Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 347
Filter
1.
Int J Biol Macromol ; 267(Pt 1): 131439, 2024 May.
Article in English | MEDLINE | ID: mdl-38593902

ABSTRACT

In this study, an edible film was fabricated by incorporating anthocyanin extract from black rice (AEBR) into acetylated cassava starch (ACS)/carboxymethyl-cellulose (CMC) to enhance the shelf life of pumpkin seeds. The effects of AEBR on the rheological properties of film-forming solutions, as well as the structural characterization and physicochemical properties of the film, were evaluated. Rheological properties of solutions revealed that AEBR was evenly dispersed into polymer matrix and bound by hydrogen bonds, as confirmed by Fourier transform infrared spectroscopy analysis. The appropriate AEBR addition could be compatible with polymer matrix and formed a compact film structure, improving the mechanical properties, barrier properties, and opacity. However, with further addition of AEBR, the tensile strength and water vapor permeability decreased and the tight structure was destroyed. After being stored separately under thermal and UV light accelerated conditions for 20 days, the peroxide value and acid value of roasted pumpkin seeds coated with the AEBR film showed a significant reduction. Moreover, the storage stability of AEBR was improved through the embedding of ACS/CMC biopolymers. These results indicated that AEBR film could effectively delay pumpkin seeds oxidation and prolong their shelf life as an antioxidant material.


Subject(s)
Anthocyanins , Carboxymethylcellulose Sodium , Cucurbita , Edible Films , Manihot , Oxidation-Reduction , Seeds , Starch , Manihot/chemistry , Anthocyanins/chemistry , Carboxymethylcellulose Sodium/chemistry , Starch/chemistry , Seeds/chemistry , Cucurbita/chemistry , Acetylation , Permeability , Tensile Strength , Food Packaging/methods , Antioxidants/chemistry , Antioxidants/pharmacology , Plant Extracts/chemistry , Rheology , Spectroscopy, Fourier Transform Infrared
2.
Int J Biol Macromol ; 267(Pt 1): 131135, 2024 May.
Article in English | MEDLINE | ID: mdl-38574914

ABSTRACT

The study involves the preparation and characterization of crosslinked-carboxymethyl cellulose (CMC) films using varying amounts of citric acid (CA) within the range 5 %-20 %, w/w, relative to the dry weight of CMC. Through techniques such as Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, carbonyl content analysis, and gel fraction measurements, the successful crosslinking between CMC and CA is confirmed. The investigation includes an analysis of chemical structure, physical and optical characteristics, swelling behavior, water vapor transmission rate, moisture content, and surface morphologies. The water resistance of the cross-linked CMC films exhibited a significant improvement when compared to the non-crosslinked CMC film. The findings indicated that films crosslinked with 10 % CA demonstrated favorable properties for application as edible coatings. These transparent films, ideal for packaging, prove effective in preserving the quality and sensory attributes of fresh bananas, including color retention, minimized weight loss, slowed ripening through inhibiting amyloplast degradation, and enhanced firmness during storage.


Subject(s)
Carboxymethylcellulose Sodium , Citric Acid , Edible Films , Food Packaging , Musa , Carboxymethylcellulose Sodium/chemistry , Citric Acid/chemistry , Food Packaging/methods , Musa/chemistry , Steam , Cross-Linking Reagents/chemistry , Spectroscopy, Fourier Transform Infrared , Water/chemistry , Food Preservation/methods
3.
Int J Biol Macromol ; 267(Pt 2): 131545, 2024 May.
Article in English | MEDLINE | ID: mdl-38614168

ABSTRACT

Corn starch (CS) is a good alternative to synthetic polymers due to its sustainability; nevertheless, because of its weak tensile strength, the matrix requires another polymer. Therefore, 0.5 % (w/v) moringa gum (MG) was added. The purpose of this study was to assess how pine cone extract (PCE) affected the physiochemical and mechanical properties of corn starch and moringa gum (CS/MG) films and their use as UV-blocking composites. The findings suggest that the PCE improved the elongation at break from 3.27 % to 35.2 % while greatly reducing the tensile strength. The hydrogen bonding between CS/MG and PCE was visible in the FTIR spectra. The XRD graph indicated that the films were amorphous. In comparison to CS/MG films, PCE-incorporated edible films demonstrated significant UV-blocking ability indicating their potential as sustainable packaging material for light-sensitive food products.


Subject(s)
Edible Films , Food Packaging , Pinus , Plant Extracts , Starch , Ultraviolet Rays , Food Packaging/methods , Starch/chemistry , Plant Extracts/chemistry , Pinus/chemistry , Moringa/chemistry , Tensile Strength , Zea mays/chemistry , Plant Gums/chemistry
4.
Int J Biol Macromol ; 266(Pt 1): 131061, 2024 May.
Article in English | MEDLINE | ID: mdl-38521296

ABSTRACT

Edible films with modulated release of antimicrobial agents are important for food preservation. Herein, antimicrobial edible films were prepared using whey protein (WP) and hydroxypropyl methylcellulose (HM) as polymer matrix materials and cinnamaldehyde (CIN) as antimicrobial agent. The mass ratios of WP and HM were 100/0, 75/25, 50/50, 25/75 and 0/100. The release kinetics of CIN through the film was studied, applying the Fickian model, power law and Weibull model. The films were also characterized by physical and structural characteristics, and antibacterial activity. In comparison to other films, the CIN-loaded film with a WP/HM ratio of 50/50 had better moisture resistance, water vapor barrier properties and mechanical properties. High correlation factors were obtained by fitting the CIN release data with the power law (R2 > 0.96) and Weibull model (R2 > 0.97). The diffusion mechanism of CIN was pseudo-Fickian. The diffusion coefficients (D1 and D2) had a positive linear relationship with the HM ratio, suggesting that a high HM ratio was beneficial to the CIN release. Finally, the WH50-C film was successfully used to preserve Mongolian cheese. This research provides a new perspective on the design of active packaging film with sustained-release characteristics.


Subject(s)
Acrolein , Acrolein/analogs & derivatives , Cheese , Edible Films , Hypromellose Derivatives , Whey Proteins , Whey Proteins/chemistry , Acrolein/chemistry , Kinetics , Hypromellose Derivatives/chemistry , Food Preservation/methods , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Food Packaging/methods
5.
J Food Sci ; 89(4): 2423-2437, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38433384

ABSTRACT

Excessive use of single-use plastic packaging presents an imminent threat to the environment. One of the emerging solutions is using edible food packaging. However, there is lack of consumer information toward edible packaging. This study evaluated consumer attitude, acceptability, and purchase intent of three types of edible food packaging: muffin liner, cranberry pomace fruit leather wrap, and powdered drink sachet. One hundred consumers who frequently consumed muffins, strawberry fruit leather, and powdered lemonade were selected from metropolitan area of Portland, Oregon to participate in the study. The panelists were presented with the edible films and the food products with the edible packaging, information card highlighting the environmental-friendly edible package, and were prompted with describing the sensory attributes, purchase intent, and qualities regarding the edible packaging with and without food. Overall, panelists liked the three foods with the edible packaging giving overall liking scores of 7.48, 8.06, and 7.48 for the muffin liners, edible fruit leather wraps, and powdered drink sachets, respectively, based on a 9-point hedonic scale where 1 = dislike extremely and 9 = like extremely. When asked about hypothetical purchase intent, 64%-68% of panelists positively reacted to purchase intent and would buy all three types of edible packaging products. Based on the positive reaction from panelists, edible packaging maybe a possible solution to reducing single-use plastic packaging in the food industry. This study can be the catalyst for further investigation of the efficacy of different applications of edible food packaging as well as consumer perceptions of eating their packaging. PRACTICAL APPLICATION: Edible food packaging is an emerging solution for reducing single-use plastic waste. This study investigated consumer attitude, acceptability, and purchase intent of edible food packaging for three food packaging applications, including edible muffin liner, fruit leather wrap, and powdered drink sachet. This study demonstrated that consumers strongly agree that edible packaging would serve as an environmentally sustainable solution to single-use plastics, and are willing to spend more to purchase these sustainable alternatives. This study provides new information toward the future development of edible packaging and consumer perceptions of eating their packaging.


Subject(s)
Edible Films , Taste , Emotions , Food Packaging , Perception , Consumer Behavior
6.
Int J Biol Macromol ; 264(Pt 2): 130682, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38460636

ABSTRACT

Tropical fruits, predominantly cultivated in Southeast Asia, are esteemed for their nutritional richness, distinctive taste, aroma, and visual appeal when consumed fresh. However, postharvest challenges have led to substantial global wastage, nearly 50 %. The advent of edible biopolymeric nanoparticles presents a novel solution to preserve the fruits' overall freshness. These nanoparticles, being edible, readily available, biodegradable, antimicrobial, antioxidant, Generally Recognized As Safe (GRAS), and non-toxic, are commonly prepared via ionic gelation owing to the method's physical crosslinking, simplicity, and affordability. The resulting biopolymeric nanoparticles, with or without additives, can be employed in basic formulations or as composite blends with other materials. This study aims to review the capabilities of biopolymeric nanoparticles in enhancing the physical and sensory aspects of tropical fruits, inhibiting microbial growth, and prolonging shelf life. Material selection for formulation is crucial, considering coating materials, the fruit's epidermal properties, internal and external factors. A variety of application techniques are covered such as spraying, and layer-by-layer among others, including their advantages, and disadvantages. Finally, the study addresses safety measures, legislation, current challenges, and industrial perspectives concerning fruit edible coating films.


Subject(s)
Edible Films , Food Preservation/methods , Fruit , Antioxidants
7.
Food Chem ; 447: 138952, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38461720

ABSTRACT

The edible coating is proved to be a convenient approach for fruit preservation. Among these published explorations, naturally sourced macromolecules and green crosslinking strategies gain attention. This work centers on edible coatings containing Ca2+ as crosslinker for the first time, delving into crosslinking mechanisms, include alginate, chitosan, Aloe vera gel, gums, etc. Additionally, the crucial functions of Ca2+ in fruit's quality control are also elaborated in-depth, involving cell wall, calmodulin, antioxidant, etc. Through a comprehensive review, it becomes evident that Ca2+ plays a dual role in fruit edible coating. Specifically, Ca2+ constructs a three-dimensional dense network structure with polymers through ionic bonding. Moreover, Ca2+ acts directly with cell wall to maintain fruit firmness and serve as a second messenger to participate secondary physiological metabolism. In brief, coatings containing Ca2+ present remarkable effects in preserving fruit and this work may provide guidance for Ca2+ related fruit preservation coatings.


Subject(s)
Edible Films , Food Preservation , Food Preservation/methods , Calcium/analysis , Polymers/analysis , Fruit/chemistry
8.
Int J Biol Macromol ; 266(Pt 1): 131173, 2024 May.
Article in English | MEDLINE | ID: mdl-38554904

ABSTRACT

Chia seed mucilage (CSM) film incorporated with 2, 4, and 6 % (w/w) nanoemulsion of cinnamon essential oil (CSM-2, CSM-4, CSM-6) were developed, and their physicochemical, mechanical, antioxidant, and antimicrobial properties were determined. According to the results, cinnamon EO nanoemulsion (CEN) had droplet size 196.07 ± 1.39 nm with PDI 0.47 ± 0.04. Moreover, CSM film had higher water solubility (99.37 ± 0.05 %) and WVP (8.55 ± 1.10 g/kPa h m2) than reinforced CSM films with CENCEN. The lowest water solubility (98.02 ± 0.01 %) and WVP (3.75 ± 0.80 g/kPa h m2) was observed in CSM-6 film. Moreover, the addition of CEN improved the homogeneity and density of films and the smoothness of the surface, being observed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The Fourier transform infrared (FTIR) spectroscopy also confirmed the incorporation of CEN within the film matrix. The CSM films' antioxidant (DPPH radical scavenging power) and antimicrobial (against Escherichia coli and Staphylococcus aureus) properties of CSM films were notably enhanced with the inclusion of CEN in a dose-dependent manner. The mechanical (tensile strength and elongation at break) of CSM films also was affected by the addition of CEN, TS decreased, and EAB increased (p < 0.05). The lowest TS (20.63 ± 1.39 MPa) and highest EAB (3.36 ± 0.61 %) was observed in CSM-4 film. However, CSM film was relatively dark with low opacity, and adding CEN slightly increased lightness (L*) and yellowness (b*) parameters. The superior antioxidant and barrier characteristics of the CSM edible film incorporated with CEN make it a potential candidate for product packaging and shelf-life extension.


Subject(s)
Antioxidants , Cinnamomum zeylanicum , Edible Films , Emulsions , Oils, Volatile , Plant Mucilage , Seeds , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Cinnamomum zeylanicum/chemistry , Seeds/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Plant Mucilage/chemistry , Solubility , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Staphylococcus aureus/drug effects , Food Packaging/methods
9.
Int J Biol Macromol ; 263(Pt 1): 130165, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38367784

ABSTRACT

This work reports on the extraction and characterization of the behavior of starch from residues of several potato varieties (Criolla, Sabanera and Pastusa) of Colombian origin from the Andean region using different techniques and the evaluation of the effect of citric acid (CA) on the grain morphology. Additionally, films were produced with each one of the extracted starches and glycerol. Pastusa variety starch shows a higher granule size than the other varieties and Pastusa starch shows lower amylose content compared to Sabanera and Criolla. Criolla and Pastusa starches exhibit more thermal stability than Sabanera starch. Starch-glycerol films were also produced using the cast solving method. The films were mechanically analyzed by tensile test and the barrier properties were assessed by water vapor permeability (WVP). The tensile strength of the films varied in the 2.0-2.4 MPa range, while the elongation at break was comprised between 25 and 32 %. With regard to water vapor permeability, the obtained values fall within the 4-7 × 10-10 g m-1 s-1 Pa-1 range. It was observed that the thickness of the films and the protein content affected water vapor permeability, increasing this value at higher levels of thickness.


Subject(s)
Edible Films , Solanum tuberosum , Starch/chemistry , Solanum tuberosum/chemistry , Steam , Glycerol/chemistry , Colombia , Permeability , Tensile Strength
10.
Int J Biol Macromol ; 262(Pt 1): 130014, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38340933

ABSTRACT

The incorporation of ginger oil (GO) influenced the physical, optical, and structural properties of the chitosan (CH) film including the decreases of moisture content (60.15 %), water solubility (35.37 %) and water vapor permeability (WVP) (32.79 %) and the increases of tensile strength (TS) (125 %), elongation at break (EAB) (2.74 %) and opacity (131.08 %). Antifungal capacity of the CH film was enhanced when GO was added to the film. The CH + GO film showed a less homogeneous surface that the presence of the oil droplets on the film surface. Moreover, the CH and CH + GO coatings reduced weight loss of persimmon by 14.87 %, and 21.13 %, respectively, compared to the control. Moisture content loss of the coated CH- and the coated CH + GO- persimmons was decreased by 1.94 % and 4.92 %, respectively, compared to that of the control persimmon. Furthermore, the CH and CH + GO coatings decreased in color changes, respiration rate, ethylene production, changes in pH and TSS, and remained firmness of persimmon during storage at 25 °C. In addition, X-ray CT images can be used to monitor internal changes and observe the tissue breakdown during storage period. The ΔGS value can be used as a predictor of persimmon internal qualities. Thus, the CH film containing GO can be applied as an active packaging material.


Subject(s)
Chitosan , Diospyros , Edible Films , Oils, Volatile , Zingiber officinale , Chitosan/chemistry , Tomography, X-Ray Computed , Permeability , Food Packaging
11.
Int J Biol Macromol ; 261(Pt 2): 129947, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38316326

ABSTRACT

The present research investigates the effectiveness of nano-emulsified coatings (C-1, C-2, and C-3) in preserving the kiwifruit at a temperature of 10 ± 2 °C with 90-95 % relative humidity (RH) for 30 days. The nano-emulsions were prepared from varied carboxymethyl cellulose (CMC) concentrations with different combinations of essential oils such as thyme, clove, and cardamom. Dynamic light scattering investigation with Zeta Sizer revealed that C-1, C-2, and C-3 nano-emulsions have nano sizes of 81.3 ± 2.3, 115.3 ± 4.2, and 63.2 ± 3.2 nm, respectively. The scanning electron microscopy images showed that the nanoemulsion of C-1 had homogenous spherical globules, C-2 had voids, and C-3 showed a non-porous structure with uniform dispersion. The X-ray diffraction analysis indicated that C-1, C-2, and C-3 nano-emulsion exhibited distinct crystallinity and peaks. The nano-emulsion C-1 had reduced crystallinity, while C-2 had lower intensity peaks, and C-3 had increased crystallinity. The results documented that compared to control kiwifruit samples, the samples coated with C-3 nano-emulsion have decreased weight loss, decay incidence, soluble solids, maturity index activity, ethylene production, total bacterial count, and increased titratable acid, and firmness attributes. The results of current research are promising and would be applicable in utilization in industrial applications.


Subject(s)
Edible Films , Oils, Volatile , Food Preservation/methods , Carboxymethylcellulose Sodium/chemistry , Temperature , Emulsions/chemistry
12.
J Microencapsul ; 41(2): 112-126, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38345078

ABSTRACT

This study aimed to produce spray dried acerola juice microparticles with different protein carriers to be incorporated into edible starch films. The microparticles were evaluated for solids recovery, polyphenol retention, solubility, hygroscopicity, particle size distribution, X-ray diffraction, phytochemical compounds and antioxidant activity. Acerola microparticles produced with WPI/hydrolysed collagen carriers (AWC) with higher solids recovery (53.5 ± 0.34% w/w), polyphenol retention (74.4 ± 0.44% w/w), high solubility in water (85.2 ± 0.4% w/w), total polyphenol content (128.45 ± 2.44 mg GAE/g) and good storage stability were selected to produce starch-based films by casting. As a result, cassava films with water vapour permeability of 0.29 ± 0.07 g mm/m2 h KPa, polyphenol content of 10.15 ± 0.22 mg GAE/g film and DPPH radical scavenging activity of 6.57 ± 0.13 µM TE/g film, with greater migration of polyphenol to water (6.30 ± 0.52 mg GAE/g film) were obtained. Our results show that the incorporation of phytochemical-rich fruit microparticles is a promising strategy to create biodegradable edible films.


Whey/collagen protein blend AWC was the best wall material for acerola encapsulation.Spray dried protein-acerola particles were used to formulate edible films.Water soluble phenolic-rich AWC films with antioxidant properties were produced.Acerola phenolics from starch films migrated more to water than to acid media.


Subject(s)
Edible Films , Ascorbic Acid , Phytochemicals , Polyphenols , Starch
13.
Int J Biol Macromol ; 262(Pt 1): 129837, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38302023

ABSTRACT

Starch/cellulose composite is one of the most promising systems since both matrix and reinforce agent have same chemical unite glucose, which results in an excellent compatibility. In this work, edible starch film was developed by compositing starch with diverse fibrillary celluloses (FCs) derived from okara, employing a confluence of chemical interactions and mechanical influences. Since diameter of the FCs can be easily controlled by processing methodologies, it is the first time to systematically investigate the effect of diameter of the FCs from macro to nano-scales on the performances of starch-based film. The fabricated macro- and nano-fibrillar celluloses and reinforced starch films were characterized by scanning electron microscope, optical microscopy, Fourier transform infrared spectroscopy, Rheometer and contact angle. Results showed that the FCs increased modulus (about 170 %) and tensile strength (about 180 %) significantly as expected since they are well-compatible and some chemical interactions. It was found that nano-fibrillary celluloses (CNFs) improve the toughness (about 20 %) of the starch film more efficiently, which improved the well-recognized weakness of starch-based materials. The nano-scale roughness on the surface of the starch film caused by different shrinkage ratios between starch and CNFs during drying reduced water sensitivity, which is another well-recognized weakness of starch film.


Subject(s)
Edible Films , Starch , Starch/chemistry , Permeability , Tensile Strength , Cellulose/chemistry
14.
Sci Rep ; 14(1): 4133, 2024 02 19.
Article in English | MEDLINE | ID: mdl-38374381

ABSTRACT

Fruit coatings serve a dual purpose in preserving the quality of fruits. Not only do they act as a barrier against water evaporation and fungal infiltration, but they also enhance the fruit's visual appeal in the market. Yet, their influence on the fruit's quality components, which play a crucial role in determining its nutritional value, taste, and overall flavor, has remained relatively unexplored. This study aimed to evaluate the effects of carnauba wax coating on the quality of Moro oranges during storage. The selected fruits were meticulously chosen for uniformity in size. The experiment involved applying carnauba wax, a commonly used type among local producers, at four different concentrations: 0%, 0.5%, 1%, and 1.5%. These treatments were applied during various storage periods, including immediately after fruits were harvested and after 40 and 80 days. Following the application of these treatments, the oranges were stored in a controlled environment (morgue) at a temperature of 4 ± 1 °C. Subsequently, several physicochemical parameters of both the fruit flesh and skin were examined. The results unveiled a decline in the overall ascorbic acid content of the fruits. In terms of phenol content, a general decreasing trend was observed after harvesting. At each sampling interval during storage, the phenol content in uncoated fruits consistently exceeded that of their waxed counterparts. Significant reduction in fruit weight was observed throughout the storage period. Both vitamin C and total acidity levels in the fruit exhibited decreases during the storage period. As time passed, fruit firmness gradually declined, while fruit decay increased during the 40- and 80-day storage periods for untreated Moro oranges. The anthocyanin content showed an increasing trend. The study also unveiled a decline in the antioxidant capacity of citrus fruits during storage. Strong significant positive correlations were observed between total phenol content and key parameters, such as antioxidant activity (0.941**), MDA (0.364*), vitamin C content, and total carbohydrate content (0.475**). Skin radiance showed a perfect correlation with chroma and hue (1.000**). Principal component analysis revealed that the first principal component accounted for 34.27% of the total variance, out of a total of five principal components that explained 77.14% of the variance. Through cluster analysis, the variables were categorized into three distinct groups; one associated with weight loss and another with ion leakage. Considering these findings, carnauba wax-based coating emerges as a promising solution for preserving Moro oranges. It effectively mitigates fruit weight loss and helps maintain fruit firmness during storage, making it a valuable tool for fruit preservation.


Subject(s)
Citrus sinensis , Citrus , Edible Films , Waxes , Citrus sinensis/chemistry , Fruit/chemistry , Food Preservation/methods , Antioxidants/analysis , Ascorbic Acid/analysis , Citrus/microbiology , Phenols/analysis , Weight Loss
15.
Food Chem ; 443: 138511, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38290302

ABSTRACT

Novel antioxidant and antibacterial composite films were fabricated by incorporating pomegranate peel extract (PPE) into gelatin and carboxymethyl cellulose matrices. Increasing PPE concentration significantly (p < 0.05) altered physical properties and improved UV (decrease in light transmission 87.30 % to 9.89 % at 400 nm) and water resistance, while FTIR and molecular docking results revealed hydrogen bonding between PPE and film matrix. PPE incorporation enhanced antioxidant activity up to 84.15 ± 0.12 % and also restricted gram-positive and gram-negative bacterial growth by 72.4 % and 65.9 % respectively after 24 h, measured by antimicrobial absorption assays. For beef packaging applications at refrigeration temperatures, PPE films were most effective at extending shelf-life up to 3 days, as evidenced by reduced total viable counts, total volatile basic nitrogen, weight loss, and pH changes compared to control films. Therefore, these antioxidant and antibacterial films have potential applications in food packaging to protect against mechanical stress, light exposure, microbial spoilage, and oxidative free radicals.


Subject(s)
Edible Films , Pomegranate , Animals , Cattle , Anti-Bacterial Agents/chemistry , Antioxidants/chemistry , Pomegranate/chemistry , Gelatin/chemistry , Carboxymethylcellulose Sodium/metabolism , Molecular Docking Simulation , Food Packaging/methods , Plant Extracts/chemistry
16.
Int J Biol Macromol ; 262(Pt 1): 129826, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38296124

ABSTRACT

Fresh fruits are highly needed for the health benefits of human beings because of the presence of high content of natural nutrition in the form of vitamins, minerals, antioxidants, and other phenolic compounds. However, some nutritional fruits such as guava are climacteric in nature with very less post-harvest shelf-life because of the ripening in a very short period and possibility of microbial infections. Thus security of natural nutrients is a serious concern in order to properly utilize guava without generating a huge amount of waste. Among reported various methods for the enhancement of fruits shelf-life, the application of edible coatings with antimicrobial activities on the outer surface of fruits have attracted significant attention because of their eco-friendly nature, easy applicability, high efficacy, and good durability. In recent years, researchers are paying more and more attention in the development of antimicrobial edible coatings to enhance the post-harvest shelf-life of guava using polysaccharides, protein and lipids. In this review, basic approaches and recent advancements in development of antimicrobial and edible coatings on guava fruit by the application of polysaccharides and protein and lipids along with the combination of nanomaterials are summarized. In addition, improvements in basic properties of edible coatings to significantly control the permeation of gases (O2/CO2) by the optimization of coating components as well as delay in ripening process are reviewed and discussed.


Subject(s)
Anti-Infective Agents , Edible Films , Psidium , Humans , Fruit , Food Preservation/methods , Polysaccharides/pharmacology , Anti-Infective Agents/pharmacology , Proteins/pharmacology , Lipids/pharmacology
17.
Carbohydr Polym ; 328: 121736, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38220350

ABSTRACT

Efficient and low-cost postharvest preservation of fruits and vegetables has always been one of the urgent problems to be solved in the food field. Due to the wide sources, good environmental and human safety, and high biodegradability, starch-based coating preservation method has great application prospects in the postharvest preservation of fruits and vegetables. However, starch materials also have the disadvantages of poor mechanical properties and easy water absorption performance, which makes it difficult to fully meet the requirements in practical production. Therefore, starch is often used in combination with other components to form composite materials. This paper began with an introduction to the preservation principles of edible starch-based coatings, including inherent properties and extra functional properties. Besides, the preservation principles of edible coatings and the recent advances in the field of fruit and vegetable preservation were also comprehensively reviewed, focusing on the preparation and application of starch-based coatings. The information will contribute to the further development of starch-based coatings to improve the postharvest preservation effect of fruits and vegetables.


Subject(s)
Edible Films , Food Preservation , Humans , Food Preservation/methods , Starch , Vegetables , Fruit
18.
Sci Rep ; 14(1): 509, 2024 01 04.
Article in English | MEDLINE | ID: mdl-38177185

ABSTRACT

In this study, Lallemantia royleana mucilage (LRM) based edible coating containing 1.5 × 108 and 3 × 109 CFU/mL Lacticaseibacillus casei XN18 (Lbc1.5 and Lbc3) was designed to improve the quality and shelf-life of fresh pistachio. The fresh pistachios were coated with LRM + Lbc and their physicochemical, microbial, and sensory properties were evaluated after 1-, 5-, 15-, 25-, and 35-day storage at 4 °C. By the end of storage day, in comparison to control, the presence of probiotic isolate in the edible coating (particularly LRM + Lbc3) led to a marked decrease in fungal growth (3.1 vs. 5.8 Log CFU/g), weight loss (6.7 vs. 8.1%), and fat oxidation (0.19 vs. 0.98 meq O2/kg), and preserved total chlorophylls (8.1 vs. 5.85 mg/kg) and phenols (31.5 vs. 20.32 mg GAE/100 g), and antioxidant activity (38.95 vs. 15.18%) of samples during storage period. Furthermore, LRM + Lbc3-coated samples had a probiotic number above the recommended level (6.85-9.29 log CFU/g) throughout storage. The pistachios coated with probiotic-enriched edible coatings were greatly accepted by panelists. In the next section, Gaussian Process Regression (GPR) was used for predicting some parameters including: weight loss, TSS, Fat content, PV, Soluble carbohydrate content, Viability, Total phenolic compounds, Antioxidant activity, Mold and yeast, Total chlorophylls, Total carotenoids, Color, Odor and Overall acceptance. The results indicated that, there is a good agreement between the actual and predicted data by GPR model and it can be used for similar situation to decrease the cost of laboratory tests and increase the respond of analysis.


Subject(s)
Edible Films , Pistacia , Probiotics , Fruit/chemistry , Antioxidants/analysis , Food Preservation/methods , Polysaccharides/analysis , Seeds/chemistry , Probiotics/analysis , Weight Loss
19.
Sci Rep ; 14(1): 517, 2024 01 04.
Article in English | MEDLINE | ID: mdl-38177403

ABSTRACT

The rising packaging industry together with global demand for sustainable production has increased the interest in developing biodegradable packaging materials. The aim of the study was to develop edible films based on pectin, gelatin, and hydroxypropyl methylcellulose and evaluate their applicability as biodegradable packaging materials for gilthead seabream fillets. Mechanical properties, water barriers, wettability of the films through contact angle measurement, optical, and UV-Vis barrier properties were evaluated for food packaging applications. The effective blend of polysaccharide and protein film-forming solutions was confirmed by the produced films with excellent optical properties, acceptable mechanical properties and adequate barriers to water vapor. The contact angle for pectin based and gelatin based films were higher than 90° indicating the hydrophobic films, while HPMC based films had contact angle lower than 90°. The produced films were tested as alternative and environmentally friendly packaging materials for gilthead seabream fillets during refrigerated storage. All tested packaging conditions resulted in similar shelf-life in packed gilthead seabream fillets (i.e. 7-8 days at 2 °C). The results showed that the developed films may reduce the use of conventional petroleum-based food packaging materials without affecting the shelf-life of fish.


Subject(s)
Edible Films , Sea Bream , Animals , Gelatin/chemistry , Food Packaging/methods , Polysaccharides , Pectins
20.
Compr Rev Food Sci Food Saf ; 23(1): e13275, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38284604

ABSTRACT

Along with the growth of the world's population that reduces the accessibility of arable land and water, demand for food, as the fundamental element of human beings, has been continuously increasing each day. This situation not only becomes a challenge for the modern food chain systems but also affects food availability throughout the world. Edible coating is expected to play a significant role in food preservation and packaging, where this technique can reduce the number of food loss and subsequently ensure more sustainable food and agriculture production through various mechanisms. This review provides comprehensive information related to the currently available advanced technologies of coating applications, which include advanced methods (i.e., nanoscale and multilayer coating methods) and advanced properties (i.e., active, self-healing, and super hydrophobic coating properties). Furthermore, the benefits and drawbacks of those technologies during their applications on foods are also discussed. For further research, opportunities are foreseen to develop robust edible coating methods by combining multiple advanced technologies for large-scale and more sustainable industrial production.


Subject(s)
Edible Films , Humans , Food Packaging/methods , Food Preservation/methods , Food Technology , Biopolymers
SELECTION OF CITATIONS
SEARCH DETAIL
...