Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.109
Filter
1.
Nutrients ; 16(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732601

ABSTRACT

Beneficial health effects of omega-3 polyunsaturated fatty acids (n-3 PUFA) are partly attributed to specialized pro-resolving mediators (SPMs), which promote inflammation resolution. Strategies to improve n-3 PUFA conversion to SPMs may, therefore, be useful to treat or prevent chronic inflammatory disorders. Here, we explored a synbiotic strategy to increase circulating SPM precursor levels. Healthy participants (n = 72) received either SynΩ3 (250 mg eicosapentaenoic acid (EPA) plus docosahexaenoic acid (DHA) lysine salts; two billion CFU Bacillus megaterium; n = 23), placebo (n = 24), or fish oil (300 mg EPA plus DHA; N = 25) capsules daily for 28 days in a randomized, double-blind placebo-controlled parallel 3-group design. Biomarkers were assessed at baseline and after 2 and 28 days of intervention. The primary analysis involved the comparison between SynΩ3 and placebo. In addition, SynΩ3 was compared to fish oil. The synbiotic SynΩ3 comprising Bacillus megaterium DSM 32963 and n-3 PUFA salts significantly increased circulating SPM precursor levels, including 18-hydroxy-eicosapentaenoic acid (18-HEPE) plus 5-HEPE, which was not achieved to this extent by fish oil with a similar n-3 PUFA content. Omega-3 indices were increased slightly by both SynΩ3 and fish oil. These findings suggest reconsidering conventional n-3 PUFA supplementation and testing the effectiveness of SynΩ3 particularly in conditions related to inflammation.


Subject(s)
Bacillus megaterium , Eicosapentaenoic Acid , Fatty Acids, Omega-3 , Synbiotics , Humans , Male , Female , Adult , Double-Blind Method , Synbiotics/administration & dosage , Eicosapentaenoic Acid/blood , Young Adult , Docosahexaenoic Acids/blood , Middle Aged , Biomarkers/blood , Healthy Volunteers , Fish Oils/administration & dosage
2.
Sci Rep ; 14(1): 10238, 2024 05 03.
Article in English | MEDLINE | ID: mdl-38702342

ABSTRACT

Fatty acids are precursors of inflammatory oxylipins. In the context of COVID-19, an excessive production of pro-inflammatory cytokines is associated with disease severity. The objective was to investigate whether the baseline omega 3/omega 6 fatty acids ratio and the oxylipins were associated with inflammation and oxidative stress in unvaccinated patients with COVID-19, classified according to the severity of the disease during hospitalization. This Prospective population-based cohort study included 180 hospitalized patients with COVID-19. The patients were classified into five groups according to the severity of their disease. Group 1 was the least severe and Group 5 was the most severe. Three specific types of fatty acids-eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and arachidonic acid (AA)-as well as their enzymatic and non-enzymatic oxylipins were determined using chromatography coupled mass spectrometry. There was no difference in the ratio of omega-3 to omega-6 fatty acids between the groups (p = 0.276). However, the EPA/AA ratio was lower in Group 4 compared to Group 1 (p = 0.015). This finding was associated with an increase in both C-Reactive Protein (p < 0.001) and Interleukin-6 (p = 0.002). Furthermore, the concentration of F2-Isoprostanes was higher in Group 4 than in Group 1 (p = 0.009), while no significant changes were observed for other oxylipins among groups. Multivariate analysis did not present any standard of biomarkers, suggesting the high complexity of factors involved in the disease severity. Our hypothesis was confirmed in terms of EPA/AA ratio. A higher EPA/AA ratio upon hospital admission was found to be associated with lower concentration of C-Reactive Protein and Interleukin-6, leading to a better prognosis of hospitalized SARS-CoV-2 patients. Importantly, this beneficial outcome was achieved without any form of supplementation. The trial also provides important information that can be further applied to reduce the severity of infections associated with an uncontrolled synthesis of pro-inflammatory cytokines.Trial registration: https://clinicaltrials.gov/study/NCT04449718 -01/06/2020. ClinicalTrials.gov Identifier: NCT04449718.


Subject(s)
COVID-19 , Fatty Acids, Omega-3 , Hospitalization , Severity of Illness Index , Humans , COVID-19/blood , Male , Female , Middle Aged , Fatty Acids, Omega-3/blood , Aged , Prospective Studies , SARS-CoV-2/isolation & purification , Oxylipins/blood , Eicosapentaenoic Acid/blood , Oxidative Stress , Docosahexaenoic Acids/blood , Adult , Inflammation/blood
3.
J Nutr ; 154(5): 1561-1570, 2024 May.
Article in English | MEDLINE | ID: mdl-38513888

ABSTRACT

BACKGROUND: The brain is concentrated with omega (ω)-3 (n-3) fatty acids (FAs), and these FAs must come from the plasma pool. The 2 main ω-3 FAs, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), must be in the form of nonesterified fatty acid (NEFA) or esterified within phospholipids (PLs) to reach the brain. We hypothesized that the plasma concentrations of these ω-3 FAs can be modulated by sex, body mass index (BMI, kg/m2), age, and the presence of the apolipoprotein (APO) E-ε4 allele in response to the supplementation. OBJECTIVES: This secondary analysis aimed to determine the concentration of EPA and DHA within plasma PL and in the NEFA form after an ω-3 FA or a placebo supplementation and to investigate whether the factors change the response to the supplement. METHODS: A randomized, double-blind, placebo-controlled trial was conducted. Participants were randomly assigned to either an ω-3 FA supplement (DHA 0.8 g and EPA 1.7 g daily) or to a placebo for 6 mo. FAs from fasting plasma samples were extracted and subsequently separated into PLs with esterified FAs and NEFAs using solid-phase extraction. DHA and EPA concentrations in plasma PLs and as NEFAs were quantified using gas chromatography. RESULTS: EPA and DHA concentrations in the NEFA pool significantly increased by 31%-71% and 42%-82%, respectively, after 1 and 6 mo of ω-3 FA supplementation. No factors influenced plasma DHA and EPA responses in the NEFA pool. In the plasma PL pool, DHA increased by 83%-109% and EPA by 387%-463% after 1 and 6 mo of ω-3 FA supplementation. APOE4 carriers, females, and individuals with a BMI of ≤25 had higher EPA concentrations than noncarriers, males, and those with a BMI of >25, respectively. CONCLUSIONS: The concentration of EPA in plasma PLs are modulated by APOE4, sex, and BMI. These factors should be considered when designing clinical trials involving ω-3 FA supplementation. This trial was registered at clinicaltrials.gov as NCT01625195.


Subject(s)
Apolipoprotein E4 , Body Mass Index , Dietary Supplements , Eicosapentaenoic Acid , Fatty Acids, Omega-3 , Phospholipids , Humans , Female , Male , Phospholipids/blood , Eicosapentaenoic Acid/blood , Eicosapentaenoic Acid/administration & dosage , Double-Blind Method , Fatty Acids, Omega-3/blood , Fatty Acids, Omega-3/administration & dosage , Apolipoprotein E4/genetics , Apolipoprotein E4/blood , Middle Aged , Adult , Sex Factors , Docosahexaenoic Acids/blood , Docosahexaenoic Acids/administration & dosage , Aged
4.
Nutrition ; 123: 112413, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38518540

ABSTRACT

OBJECTIVES: We assessed the joint effects of omega (n)-3 fatty acid supplementation and dietary fish intake on systemic lipid mediators of inflammation among adults. METHODS: Within VITAL, a double-blind randomized controlled trial, adults were randomized to ω-3 fatty acids (460 mg EPA + 380 mg DHA/d) or placebo. We selected participants who reported low (<1 serving/mo) baseline dietary fish intake and matched them by age, sex, race, and trial arm to participants with self-reported highest fish intake (≥3.9 servings/wk). Baseline and 1-y plasma samples were tested for 9 ω-3 fatty acid-derived lipid mediators. Multivariable linear models assessed lipid mediator changes and joint effects of ω-3 fatty acid supplementation and dietary fish intake. RESULTS: Forty-eight participants with low baseline fish intake were matched to 48 with high fish intake. Mean age was 64.6 (±7.26), 50% were female, and 85% non-Hispanic white. One-year lipid mediator changes in expected directions were observed in those receiving ω-3 fatty acids versus placebo: reductions in proinflammatory mediators, PGD2, 5-HETE, and 12-HETE; increases in proresolving mediators, EPA and DHA. Larger 1-y lipid biomarker changes were seen in those with low baseline fish intake randomized to active ω-3 fatty acids for DHA, EPA, PGD2, Resolvin D1, and Resolvin D4 were observed, although no significant multiplicative interactions were detected. DISCUSSION: Beneficial changes in circulating proresolving and proinflammatory mediators were found with 1-y of ω-3 fatty acid supplementation versus placebo for all participants, with a trend toward larger effects among those with low baseline fish intake, although interactions were not significant.


Subject(s)
Dietary Supplements , Docosahexaenoic Acids , Fatty Acids, Omega-3 , Fishes , Inflammation , Seafood , Humans , Female , Male , Middle Aged , Double-Blind Method , Inflammation/blood , Animals , Fatty Acids, Omega-3/administration & dosage , Fatty Acids, Omega-3/pharmacology , Aged , Docosahexaenoic Acids/administration & dosage , Docosahexaenoic Acids/blood , Eicosapentaenoic Acid/blood , Eicosapentaenoic Acid/administration & dosage , Diet/methods
5.
Int J Obes (Lond) ; 48(5): 725-732, 2024 May.
Article in English | MEDLINE | ID: mdl-38347128

ABSTRACT

BACKGROUND: Inadequate inflammation resolution may contribute to persistent low-grade inflammation that accompanies many chronic conditions. Resolution of inflammation is an active process driven by Specialized Pro-resolving Mediators (SPM) that derive from long chain n-3 and n-6 fatty acids. This study examined plasma SPM in relation to sex differences, lifestyle and a broad range cardiovascular disease (CVD) risk factors in 978, 27-year olds from the Australian Raine Study. METHODS: Plasma SPM pathway intermediates (18-HEPE, 17-HDHA and 14-HDHA), and SPM (E- and D-series resolvins, PD1, MaR1) and LTB4 were measured by liquid chromatography-tandem mass spectrometry (LCMSMS). Pearson correlations and multiple regression analyses assessed relationships between SPM and CVD risk factors. Unpaired t-tests or ANOVA assessed the effect of sex, smoking, unhealthy alcohol consumption and obesity on SPM. RESULTS: Women had higher 17-HDHA (p = 0.01) and lower RvE1 (p < 0.0001) and RvD1 (p = 0.05) levels compared with men. In univariate analysis, obesity associated with lower RvE1 (p = 0.002), whereas smoking (p < 0.001) and higher alcohol consumption (p < 0.001) associated with increased RvE1. In multiple regression analysis, plasma RvE1 was negatively associated with a range of measures of adiposity including BMI, waist circumference, waist-to-height ratio, abdominal subcutaneous fat volume, and skinfold thicknesses in both men and women. CONCLUSION: This population study suggests that a deficiency in plasma RvE1 may occur in response to increasing adiposity. This observation could be relevant to ongoing inflammation that associates with CVD and other chronic diseases.


Subject(s)
Adiposity , Eicosapentaenoic Acid , Eicosapentaenoic Acid/analogs & derivatives , Humans , Male , Female , Eicosapentaenoic Acid/blood , Adiposity/physiology , Adult , Australia/epidemiology , Cardiovascular Diseases/blood , Cardiovascular Diseases/epidemiology , Obesity/blood , Risk Factors , Inflammation/blood
6.
J Cardiol ; 82(6): 455-459, 2023 12.
Article in English | MEDLINE | ID: mdl-37459964

ABSTRACT

BACKGROUND: n-3 polyunsaturated fatty acids (PUFAs) reduce the risk of ischemic heart disease. However, there are few reports of a relationship between n-3 PUFAs and coronary spastic angina (CSA). This study aimed to assess the age-dependent role of serum levels of fatty acid in patients with CSA. METHODS AND RESULTS: We enrolled 406 patients who underwent ergonovine tolerance test (ETT) during coronary angiography for evaluation of CSA. All ETT-positive subjects were diagnosed as having CSA. We categorized the patients by age and results of ETT as follows: (1) young (age ≤ 65 years) CSA-positive (n = 32), (2) young CSA-negative (n = 134), (3) elderly (age > 66 years) CSA-positive (n = 36), and (4) elderly CSA-negative (n = 204) groups. We evaluated the serum levels of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), arachidonic acid, and dihomo-gamma-linolenic acid. In the young groups, the serum levels of EPA (64.3 ±â€¯37.7 µg/mL vs. 49.4 ±â€¯28.8 µg/mL, p = 0.015) and DHA (135.7 ±â€¯47.6 µg/mL vs. 117.4 ±â€¯37.6 µg/mL, p = 0.020) were significantly higher in the CSA-positive group than in the CSA-negative group, respectively. However, this was not the case with elderly groups. In the multivariate analysis in young groups, the serum levels of EPA (p = 0.028) and DHA (p = 0.049) were independently associated with the presence of CSA, respectively. CONCLUSION: Our results suggested that the higher serum levels of EPA and/or DHA might be involved in the pathophysiology of CSA in the young population but not in the elderly population.


Subject(s)
Angina Pectoris , Coronary Vasospasm , East Asian People , Fatty Acids, Unsaturated , Aged , Humans , Docosahexaenoic Acids/blood , Eicosapentaenoic Acid/blood , Fatty Acids , Fatty Acids, Omega-3/blood , Fatty Acids, Unsaturated/blood , Angina Pectoris/etiology , Coronary Vasospasm/blood , Coronary Vasospasm/chemically induced , Coronary Vasospasm/diagnostic imaging , Age Factors , Ergonovine/adverse effects , Vasoconstrictor Agents/adverse effects , Coronary Angiography , Middle Aged
8.
Am J Cardiol ; 162: 1-5, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34728061

ABSTRACT

Resolvins and maresins, members of the specialized proresolving mediator (SPM) family, are omega-3 fatty acid-derived lipid mediators that attenuate inflammation. We hypothesized that they play a role in the pathophysiology of coronary microvascular dysfunction (CMD) in women with ischemia and no obstructive coronary disease. In a pilot study, we measured the D-series resolvins (D1, D2, D3, and D5), resolvin E1, maresin 1, docosahexaenoic acid, eicosapentaenoic acid (precursor of resolvin E1), and 18-hydroxyeicosapentaenoic acid by mass spectrometry in the peripheral blood of 31 women enrolled in the Women's Ischemia Trial to Reduce Events in Nonobstructive CAD (WARRIOR) trial who had confirmed CMD assessed by coronary flow reserve. We compared SPM levels with 12 gender and age-matched reference subjects. Compared with the reference subject group, those with CMD had significantly lower plasma concentrations of resolvin D1 and maresin 1 and significantly higher levels of docosahexaenoic acid and 18-hydroxyeicosapentaenoic acid. In conclusion, insufficient or ineffective SPM production may play a role in the pathophysiology of CMD. If our results are validated in a larger cohort, omega-3 fatty acid supplementation could be tested as a novel treatment for these patients.


Subject(s)
Docosahexaenoic Acids/blood , Eicosapentaenoic Acid/blood , Hydroxyeicosatetraenoic Acids/blood , Microcirculation/physiology , Myocardial Ischemia/blood , Aged , Eicosapentaenoic Acid/analogs & derivatives , Fatty Acids, Unsaturated/blood , Female , Humans , Mass Spectrometry , Middle Aged , Myocardial Ischemia/etiology , Myocardial Ischemia/prevention & control , Pilot Projects
9.
Appl Physiol Nutr Metab ; 47(2): 151-158, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34587469

ABSTRACT

This study described the whole blood fatty acid profile and Omega-3 Index (O3I) of Australian Army recruits at the commencement and completion of basic military training (BMT). Eighty males (17-34 y, 77.4 ± 13.0 kg, 43.5 ± 4.3 mL/kg/min) and 37 females (17-45 y, 64.3 ± 8.8 kg, 39.3 ± 2.7 mL/kg/min) volunteered to participate (N = 117). Whole blood samples of each recruit were collected using a finger prick in weeks 1 and 11 (n = 82) and analysed via gas chromatography for the relative proportions of each fatty acid (mean [95% confidence interval]). The macronutrient characteristics of the diet offerings was also determined. At commencement there was a low omega-3 status (sum of omega-3; 4.95% [4.82-5.07]) and O3I (5.03% [4.90-5.16]) and no recruit recorded an O3I >8% (desirable). The omega-6/omega-3 (7.04 [6.85-7.23]) and arachidonic acid/eicosapentaenoic acid (AA/EPA) (18.70 [17.86-19.53]) ratios for the cohort were also undesirable. The BMT mess menu provided a maximum of 190 mg/day of EPA and 260 mg/day of docosahexaenoic acid (DHA). The O3I of the recruits was lower by week 11 (4.62% [4.51-4.78], p < 0.05), the omega-6/omega-3 increased (7.27 [7.07-7.47], p < 0.05) and the AA/EPA remained elevated (17.85 [16.89-18.81]). In conclusion, Australian Army recruits' omega-3 status remained undesirable during BMT and deserves nutritional attention. Novelty: Australian Army recruits' Omega-3 Index, at the commencement of BMT, was reflective of the Western-style diet. The BMT diet offered minimum opportunity for daily EPA and DHA consumption. Every recruit experienced a further reduction of their Omega-3 Index during BMT.


Subject(s)
Diet/methods , Fatty Acids, Omega-3/blood , Fatty Acids/blood , Military Health/statistics & numerical data , Military Personnel/statistics & numerical data , Adolescent , Adult , Australia , Cohort Studies , Docosahexaenoic Acids/blood , Eicosapentaenoic Acid/blood , Female , Humans , Male , Middle Aged , Young Adult
10.
Article in English | MEDLINE | ID: mdl-34864617

ABSTRACT

Women with low n-3 (omega-3) status in pregnancy can reduce their risk of early preterm birth (<34 weeks' gestation) through n-3 long chain polyunsaturated fatty acid (LCPUFA) supplementation. As investigators measure fatty acid status in different blood fractions, equations are needed to compare results across studies. Similarly, derived cut-points for defining low and replete n-3 status are needed to assist clinical interpretation during early pregnancy. Our aims were to develop equations to convert the percentage of total n-3 fatty acids, EPA+DHA and DHA between whole blood, plasma and red blood cells (RBC), and to derive cut-points for defining low and replete total n-3 fatty acid status in plasma and RBC from those already established in whole blood. Using blood samples from 457 pregnant women in a multicentre randomised controlled trial, equations for these interconversions were developed using simple linear regression models. Measures of n-3 fatty acid status in whole blood and plasma were strongly related (R2 > 0.85), while more moderate relationships were observed between measures in whole blood and RBC (R2 0.55 - 0.71), or plasma and RBC (R2 0.55 - 0.63). Using the conversion equations, established cut-points for low and replete n-3 status in whole blood (<4.2% and >4.9% of total fatty acids) converted to <3.7% and >4.3% of plasma total fatty acids, and to <7.3% and >8.1% of RBC total fatty acids. Agreement to define low and replete n-3 status was better between whole blood and plasma, rather than between whole blood and RBC. Our data also show that total n-3 fatty acids in plasma and serum are interchangeable. We conclude that either whole blood or plasma total n-3 fatty acids can be used to define low status in pregnancy and identify women who will most benefit from n-3 LCPUFA supplementation to reduce their risk of early birth. Further research is needed to determine the clinical utility of other fatty acid measures in various blood lipid fractions.


Subject(s)
Docosahexaenoic Acids/blood , Eicosapentaenoic Acid/blood , Erythrocytes/chemistry , Plasma/chemistry , Pregnancy Complications/blood , Biomarkers/blood , Dietary Supplements , Female , Gestational Age , Humans , Pregnancy , Pregnancy Complications/diet therapy , Premature Birth/blood , Premature Birth/prevention & control
11.
Article in English | MEDLINE | ID: mdl-34839221

ABSTRACT

Low red blood cell (RBC) membrane content of EPA and DHA, i.e., the omega-3 index (O3I), and elevated RBC distribution width (RDW) are risk factors for all-cause mortality. O3I and RDW are related with membrane fluidity and deformability. Our objective was to determine if there is a relationship between O3I and RDW in healthy adults. Subjects without inflammation or anemia, and with values for O3I, RDW, high-sensitivity C-reactive protein (CRP), body mass index (BMI), age and sex were identified (n = 25,485) from a clinical laboratory dataset of  > 45,000 individuals. RDW was inversely associated with O3I in both sexes before and after (both p < 0.00001) adjusting models for sex, age, BMI and CRP. Stratification by sex revealed a sex-O3I interaction with the RDW-O3I slope (p < 0.00066) being especially steep in females with O3I ≤ 5.6%. In healthy adults of both sexes, the data suggested that an O3I of > 5.6% may help maintain normal RBC structural and functional integrity.


Subject(s)
Cell Size , Docosahexaenoic Acids/blood , Eicosapentaenoic Acid/blood , Erythrocyte Membrane/chemistry , Erythrocytes/ultrastructure , Health Status , Adult , Aged , Body Mass Index , C-Reactive Protein/analysis , Cross-Sectional Studies , Dietary Supplements , Female , Healthy Volunteers , Humans , Male , Middle Aged , Risk Factors
12.
Nutrients ; 13(11)2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34836138

ABSTRACT

High obesity rates in almost all regions of the world prompt an urgent need for effective obesity prevention. Very good scientific evidence from cell culture and rodent studies show that the availability of essential polyunsaturated fatty acids (PUFA) and their long-chain polyunsaturated derivatives, namely, arachidonic acid, eicosapentaenoic acid and docosahexaenoic acid, influence adipogenesis; for this reason, early life status may influence later obesity risk. The respective PUFA effects could be mediated via their eicosanoid derivatives, their influence on cell membrane properties, the browning of white adipose tissue, changes to the offspring gut microbiome, their influence on developing regulatory circuits, and gene expression during critical periods. Randomized clinical trials and observational studies show divergent findings in humans, with mostly null findings but also the positive and negative effects of an increased n-3 to n-6 PUFA ratio on BMI and fat mass development. Hence, animal study findings cannot be directly extrapolated to humans. Even though the mechanistic data basis for the effects of n-3 PUFA on obesity risk appears promising, no recommendations for humans can be derived at present.


Subject(s)
Fatty Acids, Unsaturated/blood , Fetal Development/drug effects , Maternal Nutritional Physiological Phenomena , Obesity/etiology , Prenatal Exposure Delayed Effects/etiology , Adipogenesis/drug effects , Adipose Tissue/metabolism , Animals , Eicosapentaenoic Acid/blood , Female , Humans , Nutritional Status , Observational Studies as Topic , Pregnancy , Randomized Controlled Trials as Topic
13.
Article in English | MEDLINE | ID: mdl-34740030

ABSTRACT

Vascular structure and integrity are at the forefront of blood pressure regulation. However, there are many factors that affect the responses of the vessels. One of these is the inflammatory processes associated with high cholesterol and its modification. 15-lipoxygenase (15-LOX) is the critical enzyme in cholesterol oxidation, but this enzyme is also responsible for the synthesis of specialized proresoving lipid mediators (SPMs) called Lipoxin (Lxs) and Resolvin (Rvs). In this study, we determined serum LXA4, RvD1 and RvE1 levels in newly diagnosed hypertension (HT) and normotension (NT) cases. We evaluated how the presence of hypercholesterolemia (HC) in the follow-up changes the levels of these SPMs. We found that the three SPMs we measured decreased significantly in the presence of HC. In addition, we found a negative and significant correlation with systolic blood pressure and total cholesterol levels for the three SPMs. In conclusion, HT and HC are independent risk factors for cardiovascular death. However, the presence of HC may be an important factor for the development of HT. Increasing cholesterol levels may cause 15-LOX to shift towards LDL oxidation, thus leading to inflammation. This situation may negatively affect the vascular functions in the regulation of blood pressure. Serum LXA4, RvD1 and RvE1 measurements may provide clues that represent a shift of 15-LOX enzyme activity towards cholesterol.


Subject(s)
Docosahexaenoic Acids/blood , Eicosapentaenoic Acid/analogs & derivatives , Hypercholesterolemia/blood , Hypercholesterolemia/complications , Hypertension/blood , Hypertension/complications , Lipoxins/blood , Adult , Arachidonate 15-Lipoxygenase/metabolism , Blood Pressure , Cholesterol/blood , Eicosapentaenoic Acid/blood , Fatty Acids, Unsaturated/metabolism , Female , Follow-Up Studies , Humans , Hypercholesterolemia/diagnosis , Hypertension/diagnosis , Lipoproteins, LDL/blood , Male , Middle Aged , Oxidation-Reduction , Risk Factors
14.
Article in English | MEDLINE | ID: mdl-34743051

ABSTRACT

Obesity drives an imbalanced signature of specialized pro-resolving mediators (SPM). Herein, we investigated if high fat diet-induced obesity dysregulates the concentration of SPM intermediates in the brains of C57BL/6 J mice. Furthermore, given the benefits of EPA for cardiometabolic diseases, major depression, and cognition, we probed the effect of an EPA supplemented high fat diet on brain SPM intermediates. Mass spectrometry revealed no effect of the high fat diet on PUFA-derived brain metabolites. EPA also did not have an effect on most brain PUFA-derived metabolites except an increase of 12-hydroxyeicosapentaenoic acid (12-HEPE). In contrast, EPA dramatically increased serum HEPEs and lowered several PUFA-derived metabolites. Finally, untargeted mass spectrometry showed no effects of the high fat diet, with or without EPA, on the brain metabolome. Collectively, these results show the murine brain resists a deficiency in SPM pathway markers in response to a high fat diet and that EPA supplementation increases 12-HEPE levels.


Subject(s)
Brain Chemistry/drug effects , Diet, High-Fat/adverse effects , Eicosapentaenoic Acid/analogs & derivatives , Lipoxins/metabolism , Obesity/metabolism , Animals , Disease Models, Animal , Eicosapentaenoic Acid/administration & dosage , Eicosapentaenoic Acid/blood , Eicosapentaenoic Acid/metabolism , Eicosapentaenoic Acid/pharmacology , Lipoxins/analysis , Male , Mass Spectrometry , Metabolic Networks and Pathways , Metabolomics/methods , Mice , Mice, Obese , Obesity/chemically induced
15.
Article in English | MEDLINE | ID: mdl-34500309

ABSTRACT

Lipid bioactivity is a result of direct action and the action of lipid mediators including oxylipins, endocannabinoids, bile acids and steroids. Understanding the factors contributing to biological variation in lipid mediators may inform future approaches to understand and treat complex metabolic diseases. This research aims to determine the contribution of genetic and environmental influences on lipid mediators involved in the regulation of inflammation and energy metabolism. This study recruited 138 monozygotic (MZ) and dizygotic (DZ) twins aged 18-65 years and measured serum oxylipins, endocannabinoids, bile acids and steroids using liquid chromatography mass-spectrometry (LC-MS). In this classic twin design, the similarities and differences between MZ and DZ twins are modelled to estimate the contribution of genetic and environmental influences to variation in lipid mediators. Heritable lipid mediators included the 12-lipoxygenase products 12-hydroxyeicosatetraenoic acid [0.70 (95% CI: 0.12,0.82)], 12-hydroxyeicosatetraenoic acid [0.73 (95% CI: 0.30,0.83)] and 14­hydroxy-docosahexaenoic acid [0.51 (95% CI: 0.07,0.71)], along with the endocannabinoid docosahexaenoy-lethanolamide [0.52 (95% CI: 0.15,0.72)]. For others such as 13-hydroxyoctadecatrienoic acid and lithocholic acid the contribution of environment to variation was stronger. With increased understanding of lipid mediator functions in health, it is important to understand the factors contributing to their variance. This study provides a comprehensive analysis of lipid mediators and extends pre-existing knowledge of the genetic and environmental influences on the human lipidome.


Subject(s)
Bile Acids and Salts/blood , Endocannabinoids/blood , Fatty Acids, Omega-3/blood , Lipid Metabolism/genetics , Oxylipins/blood , Steroids/blood , 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid/blood , 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid/genetics , Adolescent , Adult , Aged , Bile Acids and Salts/genetics , Dehydroepiandrosterone/blood , Dehydroepiandrosterone/genetics , Docosahexaenoic Acids/blood , Docosahexaenoic Acids/genetics , Eicosapentaenoic Acid/analogs & derivatives , Eicosapentaenoic Acid/blood , Eicosapentaenoic Acid/genetics , Endocannabinoids/genetics , Fatty Acids, Omega-3/genetics , Female , Gene-Environment Interaction , Humans , Male , Middle Aged , Twins, Dizygotic/genetics , Twins, Monozygotic/genetics , Young Adult
16.
J Int Soc Sports Nutr ; 18(1): 65, 2021 Sep 27.
Article in English | MEDLINE | ID: mdl-34579748

ABSTRACT

BACKGROUND: American-style football (ASF) athletes are at risk for cardiovascular disease (CVD) and exhibit elevated levels of serum neurofilament light (Nf-L), a biomarker of axonal injury that is associated with repetitive head impact exposure over the course of a season of competition. Supplementation with the w-3 fatty acid (FA) docosahexaenoic acid (DHA) attenuates serum Nf-L elevations and improves aspects of CVD, such as the omega-3 index (O3I). However, the effect of combining the w-3 FA eicosapentaenoic acid (EPA) and docosapentaenoic acid (DPA) with DHA on, specifically, serum Nf-L in ASF athletes is unknown. Therefore, this study assessed the effect of supplemental w-3 FA (EPA+DPA+DHA) on serum Nf-L, plasma w-3 FAs, the O3I, and surrogate markers of inflammation over the course of a season. METHODS: A multi-site, non-randomized design, utilizing two American football teams was employed. One team (n = 3 1) received supplementation with a highly bioavailablew-3 FA formulation (2000mg DHA, 560mg EPA, 320mg DPA, Mindset®, Struct Nutrition, Missoula, MT) during pre-season and throughout the regular season, while the second team served as the control (n = 35) and did not undergo supplementation. Blood was sampled at specific times throughout pre- and regular season coincident w ith changes in intensity, physical contact, and changes in the incidence and severity of head impacts. Group differences were determined via a mixed-model between-within subjects ANOVA. Effect sizes were calculated using Cohen's dfor all between-group differences. Significance was set a priori at p< .05. RESULTS: Compared to the control group, ASF athletes in the treatment group experienced large increases in plasma EPA (p < .001, d = 1.71) and DHA (p < .001, d = 2.10) which contributed to increases in the O3I (p < .001, d = 2.16) and the EPA:AA ratio (p = .001, d = 0.83) and a reduction in the w-6: w-3 ratio (p < .001, d = 1.80). w-3 FA supplementation attenuated elevations in Nf-L (p = .024). The control group experienced a significant increase in Nf-L compared to baseline at several measurement time points (T2, T3, and T4 [p range < .001 - .005, drange = 0.59-0.85]). CONCLUSIONS: These findings suggest a cardio- and neuroprotective effect of combined EPA+DPA+DHA w-3 FA supplementation in American-style football athletes. TRIAL REGISTRATION: This trial was registered with the ISRCTN registry ( ISRCTN90306741 ).


Subject(s)
Athletic Injuries/blood , Craniocerebral Trauma/blood , Dietary Supplements , Fatty Acids, Omega-3/administration & dosage , Football/injuries , Athletes , Biomarkers/blood , Docosahexaenoic Acids/blood , Eicosapentaenoic Acid/blood , Fatty Acids, Omega-3/blood , Fatty Acids, Unsaturated/blood , Humans , Male
17.
Nutrients ; 13(7)2021 Jul 18.
Article in English | MEDLINE | ID: mdl-34371962

ABSTRACT

Low heart rate variability (HRV) is independently associated with increased risk of sudden cardiac death (SCD) and all cardiac death in haemodialysis patients. Long chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) may exert anti-arrhythmic effects. This study aimed to investigate relationships between dialysis, sleep and 24 h HRV and LC n-3 PUFA status in patients who have recently commenced haemodialysis. A cross-sectional study was conducted in adults aged 40-80 with chronic kidney disease (CKD) stage 5 (n = 45, mean age 58, SD 9, 20 females and 25 males, 39% with type 2 diabetes). Pre-dialysis blood samples were taken to measure erythrocyte and plasma fatty acid composition (wt % fatty acids). Mean erythrocyte omega-3 index was not associated with HRV following adjustment for age, BMI and use of ß-blocker medication. Higher ratios of erythrocyte eicosapentaenoic acid (EPA) to docosahexaenoic acid (DHA) were associated with lower 24 h vagally-mediated beat-to-beat HRV parameters. Higher plasma EPA and docosapentaenoic acid (DPAn-3) were also associated with lower sleep-time and 24 h beat-to-beat variability. In contrast, higher plasma EPA was significantly related to higher overall and longer phase components of 24 h HRV. Further investigation is required to investigate whether patients commencing haemodialysis may have compromised conversion of EPA to DHA, which may impair vagally-mediated regulation of cardiac autonomic function, increasing risk of SCD.


Subject(s)
Fatty Acids, Omega-3/blood , Heart Rate , Kidney Failure, Chronic/physiopathology , Kidney Failure, Chronic/therapy , Renal Dialysis , Adult , Aged , Aged, 80 and over , Autonomic Nervous System/physiopathology , Cross-Sectional Studies , Death, Sudden, Cardiac/etiology , Diabetes Mellitus, Type 2/complications , Docosahexaenoic Acids/blood , Eicosapentaenoic Acid/blood , Erythrocyte Membrane/chemistry , Female , Heart Disease Risk Factors , Humans , Kidney Failure, Chronic/complications , Male , Middle Aged , Pilot Projects , Sleep
18.
Nutrients ; 13(8)2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34444642

ABSTRACT

Fatty acids play a significant role in maintaining cellular and DNA protection and we previously found an inverse relationship between blood levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and DNA damage. The aim of this study was to explore differences in proteomic profiles, for 117 pro-inflammatory proteins, in two previously defined groups of individuals with different DNA damage and EPA and DHA levels. Healthy children and adolescents (n = 140) aged 9 to 13 years old in an urban area of Brazil were divided by k-means cluster test into two clusters of DNA damage (tail intensity) using the comet assay (cluster 1 = 5.9% ± 1.2 and cluster 2 = 13.8% ± 3.1) in our previous study. The cluster with higher DNA damage and lower levels of DHA (6.2 ± 1.6 mg/dL; 5.4 ± 1.3 mg/dL, p = 0.003) and EPA (0.6 ± 0.2 mg/dL; 0.5 ± 0.1 mg/dL, p < 0.001) presented increased expression of the proteins CDK8-CCNC, PIK3CA-PIK3R1, KYNU, and PRKCB, which are involved in pro-inflammatory pathways. Our findings support the hypothesis that low levels of n-3 long-chain PUFA may have a less protective role against DNA damage through expression of pro-inflammatory proteins, such as CDK8-CCNC, PIK3CA-PIK3R1, KYNU, and PRKCB.


Subject(s)
DNA Damage , Docosahexaenoic Acids/blood , Eicosapentaenoic Acid/blood , Fatty Acids, Omega-3/blood , Adolescent , Brazil , Child , Class I Phosphatidylinositol 3-Kinases/blood , Class Ia Phosphatidylinositol 3-Kinase/blood , Cross-Sectional Studies , Cyclin C/blood , Cyclin-Dependent Kinase 8/blood , Female , Humans , Hydrolases/blood , Inflammation/metabolism , Male , Protein Kinase C beta/blood , Proteomics
19.
Nutrients ; 13(6)2021 Jun 19.
Article in English | MEDLINE | ID: mdl-34205251

ABSTRACT

Quadriceps muscle atrophy following total knee arthroplasty (TKA) can be caused by tourniquet-induced ischemia-reperfusion (IR) injury, which is often accompanied by oxidative stress and inflammatory responses. n-3 long-chain polyunsaturated fatty acids (LCPUFAs), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), exert antioxidant and anti-inflammatory effects against IR injury, whereas n-6 LCPUFAs, particularly arachidonic acid (AA), exhibit pro-inflammatory effects and promote IR injury. This study aimed to examine whether preoperative serum EPA + DHA levels and the (EPA + DHA)/AA ratio are associated with oxidative stress immediately after TKA. Fourteen eligible patients with knee osteoarthritis scheduled for unilateral TKA participated in this study. The levels of serum EPA, DHA, and AA were measured immediately before surgery. Derivatives of reactive oxygen metabolites (d-ROMs) were used as biomarkers for oxidative stress. The preoperative serum EPA + DHA levels and the (EPA + DHA)/AA ratio were found to be significantly negatively correlated with the serum d-ROM levels at 96 h after surgery, and the rate of increase in serum d-ROM levels between baseline and 96 h postoperatively. This study suggested the preoperative serum EPA + DHA levels and the (EPA + DHA)/AA ratio can be negatively associated with oxidative stress immediately after TKA.


Subject(s)
Arthroplasty, Replacement, Knee , Fatty Acids, Unsaturated/blood , Oxidative Stress/physiology , Pilot Projects , Preoperative Period , Aged , Arachidonic Acid/blood , Arthroplasty, Replacement, Knee/adverse effects , Atrophy/etiology , Docosahexaenoic Acids/blood , Eicosapentaenoic Acid/blood , Female , Humans , Japan , Male , Middle Aged , Prospective Studies , Quadriceps Muscle/pathology , Reactive Oxygen Species/blood , Reperfusion Injury/blood , Reperfusion Injury/complications
SELECTION OF CITATIONS
SEARCH DETAIL
...