Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.113
Filter
1.
Theor Appl Genet ; 137(6): 131, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748046

ABSTRACT

KEY MESSAGE: Identification of 337 stable MTAs for wheat spike-related traits improved model accuracy, and favorable alleles of MTA259 and MTA64 increased grain weight and yield per plant. Wheat (Triticum aestivum L.) is one of the three primary global, staple crops. Improving spike-related traits in wheat is crucial for optimizing spike and plant morphology, ultimately leading to increased grain yield. Here, we performed a genome-wide association study using a dataset of 24,889 high-quality unique single-nucleotide polymorphisms (SNPs) and phenotypic data from 314 wheat accessions across eight diverse environments. In total, 337 stable and significant marker-trait associations (MTAs) related to spike-related traits were identified. MTA259 and MTA64 were consistently detected in seven and six environments, respectively. The presence of favorable alleles associated with MTA259 and MTA64 significantly reduced wheat spike exsertion length and spike length, while enhancing thousand kernel weight and yield per plant. Combined gene expression and network analyses identified TraesCS6D03G0692300 and TraesCS6D03G0692700 as candidate genes for MTA259 and TraesCS2D03G0111700 and TraesCS2D03G0112500 for MTA64. The identified MTAs significantly improved the prediction accuracy of each model compared with using all the SNPs, and the random forest model was optimal for genome selection. Additionally, the eight stable and major MTAs, including MTA259, MTA64, MTA66, MTA94, MTA110, MTA165, MTA180, and MTA164, were converted into cost-effective and efficient detection markers. This study provided valuable genetic resources and reliable molecular markers for wheat breeding programs.


Subject(s)
Phenotype , Polymorphism, Single Nucleotide , Triticum , Triticum/genetics , Triticum/growth & development , Genome-Wide Association Study , Quantitative Trait Loci , Alleles , Plant Breeding , Genome, Plant , Genetic Association Studies , Selection, Genetic , Genotype , Genetic Markers , Edible Grain/genetics , Edible Grain/growth & development
2.
Theor Appl Genet ; 137(6): 128, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733405

ABSTRACT

KEY MESSAGE: Discovery of Rht27, a dwarf gene in wheat, showed potential in enhancing grain yield by reducing plant height. Plant height plays a crucial role in crop architecture and grain yield, and semi-dwarf Reduced Height (Rht) alleles contribute to lodging resistance and were important in "Green Revolution." However, the use of these alleles is associated with some negative side effects in some environments, such as reduced coleoptile length, low nitrogen use efficiency, and reduced yield. Therefore, novel dwarf gene resources are needed to pave an alternative route to overcome these side effects. In this study, a super-dwarf mutant rht27 was obtained by the mutagenesis of G1812 (Triticum urartu, the progenitor of the A sub-genome of common wheat). Genetic analysis revealed that the dwarf phenotype was regulated by a single recessive genetic factor. The candidate region for Rht27 was narrowed to a 1.55 Mb region on chromosome 3, within which we found two potential candidate genes that showed polymorphisms between the mutant and non-mutagenized G1812. Furthermore, the natural variants and elite haplotypes of the two candidates were investigated in a natural population of common wheat. The results showed that the natural variants affect grain yield components, and the dwarf haplotypes show the potential in improving agronomic traits and grain yield. Although the mutation in Rht27 results in severe dwarf phenotype in T. urartu, the natural variants in common wheat showed desirable phenotype, which suggests that Rht27 has the potential to improve wheat yield by utilizing its weak allelic mutation or fine-tuning its expression level.


Subject(s)
Genes, Plant , Haplotypes , Phenotype , Triticum , Triticum/genetics , Triticum/growth & development , Alleles , Chromosome Mapping , Edible Grain/genetics , Edible Grain/growth & development
3.
Planta ; 259(6): 141, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38695915

ABSTRACT

MAIN CONCLUSION: This review highlights the roles of phloem in the long-distance transport and accumulation of As in rice plants, facilitating the formulation of new strategies to reduce the grain As content. Rice is a staple diet for a significant proportion of the global population. As toxicity is a major issue affecting the rice productivity and quality worldwide. Phloem tissues of rice plants play vital roles in As speciation, long-distance transport, and unloading, thereby controlling the As accumulation in rice grains. Phloem transport accounts for a significant proportion of As transport to grains, ranging from 54 to 100% depending on the species [inorganic arsenate (As(V)), arsenite (As(III)), or organic dimethylarsinic acid (DMA(V)]. However, the specific mechanism of As transport through phloem leading to its accumulation in grains remains unknown. Therefore, understanding the molecular mechanism of phloem-mediated As transport is necessary to determine the roles of phloem in long-distance As transport and subsequently reduce the grain As content via biotechnological interventions. This review discusses the roles of phloem tissues in the long-distance transport and accumulation of As in rice grains. This review also highlights the biotechnological approaches using critical genetic factors involved in nodal accumulation, vacuolar sequestration, and cellular efflux of As in phloem- or phloem-associated tissues. Furthermore, the limitations of existing transgenic techniques are outlined to facilitate the formulation of novel strategies for the development of rice with reduced grain As content.


Subject(s)
Arsenic , Oryza , Phloem , Oryza/metabolism , Oryza/growth & development , Oryza/genetics , Phloem/metabolism , Arsenic/metabolism , Biological Transport , Edible Grain/metabolism , Edible Grain/growth & development
4.
Funct Plant Biol ; 512024 05.
Article in English | MEDLINE | ID: mdl-38701238

ABSTRACT

Climate change significantly affects crop production and is a threat to global food security. Conventional tillage (CT) is the primary tillage practice in rain-fed areas to conserve soil moisture. Despite previous research on the effect of tillage methods on different cropping systems, a comparison of tillage methods on soil water storage, crop yield and crop water use in wheat (Triticum aestivum ) and maize (Zea mays ) under different soil textures, precipitation and temperature patterns is needed. We reviewed 119 published articles and used meta-analysis to assess the effects of three conservation tillage practices (NT, no-tillage; RT, reduced tillage; ST, subsoil tillage), on precipitation storage efficiency (PSE), soil water storage at crop planting (SWSp), grain yield, evapotranspiration (ET) and water use efficiency (WUE) under varying precipitation and temperature patterns and soil textures in dryland wheat and maize, with CT as the control treatment. Conservation tillage methods increased PSE, SWSp, grain yield, ET and WUE in both winter wheat-fallow and spring maize cropping systems. More precipitation water was conserved in fine-textured soils than in medium-textured and coarse-textured soils, which improved ET. Conservation tillage increased soil water conservation and yield under high mean annual precipitation (MAP) and moderate mean annual temperature (MAT) conditions in winter wheat. However, soil water conservation and yield were greater under MAP <400mm and moderate MAT. We conclude that conservation tillage could be promising for increasing precipitation storage, soil water conservation and crop yield in regions with medium to low MAPs and medium to high MATs.


Subject(s)
Agriculture , Soil , Triticum , Water , Zea mays , Zea mays/growth & development , Triticum/growth & development , Soil/chemistry , Water/metabolism , Agriculture/methods , Crop Production/methods , Edible Grain/growth & development , Crops, Agricultural/growth & development
5.
Sci Rep ; 14(1): 10975, 2024 05 14.
Article in English | MEDLINE | ID: mdl-38744876

ABSTRACT

Common wheat (Triticum aestivum L.) is a major staple food crop, providing a fifth of food calories and proteins to the world's human population. Despite the impressive growth in global wheat production in recent decades, further increases in grain yield are required to meet future demands. Here we estimated genetic gain and genotype stability for grain yield (GY) and determined the trait associations that contributed uniquely or in combination to increased GY, through a retrospective analysis of top-performing genotypes selected from the elite spring wheat yield trial (ESWYT) evaluated internationally during a 14-year period (2003 to 2016). Fifty-six ESWYT genotypes and four checks were sown under optimally irrigated conditions in three phenotyping trials during three consecutive growing seasons (2018-2019 to 2020-2021) at Norman E. Borlaug Research Station, Ciudad Obregon, Mexico. The mean GY rose from 6.75 (24th ESWYT) to 7.87 t ha-1 (37th ESWYT), representing a cumulative increase of 1.12 t ha-1. The annual genetic gain for GY was estimated at 0.96% (65 kg ha-1 year-1) accompanied by a positive trend in genotype stability over time. The GY progress was mainly associated with increases in biomass (BM), grain filling rate (GFR), total radiation use efficiency (RUE_total), grain weight per spike (GWS), and reduction in days to heading (DTH), which together explained 95.5% of the GY variation. Regression lines over the years showed significant increases of 0.015 kg m-2 year-1 (p < 0.01), 0.074 g m-2 year-1 (p < 0.05), and 0.017 g MJ-1 year-1 (p < 0.001) for BM, GFR, and RUE_total, respectively. Grain weight per spike exhibited a positive but no significant trend (0.014 g year-1, p = 0.07), whereas a negative tendency for DTH was observed (- 0.43 days year-1, p < 0.001). Analysis of the top ten highest-yielding genotypes revealed differential GY-associated trait contributions, demonstrating that improved GY can be attained through different mechanisms and indicating that no single trait criterion is adopted by CIMMYT breeders for developing new superior lines. We conclude that CIMMYT's Bread Wheat Breeding Program has continued to deliver adapted and more productive wheat genotypes to National partners worldwide, mainly driven by enhancing RUE_total and GFR and that future yield increases could be achieved by intercrossing genetically diverse top performer genotypes.


Subject(s)
Edible Grain , Genotype , Triticum , Triticum/genetics , Triticum/growth & development , Edible Grain/genetics , Edible Grain/growth & development , Phenotype , Seasons , Mexico
6.
PeerJ ; 12: e17310, 2024.
Article in English | MEDLINE | ID: mdl-38699188

ABSTRACT

Background: Oat is a dual-purpose cereal used for grain and forage. The demand of oat has been increasing as the understanding of the nutritional, ecological, and economic values of oat increased. However, the frequent lodging during the growing period severely affect the high yielding potential and the quality of the grain and forage of oat. Methods: Therefore, we used the lodging-resistant variety LENA and the lodging-sensitive variety QY2 as materials, implementing four different planting densities: 2.25×106 plants/ha (D1), 4.5×106 plants/ha (D2), 6.75×106 plants/ha (D3), and 9×106 plants/ha (D4). At the appropriate growth and development stages, we assessed agronomic traits, mechanical characteristics, biochemical compositions, yield and its components. The study investigated the impact of planting density on the growth, lodging, and yield of oat, as well as their interrelationships. Additionally, we identified the optimal planting density to establish a robust crop structure. The research aims to contribute to the high-yield and high-quality cultivation of oat. Results: We observed that with increasing planting density, plant height, grass and grain yields of both varieties first increased and then decreased; root fresh weight, stem diameter, stem wall thickness, stem puncture strength, breaking strength, compressive strength, lignin and crude fiber contents, and yield components decreased; whereas the lodging rate and lodging coefficient increased. Planting density affects lodging by regulating plant height, height of center of gravity, stem wall thickness, internode length, and root fresh weight of oat. Additionally, it can impact stem mechanical strength by modulating the synthesis of lignin and crude fiber, which in turn affecting lodging resistance. Plant height, height of center of gravity, stem wall thickness, internode length, root fresh weight, breaking strength, compressive strength, lignin and crude fiber content, single-plant weight, grain yield and 1,000-grain weight can serve as important indicators for evaluating oat stem lodging resistance. We also noted that planting density affected grain yield both directly and indirectly (by affecting lodging); high density increased lodging rate and decreased grain yield, mainly by reducing 1,000-grain weight. Nonetheless, there was no significant relationship between lodging and grass yield. As appropriate planting density can increase the yield while maintaining good lodging resistance, in this study, 4.5×106 plants/ha (D2) was found to be the best planting density for oat in terms of lodging resistance and grass and grain yield. These findings can be used as a reference for oat planting.


Subject(s)
Avena , Avena/growth & development , Edible Grain/growth & development , Crop Production/methods , Agriculture/methods
7.
Glob Chang Biol ; 30(5): e17298, 2024 May.
Article in English | MEDLINE | ID: mdl-38712640

ABSTRACT

Diversified crop rotations have been suggested to reduce grain yield losses from the adverse climatic conditions increasingly common under climate change. Nevertheless, the potential for climate change adaptation of different crop rotational diversity (CRD) remains undetermined. We quantified how climatic conditions affect small grain and maize yields under different CRDs in 32 long-term (10-63 years) field experiments across Europe and North America. Species-diverse and functionally rich rotations more than compensated yield losses from anomalous warm conditions, long and warm dry spells, as well as from anomalous wet (for small grains) or dry (for maize) conditions. Adding a single functional group or crop species to monocultures counteracted yield losses from substantial changes in climatic conditions. The benefits of a further increase in CRD are comparable with those of improved climatic conditions. For instance, the maize yield benefits of adding three crop species to monocultures under detrimental climatic conditions exceeded the average yield of monocultures by up to 553 kg/ha under non-detrimental climatic conditions. Increased crop functional richness improved yields under high temperature, irrespective of precipitation. Conversely, yield benefits peaked at between two and four crop species in the rotation, depending on climatic conditions and crop, and declined at higher species diversity. Thus, crop species diversity could be adjusted to maximize yield benefits. Diversifying rotations with functionally distinct crops is an adaptation of cropping systems to global warming and changes in precipitation.


Subject(s)
Climate Change , Crops, Agricultural , Zea mays , Crops, Agricultural/growth & development , Zea mays/growth & development , North America , Europe , Edible Grain/growth & development , Agriculture/methods , Biodiversity , Crop Production/methods
8.
Nat Commun ; 15(1): 4300, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773134

ABSTRACT

The chromatin modifier GRAIN WEIGHT 6a (GW6a) enhances rice grain size and yield. However, little is known about its gene network determining grain size. Here, we report that MITOGEN-ACTIVED PROTEIN KINASE 6 (OsMAPK6) and E3 ligase CHANG LI GENG 1 (CLG1) interact with and target GW6a for phosphorylation and ubiquitylation, respectively. Unexpectedly, however, in vitro and in vivo assays reveal that both of the two post-translational modifications stabilize GW6a. Furthermore, we uncover two major GW6a phosphorylation sites (serine142 and threonine186) targeted by OsMAPK6 serving an important role in modulating grain size. In addition, our genetic and molecular results suggest that the OsMAPK6-GW6a and CLG1-GW6a axes are crucial and operate in a non-additive manner to control grain size. Overall, our findings identify a previously unknown mechanism by which phosphorylation and ubiquitylation non-additively stabilize GW6a to enhance grain size, and reveal correlations and interactions of these posttranslational modifications during rice grain development.


Subject(s)
Gene Expression Regulation, Plant , Oryza , Plant Proteins , Ubiquitination , Oryza/metabolism , Oryza/genetics , Oryza/growth & development , Phosphorylation , Plant Proteins/metabolism , Plant Proteins/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Edible Grain/metabolism , Edible Grain/growth & development , Protein Processing, Post-Translational , Plants, Genetically Modified , Chromatin/metabolism
9.
Sci Rep ; 14(1): 9151, 2024 04 21.
Article in English | MEDLINE | ID: mdl-38644368

ABSTRACT

Limited commercial quality protein maize (QPM) varieties with low grain yield potential are currently grown in Eastern and Southern Africa (ESA). This study was conducted to (i) assess the performance of single-cross QPM hybrids that were developed from elite inbred lines using line-by-tester mating design and (ii) estimate the general (GCA) and specific (SCA) combining ability of the QPM inbred lines for grain yield, agronomic and protein quality traits. One hundred and six testcrosses and four checks were evaluated across six environments in ESA during 2015 and 2016. Significant variations (P ≤ 0.01) were observed among environments, genotypes and genotype by environment interaction (GEI) for most traits evaluated. Hybrids H80 and H104 were the highest-yielding, most desirable, and stable QPM hybrids. Combining ability analysis showed both additive and non-additive gene effects to be important in the inheritance of grain yield. Additive effects were more important for agronomic and protein quality traits. Inbred lines L19 and L20 depicted desirable GCA effects for grain yield. Various other inbred lines with favorable GCA effects for agronomic traits, endosperm modification, and protein quality traits were identified. These inbred lines could be utilized for breeding desirable QPM cultivars. The QPM hybrids identified in this study could be commercialized after on-farm verification to replace the low-yielding QPM hybrids grown in ESA.


Subject(s)
Plant Breeding , Zea mays , Zea mays/genetics , Zea mays/metabolism , Zea mays/growth & development , Plant Breeding/methods , Africa, Southern , Edible Grain/genetics , Edible Grain/growth & development , Edible Grain/metabolism , Africa, Eastern , Genotype , Crosses, Genetic , Inbreeding , Phenotype , Plant Proteins/genetics , Plant Proteins/metabolism
10.
Sci Rep ; 14(1): 9416, 2024 04 24.
Article in English | MEDLINE | ID: mdl-38658570

ABSTRACT

Rice (Oryza sativa L.) is an important member of the family Poaceae and more than half of world population depend for their dietary nutrition on rice. Rice cultivars with higher yield, resilience to stress and wider adaptability are essential to ensure production stability and food security. The fundamental objective of this study was to identify higher-yielding rice genotypes with stable performance and wider adaptability in a rice growing areas of Pakistan. A triplicate RCBD design experiment with 20 Green Super Rice (GSR) advanced lines was conducted at 12 rice growing ecologies in four Provinces of Pakistan. Grain yield stability performance was assessed by using different univariate and multivariate statistics. Analysis of variance revealed significant differences among genotypes, locations, and G x E interaction for mean squares (p < 0.05) of major yield contributing traits. All the studied traits except for number of tillers per plant revealed higher genotypic variance than environmental variance. Broad sense heritability was estimated in the range of 44.36% to 98.60%. Based on ASV, ASI, bi, Wi2, σ2i and WAAS statistics, the genotypes G1, G4, G5, G8, G11 and G12 revealed lowest values for parametric statistics and considered more stable genotypes based on  paddy yield. The additive main effects and multiplicative interaction (AMMI) model revealed significant variation (p < 0.05) for genotypes, non-signification for environment and highly significant for G × E interaction. The variation proportion of PC1 and PC2 from interaction revealed 67.2% variability for paddy yield. Based on 'mean verses stability analysis of GGE biplot', 'Which-won-where' GGE Biplot, 'discriminativeness vs. representativeness' pattern of stability, 'IPCA and WAASB/GY' ratio-based stability Heat-map, and ranking of genotypes, the genotypes G1, G2, G3, G5, G8, G10, G11 and G13 were observed ideal genotypes with yield potential more than 8 tons ha-1. Discriminativeness vs. representativeness' pattern of stability identifies two environments, E5 (D.I Khan, KPK) and E6 (Usta Muhammad, Baluchistan) were best suited for evaluating genotypic yield performance. Based on these findings we have concluded that the genotypes G1, G2, G3, G5, G8, G10, G11 and G13 could be included in the commercial varietal development process and future breeding program.


Subject(s)
Genotype , Oryza , Oryza/genetics , Oryza/growth & development , Pakistan , Phenotype , Plant Breeding/methods , Gene-Environment Interaction , Edible Grain/genetics , Edible Grain/growth & development , Quantitative Trait, Heritable
11.
J Agric Food Chem ; 72(17): 10149-10161, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38635353

ABSTRACT

The conversion of raw barley (Hordeum vulgare L.) to malt requires a process of controlled germination, where the grain is submerged in water to raise the moisture content to >40%. The transmembrane proteins, aquaporins, influence water uptake during the initial stage of controlled germination, yet little is known of their involvement in malting. With the current focus on sustainability, understanding the mechanisms of water uptake and usage during the initial stages of malting has become vital in improving efficient malting practices. In this study, we used quantitative proteomics analysis of two malting barley genotypes demonstrating differing water-uptake phenotypes in the initial stages of malting. Our study quantified 19 transmembrane proteins from nine families, including seven distinct aquaporin isoforms, including the plasma intrinsic proteins (PIPs) PIP1;1, PIP2;1, and PIP2;4 and the tonoplast intrinsic proteins (TIPs) TIP1;1, TIP2;3, TIP3;1, and TIP3;2. Our findings suggest that the presence of TIP1;1, TIP3;1, and TIP3;2 in the mature barley grain proteome is essential for facilitating water uptake, influencing cell turgor and the formation of large central lytic vacuoles aiding storage reserve hydrolysis and endosperm modification efficiency. This study proposes that TIP3s mediate water uptake in malting barley grain, offering potential breeding targets for improving sustainable malting practices.


Subject(s)
Aquaporins , Germination , Hordeum , Plant Proteins , Seeds , Water , Hordeum/metabolism , Hordeum/genetics , Hordeum/chemistry , Hordeum/growth & development , Aquaporins/metabolism , Aquaporins/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Water/metabolism , Seeds/metabolism , Seeds/chemistry , Seeds/growth & development , Seeds/genetics , Plant Breeding , Edible Grain/metabolism , Edible Grain/chemistry , Edible Grain/growth & development , Edible Grain/genetics , Proteomics
12.
Sci Rep ; 14(1): 9499, 2024 04 25.
Article in English | MEDLINE | ID: mdl-38664438

ABSTRACT

Sorghum is a vital food and feed crop in the world's dry regions. Developing sorghum cultivars with high biomass production and carbon sequestration can contribute to soil health and crop productivity. The objective of this study was to assess agronomic performance, biomass production and carbon accumulation in selected sorghum genotypes for production and breeding. Fifty sorghum genotypes were evaluated at three locations (Silverton, Ukulinga, and Bethlehem) in South Africa during 2022 and 2023 growing seasons. Significant genotype × location (p < 0.05) interactions were detected for days to 50% heading (DTH), days to 50% maturity (DTM), plant height (PH), total plant biomass (PB), shoot biomass (SB), root biomass (RB), root-to-shoot biomass ratio (RS), and grain yield (GY). The highest GY was recorded for genotypes AS115 (25.08 g plant-1), AS251 (21.83 g plant-1), and AS134 (21.42 g plant-1). Genotypes AS122 and AS27 ranked first and second, respectively, for all the carbon stock parameters except for root carbon stock (RCs), whereas genotype AS108 had the highest RCs of 8.87 g plant-1. The principal component analysis identified GY, DTH, PH, PB, SB, RB, RCs, RCs/SCs, total plant carbon stock (PCs), shoot carbon stock (SCs), and grain carbon stock (GCs) as the most discriminated traits among the test genotypes. The cluster analysis using agronomic and carbon-related parameters delineated the test genotypes into three genetic groups, indicating marked genetic diversity for cultivar development and enhanced C storage and sustainable sorghum production. The selected sorghum genotypes are recommended for further breeding and variety release adapted to various agroecologies in South Africa.


Subject(s)
Biomass , Carbon , Genotype , Plant Roots , Plant Shoots , Sorghum , Sorghum/genetics , Sorghum/growth & development , Sorghum/metabolism , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/metabolism , Carbon/metabolism , Plant Shoots/growth & development , Plant Shoots/genetics , Plant Shoots/metabolism , South Africa , Plant Breeding , Edible Grain/genetics , Edible Grain/growth & development , Edible Grain/metabolism
13.
Int J Mol Sci ; 25(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38673733

ABSTRACT

Grain size is a quantitative trait with a complex genetic mechanism, characterized by the combination of grain length (GL), grain width (GW), length to width ration (LWR), and grain thickness (GT). In this study, we conducted quantitative trait loci (QTL) analysis to investigate the genetic basis of grain size using BC1F2 and BC1F2:3 populations derived from two indica lines, Guangzhan 63-4S (GZ63-4S) and TGMS29 (core germplasm number W240). A total of twenty-four QTLs for grain size were identified, among which, three QTLs (qGW1, qGW7, and qGW12) controlling GL and two QTLs (qGW5 and qGL9) controlling GW were validated and subsequently fine mapped to regions ranging from 128 kb to 624 kb. Scanning electron microscopic (SEM) analysis and expression analysis revealed that qGW7 influences cell expansion, while qGL9 affects cell division. Conversely, qGW1, qGW5, and qGW12 promoted both cell division and expansion. Furthermore, negative correlations were observed between grain yield and quality for both qGW7 and qGW12. Nevertheless, qGW5 exhibited the potential to enhance quality without compromising yield. Importantly, we identified two promising QTLs, qGW1 and qGL9, which simultaneously improved both grain yield and quality. In summary, our results laid the foundation for cloning these five QTLs and provided valuable resources for breeding rice varieties with high yield and superior quality.


Subject(s)
Chromosome Mapping , Edible Grain , Oryza , Quantitative Trait Loci , Oryza/genetics , Oryza/growth & development , Edible Grain/genetics , Edible Grain/growth & development , Phenotype , Chromosomes, Plant/genetics , Seeds/genetics , Seeds/growth & development
14.
Physiol Plant ; 176(3): e14321, 2024.
Article in English | MEDLINE | ID: mdl-38686595

ABSTRACT

Increasing density is an effective way to enhance wheat (Triticum aestivum L.) yield under limited cultivated areas. However, the physiological mechanisms underlying the reduction in grain weight when density increased are still unclear. Three field experiments were conducted during the 2014-2019 growing seasons to explore the physiological mechanisms by which polyamines affect grain weight formation. The results showed that when wheat planting density exceeded 450 × 104 seedlings ha-1 and 525 × 104 seedlings ha-1, wheat yield tended to decrease. Compared to moderate density (DM, 450 × 104 seedlings ha-1), the filling rate of inferior grains was reduced before 25 days after anthesis (DAA) and the active filling period was shortened by 6.4%-7.4% under high density (DH, 600 × 104 seedlings ha-1), resulting in a loss of 1000-grain weight by 5.4%-8.1%. DH significantly reduced sucrose and starch content in inferior grains at the filling stage. Meanwhile, DH inhibited the activity of key enzymes involved in polyamine synthesis [SAMDC (EC 4.1.1.50) and SpdSy (EC 2.5.1.16)] and induced the activity of ethylene (ETH) precursor synthase, resulting in a significant decrease in endogenous spermidine (Spd) content in inferior grains, but a significant increase in ETH release rate. Post-flowering application of exogenous Spd increased the accumulation of sucrose and starch in the inferior grains and positively regulated the filling and grain weight of the inferior grains, whereas exogenous ETH had a negative effect. Overall, Spd may affect wheat grain weight at high planting density by promoting the synthesis of sucrose and starch in inferior grains.


Subject(s)
Edible Grain , Spermidine , Starch , Sucrose , Triticum , Triticum/growth & development , Triticum/metabolism , Triticum/physiology , Spermidine/metabolism , Starch/metabolism , Sucrose/metabolism , Edible Grain/growth & development , Edible Grain/metabolism , Seeds/growth & development , Seeds/metabolism , Seedlings/growth & development , Seedlings/metabolism
15.
New Phytol ; 242(5): 2011-2025, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38519445

ABSTRACT

Grain size is a crucial agronomic trait that affects stable yield, appearance, milling quality, and domestication in rice. However, the molecular and genetic relationships among QTL genes (QTGs) underlying natural variation for grain size remain elusive. Here, we identified a novel QTG SGW5 (suppressor of gw5) by map-based cloning using an F2 segregation population by fixing same genotype of the master QTG GW5. SGW5 positively regulates grain width by influencing cell division and cell size in spikelet hulls. Two nearly isogenic lines exhibited a significant differential expression of SGW5 and a 12.2% increase in grain yield. Introducing the higher expression allele into the genetic background containing the lower expression allele resulted in increased grain width, while its knockout resulted in shorter grain hulls and dwarf plants. Moreover, a cis-element variation in the SGW5 promoter influenced its differential binding affinity for the WRKY53 transcription factor, causing the differential SGW5 expression, which ultimately leads to grain size variation. GW5 physically and genetically interacts with WRKY53 to suppress the expression of SGW5. These findings elucidated a new pathway for grain size regulation by the GW5-WRKY53-SGW5 module and provided a novel case for generally uncovering QTG interactions underlying the genetic diversity of an important trait in crops.


Subject(s)
Edible Grain , Gene Expression Regulation, Plant , Oryza , Plant Proteins , Quantitative Trait Loci , Oryza/genetics , Oryza/anatomy & histology , Oryza/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Quantitative Trait Loci/genetics , Edible Grain/genetics , Edible Grain/anatomy & histology , Edible Grain/growth & development , Genes, Plant , Promoter Regions, Genetic/genetics , Alleles , Phenotype , Transcription Factors/genetics , Transcription Factors/metabolism , Seeds/genetics , Seeds/growth & development , Seeds/anatomy & histology , Protein Binding
16.
Science ; 383(6687): eadk8838, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38452087

ABSTRACT

Crop yield potential is constrained by the inherent trade-offs among traits such as between grain size and number. Brassinosteroids (BRs) promote grain size, yet their role in regulating grain number is unclear. By deciphering the clustered-spikelet rice germplasm, we show that activation of the BR catabolic gene BRASSINOSTEROID-DEFICIENT DWARF3 (BRD3) markedly increases grain number. We establish a molecular pathway in which the BR signaling inhibitor GSK3/SHAGGY-LIKE KINASE2 phosphorylates and stabilizes OsMADS1 transcriptional factor, which targets TERMINAL FLOWER1-like gene RICE CENTRORADIALIS2. The tissue-specific activation of BRD3 in the secondary branch meristems enhances panicle branching, minimizing negative effects on grain size, and improves grain yield. Our study showcases the power of tissue-specific hormonal manipulation in dismantling the trade-offs among various traits and thus unleashing crop yield potential in rice.


Subject(s)
Brassinosteroids , Edible Grain , Oryza , Plant Proteins , Brassinosteroids/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Edible Grain/genetics , Edible Grain/growth & development , Edible Grain/metabolism , Gene Expression Regulation, Plant , Glycogen Synthase Kinase 3/genetics , Glycogen Synthase Kinase 3/metabolism , Oryza/genetics , Oryza/growth & development , Oryza/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
17.
Sci Data ; 11(1): 200, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38351049

ABSTRACT

Winter cover crop performance metrics (i.e., vegetative biomass quantity and quality) affect ecosystem services provisions, but they vary widely due to differences in agronomic practices, soil properties, and climate. Cereal rye (Secale cereale) is the most common winter cover crop in the United States due to its winter hardiness, low seed cost, and high biomass production. We compiled data on cereal rye winter cover crop performance metrics, agronomic practices, and soil properties across the eastern half of the United States. The dataset includes a total of 5,695 cereal rye biomass observations across 208 site-years between 2001-2022 and encompasses a wide range of agronomic, soils, and climate conditions. Cereal rye biomass values had a mean of 3,428 kg ha-1, a median of 2,458 kg ha-1, and a standard deviation of 3,163 kg ha-1. The data can be used for empirical analyses, to calibrate, validate, and evaluate process-based models, and to develop decision support tools for management and policy decisions.


Subject(s)
Edible Grain , Secale , Agriculture , Ecosystem , Edible Grain/growth & development , Seasons , Secale/growth & development , Soil , United States
18.
Science ; 382(6669): 364-367, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37883569

ABSTRACT

Plants bred or engineered to be short can stand up better to windstorms. They could also boost yields and benefit the environment.


Subject(s)
Edible Grain , Plant Breeding , Zea mays , Zea mays/anatomy & histology , Zea mays/genetics , Zea mays/growth & development , Wind , Genetic Engineering , Edible Grain/anatomy & histology , Edible Grain/genetics , Edible Grain/growth & development , United States
19.
Nature ; 617(7959): 118-124, 2023 05.
Article in English | MEDLINE | ID: mdl-37100915

ABSTRACT

Modern green revolution varieties of wheat (Triticum aestivum L.) confer semi-dwarf and lodging-resistant plant architecture owing to the Reduced height-B1b (Rht-B1b) and Rht-D1b alleles1. However, both Rht-B1b and Rht-D1b are gain-of-function mutant alleles encoding gibberellin signalling repressors that stably repress plant growth and negatively affect nitrogen-use efficiency and grain filling2-5. Therefore, the green revolution varieties of wheat harbouring Rht-B1b or Rht-D1b usually produce smaller grain and require higher nitrogen fertilizer inputs to maintain their grain yields. Here we describe a strategy to design semi-dwarf wheat varieties without the need for Rht-B1b or Rht-D1b alleles. We discovered that absence of Rht-B1 and ZnF-B (encoding a RING-type E3 ligase) through a natural deletion of a haploblock of about 500 kilobases shaped semi-dwarf plants with more compact plant architecture and substantially improved grain yield (up to 15.2%) in field trials. Further genetic analysis confirmed that the deletion of ZnF-B induced the semi-dwarf trait in the absence of the Rht-B1b and Rht-D1b alleles through attenuating brassinosteroid (BR) perception. ZnF acts as a BR signalling activator to facilitate proteasomal destruction of the BR signalling repressor BRI1 kinase inhibitor 1 (TaBKI1), and loss of ZnF stabilizes TaBKI1 to block BR signalling transduction. Our findings not only identified a pivotal BR signalling modulator but also provided a creative strategy to design high-yield semi-dwarf wheat varieties by manipulating the BR signal pathway to sustain wheat production.


Subject(s)
Biomass , Brassinosteroids , Edible Grain , Signal Transduction , Triticum , Alleles , Brassinosteroids/metabolism , Edible Grain/genetics , Edible Grain/growth & development , Edible Grain/metabolism , Gene Deletion , Genes, Plant , Gibberellins/metabolism , Phenotype , Triticum/classification , Triticum/genetics , Triticum/growth & development , Triticum/metabolism , Plant Proteins/genetics , Crops, Agricultural/genetics , Crops, Agricultural/growth & development , Crops, Agricultural/metabolism
20.
Environ Monit Assess ; 195(1): 51, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36316588

ABSTRACT

Wheat is the important food grain and is cultivated in many Indian states: Punjab, Haryana, Uttar Pradesh, and Madhya Pradesh, which contributes to major crop production in India. In this study, popular statistical approach multiple linear regression (MLR) and time series approaches Time Delay Neural Network (TDNN) and ARIMAX models were envisaged for wheat yield forecast using weather parameters for a case study area, i.e., Junagarh district, western Gujarat region situated at the foot of Mount Girnar. Weather data corresponds to 19 weeks (42nd to 8th Standard Meteorological Week, SMW) during crop growing season was used for prediction of wheat yield using these statistical techniques and were evaluated for their predictive capability. Furthermore, trend analysis among weather parameters and crop yield was also carried out in this study using non-parametric Mann-Kendall test and Sen's slope method. Significant negative correlation was observed between wheat yield and some of the weekly weather variables, viz., maximum temperature (48, 49, 50, 51, 52, and 4th SMW), and total rainfall (50, 51, and 1st SMW) while positive correlation was observed with morning relative humidity (49 and 3rd SMW). Study indicated that forecast error varied from 1.80 to 10.28 in MLR, 0.79 to 7.79 in ARIMAX (2,2,2), - 3.09 to 10.18 in TDNN (4,5) during model training period (1985-2014). The MAPE value shows that the time series data predicted less than 5% of variation, whereas the conventional MLR technique indicated more than 7% variation. Both ARIMAX and TDNN approaches indicated better performance during model training periods, i.e., 1985-2014 and 1985-2015, while former performed well during the forecast periods 1985-2016 and 1985-2017. Overall, the study indicated that the ARIMAX approach can be used consistently for 4 years using the same model.


Subject(s)
Agriculture , Environmental Monitoring , Triticum , Edible Grain/growth & development , Seasons , Triticum/growth & development , Weather , India , Forecasting
SELECTION OF CITATIONS
SEARCH DETAIL
...