiency , Dendritic Cells/immunology , Ectromelia virus/physiology , Animals , CD4-Positive T-Lymphocytes/immunology , Cathepsins/genetics , Cathepsins/metabolism , Cell Differentiation/immunology , Cell Proliferation , Cells, Cultured , Cytokines/metabolism , Dendritic Cells/metabolism , Dendritic Cells/virology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Th1-Th2 Balance
5.
Arch Immunol Ther Exp (Warsz) ; 67(6): 401-414, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31324924

ABSTRACT

Poxviruses utilize multiple strategies to prevent activation of extrinsic and intrinsic apoptotic pathways for successful replication. Mitochondrial heat shock proteins (mtHsps), especially Hsp60 and its cofactor Hsp10, are engaged in apoptosis regulation; however, until now, the influence of poxviruses on mtHsps has never been studied. We used highly infectious Moscow strain of ectromelia virus (ECTV) to investigate the mitochondrial heat shock response and apoptotic potential in permissive L929 fibroblasts. Our results show that ECTV-infected cells exhibit mostly mitochondrial localization of Hsp60 and Hsp10, and show overexpression of both proteins during later stages of infection. ECTV infection has only moderate effect on the electron transport chain subunit expression. Moreover, increase of mtHsp amounts is accompanied by lack of apoptosis, and confirmed by reduced level of pro-apoptotic Bax protein and elevated levels of anti-apoptotic Bcl-2 and Bcl-xL proteins. Taken together, we show a positive relationship between increased levels of Hsp60 and Hsp10 and decreased apoptotic potential of L929 fibroblasts, and further hypothesize that Hsp60 and/or its cofactor play important roles in maintaining protein homeostasis in mitochondria for promotion of cell survival allowing efficient replication of ECTV.


Subject(s)
Chaperonin 10/metabolism , Chaperonin 60/metabolism , Ectromelia virus/physiology , Ectromelia, Infectious/immunology , Fibroblasts/physiology , Heat-Shock Response/immunology , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Animals , Apoptosis , Cell Line , Fibroblasts/virology , Gene Expression Regulation , Immune Evasion , Mice , Protein Transport , Proto-Oncogene Proteins c-bcl-2/metabolism , Virulence , Virus Replication
6.
BMC Microbiol ; 19(1): 92, 2019 05 10.
Article in English | MEDLINE | ID: mdl-31077130

ABSTRACT

BACKGROUND: Cathepsins are a group of endosomal proteases present in many cells including dendritic cells (DCs). The activity of cathepsins is regulated by their endogenous inhibitors - cystatins. Cathepsins are crucial to antigen processing during viral and bacterial infections, and as such are a prerequisite to antigen presentation in the context of major histocompatibility complex class I and II molecules. Due to the involvement of DCs in both innate and adaptive immune responses, and the quest to understand the impact of poxvirus infection on host cells, we investigated the influence of ectromelia virus (ECTV) infection on cathepsin and cystatin levels in murine conventional DCs (cDCs). ECTV is a poxvirus that has evolved many mechanisms to avoid host immune response and is able to replicate productively in DCs. RESULTS: Our results showed that ECTV-infection of JAWS II DCs and primary murine GM-CSF-derived bone marrow cells down-regulated both mRNA and protein of cathepsin B, L and S, and cystatin B and C, particularly during the later stages of infection. Moreover, the activity of cathepsin B, L and S was confirmed to be diminished especially at later stages of infection in JAWS II cells. Consequently, ECTV-infected DCs had diminished ability to endocytose and process a soluble antigen. Close examination of cellular protein distribution showed that beginning from early stages of infection, the remnants of cathepsin L and cystatin B co-localized and partially co-localized with viral replication centers (viral factories), respectively. Moreover, viral yield increased in cDCs treated with siRNA against cathepsin B, L or S and subsequently infected with ECTV. CONCLUSIONS: Taken together, our results indicate that infection of cDCs with ECTV suppresses cathepsins and cystatins, and alters their cellular distribution which impairs the cDC function. We propose this as an additional viral strategy to escape immune responses, enabling the virus to replicate effectively in infected cells.


Subject(s)
Cathepsins/genetics , Cystatins/genetics , Dendritic Cells/virology , Ectromelia virus/physiology , Animals , Dendritic Cells/immunology , Down-Regulation , Endosomes/immunology , Endosomes/virology , Gene Knockdown Techniques , Male , Mice , Mice, Inbred C57BL , RNA, Small Interfering , Virus Replication
7.
Arch Virol ; 164(2): 559-565, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30374707

ABSTRACT

Ectromelia virus (ECTV) is an orthopoxvirus that productively replicates in dendritic cells (DCs), but its influence on the microtubule (MT) cytoskeleton in DCs is not known. Here, we show that ECTV infection of primary murine granulocyte-macrophage colony stimulating factor-derived bone marrow cells (GM-BM) downregulates numerous genes engaged in MT cytoskeleton organization and dynamics. In infected cells, the MT cytoskeleton undergoes dramatic rearrangement and relaxation, accompanied by disappearance of the microtubule organizing centre (MTOC) and increased acetylation and stabilization of MTs, which are exploited by progeny virions for intracellular transport. This indicates a strong ability of ECTV to subvert the MT cytoskeleton of highly specialized immune cells.


Subject(s)
Cytoskeleton/metabolism , Dendritic Cells/metabolism , Ectromelia virus/physiology , Ectromelia, Infectious/metabolism , Macrophages/metabolism , Microtubule-Organizing Center/metabolism , Tubulin/metabolism , Acetylation , Animals , Cell Line , Ectromelia, Infectious/virology , Host-Pathogen Interactions , Mice , Mice, Inbred BALB C , Microtubules/metabolism
8.
Cell Rep ; 24(1): 142-154, 2018 07 03.
Article in English | MEDLINE | ID: mdl-29972776

ABSTRACT

Circulating natural killer (NK) cells help protect the host from lympho-hematogenous acute viral diseases by rapidly entering draining lymph nodes (dLNs) to curb virus dissemination. Here, we identify a highly choreographed mechanism underlying this process. Using footpad infection with ectromelia virus, a pathogenic DNA virus of mice, we show that TLR9/MyD88 sensing induces NKG2D ligands in virus-infected, skin-derived migratory dendritic cells (mDCs) to induce production of IFN-γ by classical NK cells and other types of group 1 innate lymphoid cells (ILCs) already in dLNs, via NKG2D. Uninfected inflammatory monocytes, also recruited to dLNs by mDCs in a TLR9/MyD88-dependent manner, respond to IFN-γ by secreting CXCL9 for optimal CXCR3-dependent recruitment of circulating NK cells. This work unveils a TLR9/MyD88-dependent mechanism whereby in dLNs, three cell types-mDCs, group 1 ILCs (mostly NK cells), and inflammatory monocytes-coordinate the recruitment of protective circulating NK cells to dLNs.


Subject(s)
Cell Movement , Dendritic Cells/immunology , Ectromelia virus/physiology , Inflammation/pathology , Killer Cells, Natural/immunology , Lymph Nodes/virology , Lymphocytes/immunology , Monocytes/immunology , Animals , Chemokine CXCL9/metabolism , Endothelium/virology , Female , Immunity, Innate , Interferons/metabolism , Ligands , Lymph Nodes/immunology , Male , Mice, Inbred C57BL , Myeloid Differentiation Factor 88/metabolism , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Receptors, CXCR3/metabolism , Stromal Cells/metabolism , Toll-Like Receptor 9/metabolism
9.
Int J Mol Med ; 42(2): 1044-1053, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29749430

ABSTRACT

The ectromelia virus (ECTV) is a mouse specific Orthopoxvirus that causes lethal infection in some mouse strains. ECTV infection of these mouse strains has been used as a valuable model for understanding the interplay between Orthopoxvirus species and their hosts, including variola virus in humans. Although poxviruses encode numerous proteins required for DNA and RNA synthesis, and are less dependent on host functions than other DNA viruses, a detailed understanding of the host factors required for the replication of poxviruses is lacking. Heat shock protein 70 (Hsp70) isoforms have been reported to serve various roles in the replication cycle of numerous viruses. In the present study, microarray and reverse transcription­quantitative polymerase chain reaction analysis were conducted to investigate the host gene expression profiles following ECTV infection in mice and cell cultures. The results indicated that one Hsp70 isoform, Hsp70 member 1B (Hspa1b), was highly upregulated during ECTV infection in vitro and in vivo. Subsequently, overexpression of Hspa1b protein and small interfering RNA­mediated gene silencing of Hspa1b revealed that Hspa1b is required for efficient replication of ECTV. Furthermore, the results demonstrated that ECTV replication may be significantly suppressed by two chemical Hspa1b inhibitors: Quercetin and VER155008. In conclusion, the present study clearly demonstrated that ECTV infection upregulates the expression of Hspa1b in order to promote its replication. The dependence on Hsp70 may be used as a novel therapeutic target for the treatment of Orthopoxvirus infection.


Subject(s)
Ectromelia virus/physiology , Ectromelia, Infectious/genetics , Ectromelia, Infectious/virology , HSP70 Heat-Shock Proteins/genetics , Host-Pathogen Interactions , Mice/virology , Virus Replication , Animals , DNA Replication , Male , Mice, Inbred BALB C , Up-Regulation
10.
Viruses ; 10(5)2018 05 16.
Article in English | MEDLINE | ID: mdl-29772718

ABSTRACT

Mitochondria are multifunctional organelles that participate in numerous processes in response to viral infection, but they are also a target for viruses. The aim of this study was to define subcellular events leading to alterations in mitochondrial morphology and function during infection with ectromelia virus (ECTV). We used two different cell lines and a combination of immunofluorescence techniques, confocal and electron microscopy, and flow cytometry to address subcellular changes following infection. Early in infection of L929 fibroblasts and RAW 264.7 macrophages, mitochondria gathered around viral factories. Later, the mitochondrial network became fragmented, forming punctate mitochondria that co-localized with the progeny virions. ECTV-co-localized mitochondria associated with the cytoskeleton components. Mitochondrial membrane potential, mitochondrial fission⁻fusion, mitochondrial mass, and generation of reactive oxygen species (ROS) were severely altered later in ECTV infection leading to damage of mitochondria. These results suggest an important role of mitochondria in supplying energy for virus replication and morphogenesis. Presumably, mitochondria participate in transport of viral particles inside and outside of the cell and/or they are a source of membranes for viral envelope formation. We speculate that the observed changes in the mitochondrial network organization and physiology in ECTV-infected cells provide suitable conditions for viral replication and morphogenesis.


Subject(s)
Ectromelia virus/physiology , Fibroblasts/metabolism , Fibroblasts/virology , Macrophages/metabolism , Macrophages/virology , Mitochondria/physiology , Mitochondria/ultrastructure , Animals , Autophagy/physiology , Dynamins/metabolism , Ectromelia virus/ultrastructure , Fibroblasts/pathology , GTP Phosphohydrolases/metabolism , L Cells , Macrophages/pathology , Membrane Potential, Mitochondrial/physiology , Mice , Microtubule-Organizing Center/metabolism , Microtubule-Organizing Center/virology , Mitochondria/metabolism , Mitochondria/virology , Mitochondrial Proteins/metabolism , RAW 264.7 Cells , Reactive Oxygen Species/analysis , Tubulin/metabolism , Virion/metabolism , Virus Replication
11.
Virology ; 518: 335-348, 2018 05.
Article in English | MEDLINE | ID: mdl-29602068

ABSTRACT

All known orthopoxviruses, including ectromelia virus (ECTV), contain a gene in the E3L family. The protein product of this gene, E3, is a double-stranded RNA-binding protein. It can impact host range and is used by orthopoxviruses to combat cellular defense pathways, such as PKR and RNase L. In this work, we constructed an ECTV mutant with a targeted disruption of the E3L open reading frame (ECTVΔE3L). Infection with this virus resulted in an abortive replication cycle in all cell lines tested. We detected limited transcription of late genes but no significant translation of these mRNAs. Notably, the replication defects of ECTVΔE3L were rescued in human and mouse cells lacking PKR. ECTVΔE3L was nonpathogenic in BALB/c mice, a strain susceptible to lethal mousepox disease. However, infection with ECTVΔE3L induced protective immunity upon subsequent challenge with wild-type virus. In summary, E3L is an essential gene for ECTV.


Subject(s)
Ectromelia virus/immunology , Ectromelia virus/physiology , Ectromelia, Infectious/prevention & control , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism , Viral Vaccines/immunology , Virus Replication , Animals , Cell Line , Ectromelia virus/genetics , Ectromelia virus/pathogenicity , Gene Knockout Techniques , Humans , Mice, Inbred BALB C , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology , Viral Vaccines/administration & dosage , Viral Vaccines/genetics
12.
Viruses ; 10(3)2018 03 05.
Article in English | MEDLINE | ID: mdl-29510577

ABSTRACT

Ectromelia virus (ECTV) is an orthopoxvirus and the causative agent of mousepox. Like other poxviruses such as variola virus (agent of smallpox), monkeypox virus and vaccinia virus (the live vaccine for smallpox), ECTV promotes actin-nucleation at the surface of infected cells during virus release. Homologs of the viral protein A36 mediate this function through phosphorylation of one or two tyrosine residues that ultimately recruit the cellular Arp2/3 actin-nucleating complex. A36 also functions in the intracellular trafficking of virus mediated by kinesin-1. Here, we describe the generation of a recombinant ECTV that is specifically disrupted in actin-based motility allowing us to examine the role of this transport step in vivo for the first time. We show that actin-based motility has a critical role in promoting the release of virus from infected cells in vitro but plays a minor role in virus spread in vivo. It is likely that loss of microtubule-dependent transport is a major factor for the attenuation observed when A36R is deleted.


Subject(s)
Actins/metabolism , Ectromelia virus/physiology , Ectromelia, Infectious/metabolism , Ectromelia, Infectious/virology , Virus Release , Animals , Biological Transport , Cell Line , Chlorocebus aethiops , Gene Expression , Humans , Mice , Mice, Knockout , Mutation , Protein Binding , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/metabolism
13.
Viruses ; 9(8)2017 08 01.
Article in English | MEDLINE | ID: mdl-28763036

ABSTRACT

Taterapox virus (TATV), which was isolated from an African gerbil (Tatera kempi) in 1975, is the most closely related virus to variola; however, only the original report has examined its virology. We have evaluated the tropism of TATV in vivo in small animals. We found that TATV does not infect Graphiurus kelleni, a species of African dormouse, but does induce seroconversion in the Mongolian gerbil (Meriones unguiculatus) and in mice; however, in wild-type mice and gerbils, the virus produces an unapparent infection. Following intranasal and footpad inoculations with 1 × 106 plaque forming units (PFU) of TATV, immunocompromised stat1-/- mice showed signs of disease but did not die; however, SCID mice were susceptible to intranasal and footpad infections with 100% mortality observed by Day 35 and Day 54, respectively. We show that death is unlikely to be a result of the virus mutating to have increased virulence and that SCID mice are capable of transmitting TATV to C57BL/6 and C57BL/6 stat1-/- animals; however, transmission did not occur from TATV inoculated wild-type or stat1-/- mice. Comparisons with ectromelia (the etiological agent of mousepox) suggest that TATV behaves differently both at the site of inoculation and in the immune response that it triggers.


Subject(s)
Orthopoxvirus/physiology , Poxviridae Infections/virology , Viral Tropism , Animals , Antiviral Agents/therapeutic use , Disease Models, Animal , Ectromelia virus/genetics , Ectromelia virus/physiology , Ectromelia, Infectious/virology , Host Specificity , Mice , Mice, Inbred C57BL , Mice, SCID , Orthopoxvirus/genetics , Orthopoxvirus/immunology , Orthopoxvirus/isolation & purification , Poxviridae Infections/drug therapy , Poxviridae Infections/immunology , Poxviridae Infections/transmission , STAT1 Transcription Factor/deficiency , STAT1 Transcription Factor/genetics
14.
Virology ; 509: 98-111, 2017 09.
Article in English | MEDLINE | ID: mdl-28628829

ABSTRACT

Most orthopoxviruses, including vaccinia virus (VACV), contain genes in the E3L and K3L families. The protein products of these genes have been shown to combat PKR, a host defense pathway. Interestingly, ectromelia virus (ECTV) contains an E3L ortholog but does not possess an intact K3L gene. Here, we gained insight into how ECTV can still efficiently evade PKR despite lacking K3L. Relative to VACV, we found that ECTV-infected BS-C-1 cells accumulated considerably less double-stranded (ds) RNA, which was due to lower mRNA levels and less transcriptional read-through of some genes by ECTV. The abundance of dsRNA in VACV-infected cells, detected using a monoclonal antibody, was able to activate the RNase L pathway at late time points post-infection. Historically, the study of transcription by orthopoxviruses has largely focused on VACV as a model. Our data suggest that there could be more to learn by studying other members of this genus.


Subject(s)
Ectromelia virus/physiology , RNA, Double-Stranded/metabolism , Vaccinia virus/physiology , Virus Replication , Animals , Cell Line , Chlorocebus aethiops , Epithelial Cells/virology , Immune Evasion , RNA, Double-Stranded/immunology , RNA, Messenger/metabolism , RNA, Viral/metabolism , Transcription, Genetic , eIF-2 Kinase/antagonists & inhibitors
15.
PLoS One ; 12(6): e0179166, 2017.
Article in English | MEDLINE | ID: mdl-28604814

ABSTRACT

Ectromelia virus (ECTV) is an orthopoxvirus responsible for mousepox, a lethal disease of certain strains of mice that is similar to smallpox in humans, caused by variola virus (VARV). ECTV, similar to VARV, exhibits a narrow host range and has co-evolved with its natural host. Consequently, ECTV employs sophisticated and host-specific strategies to control the immune cells that are important for induction of antiviral immune response. In the present study we investigated the influence of ECTV infection on immune functions of murine GM-CSF-derived bone marrow cells (GM-BM), comprised of conventional dendritic cells (cDCs) and macrophages. Our results showed for the first time that ECTV is able to replicate productively in GM-BM and severely impaired their innate and adaptive immune functions. Infected GM-BM exhibited dramatic changes in morphology and increased apoptosis during the late stages of infection. Moreover, GM-BM cells were unable to uptake and process antigen, reach full maturity and mount a proinflammatory response. Inhibition of cytokine/chemokine response may result from the alteration of nuclear translocation of NF-κB, IRF3 and IRF7 transcription factors and down-regulation of many genes involved in TLR, RLR, NLR and type I IFN signaling pathways. Consequently, GM-BM show inability to stimulate proliferation of purified allogeneic CD4+ T cells in a primary mixed leukocyte reaction (MLR). Taken together, our data clearly indicate that ECTV induces immunosuppressive mechanisms in GM-BM leading to their functional paralysis, thus compromising their ability to initiate downstream T-cell activation events.


Subject(s)
Bone Marrow Cells/drug effects , Bone Marrow Cells/virology , Ectromelia virus/physiology , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , Animals , Antigens/immunology , Apoptosis/drug effects , Bone Marrow Cells/metabolism , Cell Line , Cells, Cultured , Cytokines/metabolism , Endocytosis/drug effects , Endocytosis/immunology , Immunophenotyping , Interferon Type I/metabolism , Leukocytes/immunology , Leukocytes/metabolism , Leukocytes/virology , Lymphocyte Activation/immunology , Male , Mice , Signal Transduction , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Toll-Like Receptor 4/agonists , Toll-Like Receptor 4/metabolism , Virus Replication
16.
Microb Pathog ; 109: 99-109, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28554653

ABSTRACT

Dendritic cells (DCs) are effector cells linking the innate immune system with the adaptive immune response. Many viruses eliminate DCs to prevent host response, induce immunosuppression and to maintain chronic infection. In this study, we examined apoptotic response of dendritic cells during in vitro and in vivo infection with ectromelia virus (ECTV), the causative agent of mousepox. ECTV-infected bone marrow dendritic cells (BMDCs) from BALB/c mice underwent apoptosis through mitochondrial pathway at 48 h post infection, up-regulated FasL and decreased expression of anti-apoptotic Bcl-2 and pro-apoptotic Fas. Similar pattern of Bcl-2, Fas and FasL expression was observed for DCs early during in vivo infection of BALB/c mice. Both BMDCs and DCs from BALB/c mice showed no maturation upon ECTV infection. We conclude that ECTV-infected DCs from BALB/c mouse strain help the virus to spread and to maintain infection.


Subject(s)
Apoptosis , Dendritic Cells/immunology , Ectromelia virus/physiology , Ectromelia virus/pathogenicity , Ectromelia, Infectious/immunology , Adaptive Immunity , Animals , Apoptosis Regulatory Proteins/metabolism , Caspase 3 , Chlorocebus aethiops , Dendritic Cells/pathology , Dendritic Cells/physiology , Dendritic Cells/virology , Disease Models, Animal , Ectromelia, Infectious/virology , Fas Ligand Protein/metabolism , Gene Expression Regulation , Immunity, Innate , Immunohistochemistry , Mice , Mice, Inbred BALB C , Mitochondria/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Signal Transduction , Up-Regulation , Vero Cells
17.
Virus Res ; 228: 61-65, 2017 01 15.
Article in English | MEDLINE | ID: mdl-27865865

ABSTRACT

Mousepox is caused by the orthopoxvirus ectromelia virus (ECTV), and is thought to be transmitted via skin abrasions. We studied the ECTV virulence factor N1 following subcutaneous infection of mousepox-susceptible BALB/c mice. In this model, ECTV lacking N1L gene was attenuated more than 1000-fold compared with wild-type virus and replication was profoundly reduced as early as four days after infection. However, in contrast to data from an intranasal model, N1 protein was not required for virus dissemination. Further, neither T cell nor cytokine responses were enhanced in the absence of N1. Together with the early timing of reduced virus titres, this suggests that in a cutaneous model, N1 exerts its function at the level of infected cells or in the inhibition of the very earliest effectors of innate immunity.


Subject(s)
Ectromelia virus/physiology , Ectromelia, Infectious/virology , Viral Proteins/genetics , Animals , Host-Pathogen Interactions , Mice , Viral Load , Viral Proteins/metabolism , Virulence , Virulence Factors/genetics , Virulence Factors/metabolism , Virus Replication
18.
Microb Pathog ; 87: 59-68, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26232502

ABSTRACT

Nuclear factor κB (NF-κB) is a pleiotropic transcription factor that regulates the expression of immune response genes. NF-κB signaling can be disrupted by pathogens that prevent host immune response. In this work, we examined the influence of ectromelia (mousepox) virus (ECTV) on NF-κB signaling in murine BALB/3T3 fibroblasts. Activation of NF-κB via tumor necrosis factor (TNF) receptor 1 (TNFR1) in these cells induces proinflammatory cytokine secretion. We show that ECTV does not recruit NF-κB to viral factories or induce NF-κB nuclear translocation in BALB/3T3 cells. Additionally, ECTV counteracts TNF-α-induced p65 NF-κB nuclear translocation during the course of infection. Inhibition of TNF-α-induced p65 nuclear translocation was also observed in neighboring cells that underwent fusion with ECTV-infected cells. ECTV inhibits the key step of NF-κB activation, i.e. Ser32 phosphorylation and degradation of inhibitor κBα (IκBα) induced by TNF-α. We also observed that ECTV prevents TNF-α-induced Ser536 of p65 phosphorylation in BALB/3T3 cells. Studying TNFR1 signaling provides information about regulation of inflammatory response and cell survival. Unraveling poxviral immunomodulatory strategies may be helpful in drug target identification as well as in vaccine development.


Subject(s)
Ectromelia virus/physiology , Fibroblasts/immunology , Fibroblasts/virology , Host-Pathogen Interactions , Immune Evasion , NF-kappa B/metabolism , Signal Transduction , Animals , BALB 3T3 Cells , I-kappa B Proteins/metabolism , Mice , NF-KappaB Inhibitor alpha , Tumor Necrosis Factor-alpha/metabolism
19.
J Virol ; 89(19): 9974-85, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26202250

ABSTRACT

UNLABELLED: Viruses that spread systemically from a peripheral site of infection cause morbidity and mortality in the human population. Innate myeloid cells, including monocytes, macrophages, monocyte-derived dendritic cells (mo-DC), and dendritic cells (DC), respond early during viral infection to control viral replication, reducing virus spread from the peripheral site. Ectromelia virus (ECTV), an orthopoxvirus that naturally infects the mouse, spreads systemically from the peripheral site of infection and results in death of susceptible mice. While phagocytic cells have a requisite role in the response to ECTV, the requirement for individual myeloid cell populations during acute immune responses to peripheral viral infection is unclear. In this study, a variety of myeloid-specific depletion methods were used to dissect the roles of individual myeloid cell subsets in the survival of ECTV infection. We showed that DC are the primary producers of type I interferons (T1-IFN), requisite cytokines for survival, following ECTV infection. DC, but not macrophages, monocytes, or granulocytes, were required for control of the virus and survival of mice following ECTV infection. Depletion of either plasmacytoid DC (pDC) alone or the lymphoid-resident DC subset (CD8α(+) DC) alone did not confer lethal susceptibility to ECTV. However, the function of at least one of the pDC or CD8α(+) DC subsets is required for survival of ECTV infection, as mice depleted of both populations were susceptible to ECTV challenge. The presence of at least one of these DC subsets is sufficient for cytokine production that reduces ECTV replication and virus spread, facilitating survival following infection. IMPORTANCE: Prior to the eradication of variola virus, the orthopoxvirus that causes smallpox, one-third of infected people succumbed to the disease. Following successful eradication of smallpox, vaccination rates with the smallpox vaccine have significantly dropped. There is now an increasing incidence of zoonotic orthopoxvirus infections for which there are no effective treatments. Moreover, the safety of the smallpox vaccine is of great concern, as complications may arise, resulting in morbidity. Like many viruses that cause significant human diseases, orthopoxviruses spread from a peripheral site of infection to become systemic. This study elucidates the early requirement for innate immune cells in controlling a peripheral infection with ECTV, the causative agent of mousepox. We report that there is redundancy in the function of two innate immune cell subsets in controlling virus spread early during infection. The viral control mediated by these cell subsets presents a potential target for therapies and rational vaccine design.


Subject(s)
Dendritic Cells/immunology , Dendritic Cells/virology , Ectromelia virus/immunology , Ectromelia virus/pathogenicity , Ectromelia, Infectious/immunology , Animals , Basic-Leucine Zipper Transcription Factors/deficiency , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/immunology , Cytokines/biosynthesis , Dendritic Cells/classification , Ectromelia virus/physiology , Ectromelia, Infectious/transmission , Ectromelia, Infectious/virology , Granulocytes/immunology , Humans , Immunity, Innate , Macrophages/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Monocytes/immunology , Repressor Proteins/deficiency , Repressor Proteins/genetics , Repressor Proteins/immunology , Virus Replication , Zoonoses/immunology , Zoonoses/transmission , Zoonoses/virology
20.
Antiviral Res ; 111: 42-52, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25128688

ABSTRACT

Natural orthopoxvirus outbreaks such as vaccinia, cowpox, cattlepox and buffalopox continue to cause morbidity in the human population. Monkeypox virus remains a significant agent of morbidity and mortality in Africa. Furthermore, monkeypox virus's broad host-range and expanding environs make it of particular concern as an emerging human pathogen. Monkeypox virus and variola virus (the etiological agent of smallpox) are both potential agents of bioterrorism. The first line response to orthopoxvirus disease is through vaccination with first-generation and second-generation vaccines, such as Dryvax and ACAM2000. Although these vaccines provide excellent protection, their widespread use is impeded by the high level of adverse events associated with vaccination using live, attenuated virus. It is possible that vaccines could be used in combination with antiviral drugs to reduce the incidence and severity of vaccine-associated adverse events, or as a preventive in individuals with uncertain exposure status or contraindication to vaccination. We have used the intranasal mousepox (ectromelia) model to evaluate the efficacy of vaccination with Dryvax or ACAM2000 in conjunction with treatment using the broad spectrum antiviral, brincidofovir (BCV, CMX001). We found that co-treatment with BCV reduced the severity of vaccination-associated lesion development. Although the immune response to vaccination was quantifiably attenuated, vaccination combined with BCV treatment did not alter the development of full protective immunity, even when administered two days following ectromelia challenge. Studies with a non-replicating vaccine, ACAM3000 (MVA), confirmed that BCV's mechanism of attenuating the immune response following vaccination with live virus was, as expected, by limiting viral replication and not through inhibition of the immune system. These studies suggest that, in the setting of post-exposure prophylaxis, co-administration of BCV with vaccination should be considered a first response to a smallpox emergency in subjects of uncertain exposure status or as a means of reduction of the incidence and severity of vaccine-associated adverse events.


Subject(s)
Antiviral Agents/administration & dosage , Cytosine/analogs & derivatives , Ectromelia virus/physiology , Ectromelia, Infectious/prevention & control , Organophosphonates/administration & dosage , Smallpox Vaccine/administration & dosage , Animals , Cytosine/administration & dosage , Ectromelia virus/immunology , Ectromelia, Infectious/immunology , Ectromelia, Infectious/virology , Female , Humans , Immunity , Mice , Mice, Inbred C57BL , Smallpox Vaccine/immunology , Vaccination , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL