Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.683
Filter
1.
Skin Res Technol ; 30(5): e13740, 2024 May.
Article in English | MEDLINE | ID: mdl-38720488

ABSTRACT

BACKGROUND: The human nail has a three-layered structure. Although it would be useful to quantitatively evaluate the changes in deformability of the nail due to various surface treatments, few studies have been conducted. METHODS: The effects of two types of surface treatment-a chemically acting nail softener and a physically acting nail strengthener-on the deformability of human fingernails were investigated. The Young's modulus of each plate of the nail samples before and after softening treatment was determined by nanoindentation. The Young's modulus of the strengthener was determined by conducting a three-point bending test on a polyethylene sheet coated with the strengthener. RESULTS: Young's modulus decreased in order from the top plate against the softening treatment time, and the structural elasticity for bending deformation (SEB) of the nail sample, which expresses the deformability against bending deformation independent of its external dimensions, decreased to 60% after 6 h of treatment. The Young's modulus of the nail strengthener was 244.5 MPa, which is less than 10% of the SEB of the nail. When the nail strengthener was applied to the nail surface, the SEB decreased to 73%, whereas the flexural rigidity increased to 117%. CONCLUSION: Changes in nail deformability caused by various surface treatments for softening and hardening were quantitatively evaluated successfully.


Subject(s)
Elastic Modulus , Nails , Surface Properties , Humans , Elastic Modulus/physiology , Nails/physiology , Female , Elasticity/physiology , Adult
2.
Scand J Med Sci Sports ; 34(5): e14638, 2024 May.
Article in English | MEDLINE | ID: mdl-38671559

ABSTRACT

This study aimed to examine the temporal dynamics of muscle-tendon adaptation and whether differences between their sensitivity to mechano-metabolic stimuli would lead to non-uniform changes within the triceps surae (TS) muscle-tendon unit (MTU). Twelve young adults completed a 12-week training intervention of unilateral isometric cyclic plantarflexion contractions at 80% of maximal voluntary contraction until failure to induce a high TS activity and hence metabolic stress. Each participant trained one limb at a short (plantarflexed position, 115°: PF) and the other at a long (dorsiflexed position, 85°: DF) MTU length to vary the mechanical load. MTU mechanical, morphological, and material properties were assessed biweekly via simultaneous ultrasonography-dynamometry and magnetic resonance imaging. Our hypothesis that tendon would be more sensitive to the operating magnitude of tendon strain but less to metabolic stress exercise was confirmed as tendon stiffness, Young's modulus, and tendon size were only increased in the DF condition following the intervention. The PF leg demonstrated a continuous increment in maximal AT strain (i.e., higher mechanical demand) over time along with lack of adaptation in its biomechanical properties. The premise that skeletal muscle adapts at a higher rate than tendon and does not require high mechanical load to hypertrophy or increase its force potential during exercise was verified as the adaptive changes in morphological and mechanical properties of the muscle did not differ between DF and PF. Such differences in muscle-tendon sensitivity to mechano-metabolic stimuli may temporarily increase MTU imbalances that could have implications for the risk of tendon overuse injury.


Subject(s)
Adaptation, Physiological , Magnetic Resonance Imaging , Muscle, Skeletal , Tendons , Ultrasonography , Humans , Male , Young Adult , Muscle, Skeletal/physiology , Muscle, Skeletal/diagnostic imaging , Tendons/physiology , Tendons/diagnostic imaging , Adaptation, Physiological/physiology , Biomechanical Phenomena , Adult , Female , Isometric Contraction/physiology , Elastic Modulus/physiology
3.
J Sport Rehabil ; 33(4): 282-288, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38593993

ABSTRACT

CONTEXT: Piriformis syndrome is often associated with muscle spasms and shortening of the piriformis muscle (PM). Physical therapy, including static stretching of the PM, is one of the treatments for this syndrome. However, the effective stretching position of the PM is unclear in vivo. This study aimed to determine the effective stretching positions of the PM using ultrasonic shear wave elastography. DESIGN: Observational study. METHODS: Twenty-one healthy young men (22.7 [2.4] y) participated in this study. The shear elastic modulus of the PM was measured at 12 stretching positions using shear wave elastography. Three of the 12 positions were tested with maximum internal rotation at 0°, 20°, or 40° hip adduction in 90° hip flexion. Nine of the 12 positions were tested with maximum external rotation at positions combined with 3 hip-flexion angles (70°, 90°, and 110°) and 3 hip-adduction angles (0°, 20°, and 40°). RESULTS: The shear elastic modulus of the PM was significantly higher in the order of 40°, 20°, and 0° of adduction and higher in external rotation than in internal rotation. The shear elastic modulus of the PM was significantly greater in combined 110° hip flexion and 40° adduction with maximum external rotation than in all other positions. CONCLUSION: This study revealed that the position in which the PM was most stretched was maximum external rotation with 110° hip flexion and 40° hip adduction.


Subject(s)
Elasticity Imaging Techniques , Muscle Stretching Exercises , Muscle, Skeletal , Humans , Male , Young Adult , Muscle Stretching Exercises/physiology , Muscle, Skeletal/physiology , Muscle, Skeletal/diagnostic imaging , Range of Motion, Articular/physiology , Elastic Modulus/physiology , Adult , Rotation , Hip Joint/physiology , Hip Joint/diagnostic imaging , Piriformis Muscle Syndrome/physiopathology , Piriformis Muscle Syndrome/therapy , Piriformis Muscle Syndrome/diagnostic imaging
4.
Phys Med Biol ; 69(4)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38262052

ABSTRACT

Objective.Skeletal muscles are organized into distinct layers and exhibit anisotropic characteristics across various scales. Assessing the arrangement of skeletal muscles may provide valuable biomarkers for diagnosing muscle-related pathologies and evaluating the efficacy of clinical interventions.Approach. In this study, we propose a novel ultrafast ultrasound sequence constituted of steered pushing beams was proposed for ultrasound elastography applications in transverse isotropic muscle. Based on the propagation of the shear wave vertical mode, it is possible to fit the experimental results to retrieve in the same imaging plane, the shear modulus parallel to fibers as well as the elastic anisotropy factor (ratio of Young's moduli times the shear modulus perpendicular to fibers).Main results. The technique was demonstratedin vitroin phantoms andex vivoin fusiform beef muscles. At last, the technique was appliedin vivoon fusiform muscles (biceps brachii) and mono-pennate muscles (gastrocnemius medialis) during stretching and contraction.Significance. This novel sequence provides access to new structural and mechanical biomarkers of muscle tissue, including the elastic anisotropy factor, within the same imaging plane. Additionally, it enables the investigation of multiples parameters during muscle active and passive length changes.


Subject(s)
Elasticity Imaging Techniques , Muscle, Skeletal , Animals , Cattle , Anisotropy , Ultrasonography , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/physiology , Elastic Modulus/physiology , Elasticity Imaging Techniques/methods , Biomarkers
5.
J Biomech ; 163: 111957, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38266532

ABSTRACT

This study aimed to determine whether changes in hamstrings passive and active shear modulus after a warmup protocol are correlated. Twenty males without a history of hamstring strain injury participated. Muscle shear modulus was assessed using ultrasound-based shear wave elastography at rest and during isometric contractions at 20% of maximal voluntary isometric effort before and immediately after a warmup protocol. Changes in passive shear modulus did not seem to be associated with changes in active shear modulus. The results of this study suggest that changes in passive and active hamstring shear modulus are not associated after a standardized warmup intervention.


Subject(s)
Elasticity Imaging Techniques , Hamstring Muscles , Male , Humans , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/physiology , Elastic Modulus/physiology , Hamstring Muscles/diagnostic imaging , Hamstring Muscles/physiology , Elasticity Imaging Techniques/methods , Ultrasonography
6.
J Mech Behav Biomed Mater ; 151: 106387, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38246092

ABSTRACT

Comprehensive characterization of the transversely isotropic mechanical properties of long bones along both the longitudinal and circumferential gradients is crucial for developing accurate mathematical models and studying bone biomechanics. In addition, mechanical testing to derive elastic, plastic, and failure properties of bones is essential for modeling plastic deformation and failure of bones. To achieve these, we machined a total of 336 cortical specimens, including 168 transverse and 168 longitudinal specimens, from four different quadrants of seven different sections of 3 bovine femurs. We conducted three-point bending tests of these specimens at a loading rate of 0.02 mm/s. Young's modulus, yield stress, tangential modulus, and effective plastic strain for each specimen were derived from correction equations based on classical beam theory. Our statistical analysis reveals that the longitudinal gradient has a significant effect on the Young's modulus, yield stress, and tangential modulus of both longitudinal and transverse specimens, whereas the circumferential gradient significantly influences the Young's modulus, yield stress, and tangential modulus of transverse specimens only. The differences in Young's modulus and yield stress between longitudinal specimens from different sections are greater than 40%, whereas those between transverse specimens are approximately 30%. The Young's modulus and yield stress of transverse specimens in the anterior quadrant were 18.81%/15.46% and 18.34%/14.88% higher than those in the posterior and lateral quadrants, respectively. There is no significant interaction between the longitudinal gradient and the circumferential gradient. Considering the transverse isotropy, it is crucial to consider loading direction when investigating the impact of circumferential gradients in the anterior, lateral, medial, and posterior directions. Our findings indicate that the conventional assumption of homogeneity in simulating the cortical bone of long bones may have limitations, and researchers should consider the anatomical position and loading direction of femur specimens for precise prediction of mechanical responses.


Subject(s)
Bone and Bones , Cortical Bone , Animals , Cattle , Stress, Mechanical , Elastic Modulus/physiology , Femur/physiology , Biomechanical Phenomena
7.
Acta Biomater ; 173: 184-198, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37939817

ABSTRACT

Pathological disorders can alter the mechanical properties of biological tissues, and studying such changes can help to better understand the disease progression. The prostate gland is no exception, as previous studies have shown that cancer can affect its mechanical properties. However, most of these studies have focused on the elastic properties of the tissue and have overlooked the impact of cancer on its viscous response. To address this gap, we used a quasi-linear viscoelastic model to investigate the impact of cancer on both the elastic and viscous characteristics of the prostate gland. By comparing the viscoelastic properties of segments influenced by cancer and those unaffected by cancer in 49 fresh prostates, removed within two hours after prostatectomy surgery, we were able to determine the influence of cancer grade and tumor volume on the tissue. Our findings suggest that tumor volume significantly affects both the elastic modulus and viscosity of the prostate (p-value less than 2%). Specifically, we showed that cancer increases Young's modulus and shear relaxation modulus by 20%. These results have implications for using mechanical properties of the prostate as a potential biomarker for cancer. However, developing an in vivo apparatus to measure these properties remains a challenge that needs to be addressed in future research. STATEMENT OF SIGNIFICANCE: This study is the first to explore how cancer impacts the mechanical properties of prostate tissues using a quasi-linear viscoelastic model. We examined 49 fresh prostate samples collected immediately after surgery and correlated their properties with cancer presence identified in pathology reports. Our results demonstrate a 20% change in the viscoelastic properties of the prostate due to cancer. We initially validated our approach using tissue-mimicking phantoms and then applied it to differentiate between cancerous and normal prostate tissues. These findings offer potential for early cancer detection by assessing these properties. However, conducting these tests in vivo remains a challenge for future research.


Subject(s)
Neoplasms , Prostate , Male , Humans , Stress, Mechanical , Elastic Modulus/physiology , Viscosity , Elasticity
8.
J Strength Cond Res ; 38(1): 21-29, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38085619

ABSTRACT

ABSTRACT: Bontemps, B, Gruet, M, Louis, J, Owens, DJ, Miríc, S, Vercruyssen, F, and Erskine, RM. Patellar tendon adaptations to downhill running training and their relationships with changes in mechanical stress and loading history. J Strength Cond Res 38(1): 21-29, 2024-It is unclear whether human tendon adapts to moderate-intensity, high-volume long-term eccentric exercise, e.g., downhill running (DR) training. This study aimed to investigate the time course of patellar tendon (PT) adaptation to short-term DR training and to determine whether changes in PT properties were related to changes in mechanical stress or loading history. Twelve untrained, young, healthy adults (5 women and 7 men) took part in 4 weeks' DR training, comprising 10 sessions. Running speed was equivalent to 60-65% V̇O2max, and session duration increased gradually (15-30 minutes) throughout training. Isometric knee extensor maximal voluntary torque (MVT), vastus lateralis (VL) muscle physiological cross-sectional area (PCSA) and volume, and PT CSA, stiffness, and Young's modulus were assessed at weeks 0, 2, and 4 using ultrasound and isokinetic dynamometry. Patellar tendon stiffness (+6.4 ± 7.4%), Young's modulus (+6.9 ± 8.8%), isometric MVT (+7.5 ± 12.3%), VL volume (+6.6 ± 3.2%), and PCSA (+3.8 ± 3.3%) increased after 4 weeks' DR (p < 0.05), with no change in PT CSA. Changes in VL PCSA correlated with changes in PT stiffness (r = 0.70; p = 0.02) and Young's modulus (r = 0.63; p = 0.04) from 0 to 4 weeks, whereas changes in MVT did not correlate with changes in PT stiffness and Young's modulus at any time point (p > 0.05). To conclude, 4 weeks' DR training promoted substantial changes in PT stiffness and Young's modulus that are typically observed after high-intensity, low-volume resistance training. These tendon adaptations seemed to be driven primarily by loading history (represented by VL muscle hypertrophy), whereas increased mechanical stress throughout the training period did not seem to contribute to changes in PT stiffness or Young's modulus.


Subject(s)
Patellar Ligament , Running , Male , Adult , Humans , Female , Patellar Ligament/diagnostic imaging , Patellar Ligament/physiology , Stress, Mechanical , Muscle Strength/physiology , Biomechanical Phenomena , Elastic Modulus/physiology , Muscle, Skeletal/physiology
9.
Sci Rep ; 13(1): 20062, 2023 11 16.
Article in English | MEDLINE | ID: mdl-37974024

ABSTRACT

Aging leads to a decline in muscle mass and force-generating capacity. Ultrasound shear wave elastography (SWE) is a non-invasive method to capture age-related muscular adaptation. This study assessed biceps brachii muscle (BB) mechanics, hypothesizing that shear elastic modulus reflects (i) passive muscle force increase imposed by length change, (ii) activation-dependent mechanical changes, and (iii) differences between older and younger individuals. Fourteen healthy volunteers aged 60-80 participated. Shear elastic modulus, surface electromyography, and elbow torque were measured at five elbow positions in passive and active states. Data collected from young adults aged 20-40 were compared. The BB passive shear elastic modulus increased from flexion to extension, with the older group exhibiting up to 52.58% higher values. Maximum elbow flexion torque decreased in extended positions, with the older group 23.67% weaker. Significant effects of elbow angle, activity level, and age on total and active shear elastic modulus were found during submaximal contractions. The older group had 20.25% lower active shear elastic modulus at 25% maximum voluntary contraction. SWE effectively quantified passive and activation-dependent BB mechanics, detecting age-related alterations at rest and during low-level activities. These findings suggest shear elastic modulus as a promising biomarker for identifying altered muscle mechanics in aging.


Subject(s)
Elasticity Imaging Techniques , Elbow Joint , Young Adult , Humans , Elasticity Imaging Techniques/methods , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/physiology , Ultrasonography , Elbow/diagnostic imaging , Elbow/physiology , Elbow Joint/diagnostic imaging , Elbow Joint/physiology , Elastic Modulus/physiology
10.
Proc Natl Acad Sci U S A ; 120(45): e2301555120, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37910554

ABSTRACT

Cells self-organize into functional, ordered structures during tissue morphogenesis, a process that is evocative of colloidal self-assembly into engineered soft materials. Understanding how intercellular mechanical interactions may drive the formation of ordered and functional multicellular structures is important in developmental biology and tissue engineering. Here, by combining an agent-based model for contractile cells on elastic substrates with endothelial cell culture experiments, we show that substrate deformation-mediated mechanical interactions between cells can cluster and align them into branched networks. Motivated by the structure and function of vasculogenic networks, we predict how measures of network connectivity like percolation probability and fractal dimension as well as local morphological features including junctions, branches, and rings depend on cell contractility and density and on substrate elastic properties including stiffness and compressibility. We predict and confirm with experiments that cell network formation is substrate stiffness dependent, being optimal at intermediate stiffness. We also show the agreement between experimental data and predicted cell cluster types by mapping a combined phase diagram in cell density substrate stiffness. Overall, we show that long-range, mechanical interactions provide an optimal and general strategy for multicellular self-organization, leading to more robust and efficient realizations of space-spanning networks than through just local intercellular interactions.


Subject(s)
Cell Communication , Tissue Engineering , Cell Differentiation , Morphogenesis , Endothelial Cells , Elastic Modulus/physiology
11.
J Electromyogr Kinesiol ; 73: 102813, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37666036

ABSTRACT

PURPOSE: Muscle elasticity can be quantified with shear wave elastography (SWE) and has been used as an estimate of muscle force but reliability has not been established for lower leg muscles. The purpose of this study was to examine the intra-rater and inter-rater reliability of elasticity measures in non-weight-bearing (NWB) and weight-bearing (WB) for the tibialis anterior (TA), tibialis posterior (TP), peroneal longus (PL), and peroneal brevis (PB) muscles using SWE. METHODS: A total of 109 recreationally active healthy adults participated. The study employed a single-cohort, same-day repeated-measures test-retest design. Elasticity, measured in kilopascals as the Young's modulus, was converted to the shear modulus. All four muscles were measured in NWB and at 90% WB. RESULTS: Intra-rater reliability estimates were good to excellent for NWB (ICC = 0.930-0.988) and WB (ICC = 0.877-0.978) measures. Inter-rater reliability estimates were moderate to good (ICC = 0.500-0.795) for NWB measures and poor to good (ICC = 0.346-0.910) for WB measures. CONCLUSION: Despite the studies poor to good inter-rater variability, the intra-rater reproducibility represents the potential benefit of SWE in NWB and WB. Establishing the reliability of SWE with clinical and biomechanical approaches may aid in improved understanding of the mechanical properties of muscle.


Subject(s)
Elasticity Imaging Techniques , Adult , Humans , Reproducibility of Results , Leg , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/physiology , Elasticity , Elastic Modulus/physiology , Weight-Bearing
12.
J Sports Sci Med ; 22(2): 175-179, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37293429

ABSTRACT

The application of thermal agents via hot packs is a commonly utilized method. However, the time-course changes in the range of motion (ROM), stretch sensation, shear elastic modulus, and muscle temperature during hot pack application are not well understood. This study aimed to investigate the time-course changes in these variables during a 20-minute hot pack application. Eighteen healthy young men (21.1 ± 0.2 years) participated in this study. We measured the dorsiflexion (DF) ROM, passive torque at DF ROM (an indicator of stretch tolerance), and shear elastic modulus (an indicator of muscle stiffness) of the medial gastrocnemius before and every 5 minutes during a 20-minute hot pack application. The results showed that hot pack application for ≥5 minutes significantly (p < 0.01) increased DF ROM (5 minutes: d = 0.48, 10 minutes: d = 0.59, 15 minutes: d = 0.73, 20 minutes: d = 0.88), passive torque at DF ROM (5 minutes: d = 0.71, 10 minutes: d = 0.71, 15 minutes: d = 0.82, 20 minutes: d = 0.91), and muscle temperature (5 minutes: d = 1.03, 10 minutes: d = 1.71, 15 minutes: d = 1.74, 20 minutes: d = 1.66). Additionally, the results showed that hot pack application for ≥5 minutes significantly (p < 0.05) decreased shear elastic modulus (5 minutes: d = 0.29, 10 minutes: d = 0.31, 15 minutes: d = 0.30, 20 minutes: d = 0.31). These results suggest that hot pack application for a minimum 5 minutes can increase ROM and subsequently decrease muscle stiffness.


Subject(s)
Muscle, Skeletal , Male , Humans , Elastic Modulus/physiology , Muscle, Skeletal/physiology , Range of Motion, Articular/physiology , Torque
13.
J Biomech ; 156: 111698, 2023 07.
Article in English | MEDLINE | ID: mdl-37385091

ABSTRACT

Biceps brachii muscle consists of a long head (BBL) and a short head (BBS). Shortening the BBL and BBS causes tendinopathy of the intertubercular groove and coracoid process. Therefore, it is necessary to stretch the BBL and BBS separately. This study aimed to determine the positions where the BBL and BBS were most stretched, using shear wave elastography (SWE). Fifteen healthy young males participated in the study. The shear elastic moduli of the BBL and BBS of the non-dominant arm were measured using SWE. The measurement positions were the resting position (shoulder flexion and abduction 0°) and four stretching positions.. The elbow was extended, and the forearm was pronated in all positions. Statistical analysis was performed using Wilcoxon's signed-rank test to compare the shear elastic moduli between the resting and stretched limb positions. In addition, Wilcoxon's signed-rank test was used to compare shear elastic moduli between the stretching positions that were significantly different compared to the resting position.. Results show that for BBL and BBS, shear elastic moduli were significantly higher in the shoulder extension + external rotation and shoulder horizontal abduction + internal rotation positions than in the resting position. Moreover, the shear elastic modulus of the BBL was significantly higher in shoulder extension + external rotation than in shoulder horizontal abduction + internal rotation. In contrast, the shear elastic modulus of the BBS was significantly higher in shoulder horizontal abduction + internal rotation than in shoulder extension + external rotation. The BBL and BBS were effectively stretched by shoulder extension + external rotation and horizontal abduction + internal rotation.


Subject(s)
Elasticity Imaging Techniques , Muscle Stretching Exercises , Male , Humans , Shoulder/physiology , Arm/physiology , Elastic Modulus/physiology , Muscle, Skeletal/physiology , Elasticity Imaging Techniques/methods
14.
J Biomech Eng ; 145(8)2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37144881

ABSTRACT

Density-modulus relationships are necessary to develop finite element models of bones that may be used to evaluate local tissue response to different physical activities. It is unknown if juvenile equine trabecular bone may be described by the same density-modulus as adult equine bone, and how the density-modulus relationship varies with anatomical location and loading direction. To answer these questions, trabecular bone cores from the third metacarpal (MC3) and proximal phalanx (P1) bones of juvenile horses (age <1 yr) were machined in the longitudinal (n = 134) and transverse (n = 90) directions and mechanically tested in compression. Elastic modulus was related to apparent computed tomography density of each sample using power law regressions. We found that density-modulus relationships for juvenile equine trabecular bone were significantly different for each anatomical location (MC3 versus P1) and orientation (longitudinal versus transverse). Use of the incorrect density-modulus relationship resulted in increased root mean squared percent error of the modulus prediction by 8-17%. When our juvenile density-modulus relationship was compared to one of an equivalent location in adult horses, the adult relationship resulted in an approximately 80% increase in error of the modulus prediction. Moving forward, more accurate models of young bone can be developed and used to evaluate potential exercise regimens designed to encourage bone adaptation.


Subject(s)
Bone Density , Metacarpal Bones , Horses , Animals , Elastic Modulus/physiology , Bone Density/physiology , Bone and Bones , Lower Extremity , Cancellous Bone/physiology , Metacarpal Bones/diagnostic imaging , Metacarpal Bones/physiology
15.
Biophys J ; 122(12): 2489-2499, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37147802

ABSTRACT

The cell elastic modulus (Ec) is widely used as the mechanics-based marker to analyze the biological effects of substrates on cells. However, the employment of the Hertz model to extract the apparent Ec can cause errors due to the disobedience of the small deformation assumption and the infinite half-space assumption, as well as an inability to deduct the deformation of the substrate. So far, no model can effectively solve the errors caused by the above-mentioned aspects simultaneously. In response to this, herein, we propose an active learning model to extract Ec. The numerical calculation with finite element suggests the good prediction accuracy of the model. The indentation experiments on both hydrogel and cell indicate that the established model can efficiently reduce the error caused by the method of extracting Ec. The application of this model may facilitate our understanding about the role of Ec in correlating the stiffness of substrate and the biological behavior of cell.


Subject(s)
Models, Biological , Problem-Based Learning , Elastic Modulus/physiology , Finite Element Analysis
16.
Microsc Res Tech ; 86(10): 1353-1362, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37070727

ABSTRACT

Melanoma is originated from the malignant transformation of the melanocytes and is characterized by a high rate of invasion, the more serious stage compromising deeper layers of the skin and eventually leading to the metastasis. A high mortality due to melanoma lesion persists because most of melanoma lesions are detected in advanced stages, which decreases the chances of survival. The identification of the principal mechanics implicated in the development and progression of melanoma is essential to devise new early diagnosis strategies. Cell mechanics is related with a lot of cellular functions and processes, for instance motility, differentiation, migration and invasion. In particular, the elastic modulus (Young's modulus) is a very explored parameter to describe the cell mechanical properties; most cancer cells reported in the literature smaller elasticity modulus. In this work, we show that the elastic modulus of melanoma cells lacking galectin-3 is significantly lower than those of melanoma cells expressing galectin-3. More interestingly, the gradient of elastic modulus in cells from the nuclear region towards the cell periphery is more pronounced in shGal3 cells. RESEARCH HIGHLIGHTS: AFM imaging and force spectroscopy were used to investigate the morphology and elasticity properties of healthy HaCaT cells and melanoma cells WM1366, with (shSCR) and without (shGal3) expression of galectin-3. It is shown the effect of galectin-3 protein on the elastic properties of cells: the cells without expression of galectin-3 presents lower elastic modulus. By the results, we suggest here that galectin-3 could be used as an effective biomarker of malignancy in both melanoma diagnostic and prognosis.


Subject(s)
Galectin 3 , Melanoma , Humans , Elasticity , Elastic Modulus/physiology , Cell Differentiation , Microscopy, Atomic Force/methods
17.
Adv Mater ; 35(18): e2212272, 2023 May.
Article in English | MEDLINE | ID: mdl-36866457

ABSTRACT

Aligned submicron fibers have played an essential role in inducing stem cell proliferation and differentiation. In this study, it is aimed to identify the differential causes of stem cell proliferation and differentiation between bone marrow mesenchymal stem cells (BMSCs) on aligned-random fibers with different elastic modulus, and to change the differential levels through a regulatory mechanism mediated by B-cell lymphoma 6 protein(BCL-6) and miRNA-126-5p(miR-126-5p). The results showed that phosphatidylinositol(4,5)bisphosphate alterations are found in the aligned fibers compared with the random fibers, which has a regular and oriented structure, excellent cytocompatibility, regular cytoskeleton, and high differentiation potential. The same trend is actual for the aligned fibers with a lower elastic modulus. The level of proliferative differentiation genes in cells is altered by BCL-6 and miR-126-5p mediated regulatory mechanisms to make the cell distribution nearly consistent with the cell state on low elastic modulus aligned fibers. This work demonstrates the reason for the difference of cells between the two kinds of fibers and on fibers with different elastic modulus. These findings provide more insights for understanding the gene-level regulation of cell growth in tissue engineering.


Subject(s)
Mesenchymal Stem Cells , MicroRNAs , MicroRNAs/genetics , Cell Proliferation , Tropism , Tissue Scaffolds/chemistry , Osteogenesis/physiology , Elastic Modulus/physiology , Tissue Engineering/methods , Humans
18.
J Biomech Eng ; 145(7)2023 07 01.
Article in English | MEDLINE | ID: mdl-36808465

ABSTRACT

Sophisticated muscle material models are required to perform detailed finite element simulations of soft tissue; however, state-of-the-art muscle models are not among the built-in materials in popular commercial finite element software packages. Implementing user-defined muscle material models is challenging for two reasons: deriving the tangent modulus tensor for a material with a complex strain energy function is tedious and programing the algorithm to compute it is error-prone. These challenges hinder widespread use of such models in software that employs implicit, nonlinear, Newton-type finite element methods. We implement a muscle material model in Ansys using an approximation of the tangent modulus, which simplifies its derivation and implementation. Three test models were constructed by revolving a rectangle (RR), a right trapezoid (RTR), and a generic obtuse trapezoid (RTO) around the muscle's centerline. A displacement was applied to one end of each muscle, holding the other end fixed. The results were validated against analogous simulations in FEBio, which uses the same muscle model but with the exact tangent modulus. Overall, good agreement was found between our Ansys and FEBio simulations, though some noticeable discrepancies were observed. For the elements along the muscle's centerline, the root-mean-square-percentage error in the Von Mises stress was 0.00%, 3.03%, and 6.75% for the RR, RTR, and RTO models, respectively; similar errors in longitudinal strain were observed. We provide our Ansys implementation so that others can reproduce and extend our results.


Subject(s)
Muscles , Software , Computer Simulation , Finite Element Analysis , Elastic Modulus/physiology , Stress, Mechanical , Models, Biological
19.
J Mech Behav Biomed Mater ; 140: 105721, 2023 04.
Article in English | MEDLINE | ID: mdl-36791572

ABSTRACT

As far as their mechanical properties are concerned, cancerous lesions can be confused with healthy surrounding tissues in elastography protocols if only the magnitude of moduli is considered. We show that the frequency dependence of the tissue's mechanical properties allows for discriminating the tumor from other tissues, obtaining a good contrast even when healthy and tumor tissues have shear moduli of comparable magnitude. We measured the shear modulus G*(ω) of xenograft subcutaneous tumors developed in mice using breast human cancer cells, compared with that of fat, skin and muscle harvested from the same mice. As the absolute shear modulus |G*(ω)| of tumors increases by 42% (from 5.2 to 7.4 kPa) between 0.25 and 63 Hz, it varies over the same frequency range by 77% (from 0.53 to 0.94 kPa) for the fat, by 103% (from 3.4 to 6.9 kPa) for the skin and by 120% (from 4.4 to 9.7 kPa) for the muscle. These measurements fit well to the fractional model G*(ω)=K(iω)n, yielding a coefficient K and a power-law exponent n for each sample. Tumor, skin and muscle have comparable K parameter values, that of fat being significantly lower; the p-values given by a Mann-Whitney test are above 0.14 when comparing tumor, skin and muscle between themselves, but below 0.001 when comparing fat with tumor, skin or muscle. With regards the n parameter, tumor and fat are comparable, with p-values above 0.43, whereas tumor differs from both skin and muscle, with p-values below 0.001. Tumor tissues thus significantly differs from fat, skin and muscle on account of either the K or the n parameter, i.e. of either the magnitude or the frequency-dependence of the shear modulus.


Subject(s)
Elasticity Imaging Techniques , Neoplasms , Humans , Animals , Mice , Muscle, Skeletal/physiology , Elasticity Imaging Techniques/methods , Viscosity , Elastic Modulus/physiology
20.
Biomed Mater Eng ; 34(4): 289-304, 2023.
Article in English | MEDLINE | ID: mdl-36617774

ABSTRACT

BACKGROUND: Fibrous capsules (Fb) in response to cardiovascular implantable electronic devices (CIEDs), including a pacemaker (P) system, can produce patient discomfort and difficulties in revision surgery due partially to their increased compressive strength, previously linked to elevated tissue fibers. OBJECTIVE: A preliminary study to quantify structural proteins, determine if biologic extracellular matrix-enveloped CIEDs (PECM) caused differential Fb properties, and to implement a realistic mechanical model. METHODS: Retrieved Fb (-P and -PECM) from minipigs were subjected to biomechanical (shear oscillation and uniaxial compression) and histological (collagen I and elastin) analyses. RESULTS: Fb-PECM showed significant decreases compared to Fb-P in: low strain-loss modulus (390 vs. 541 Pa) across angular frequencies, high strain-compressive elastic modulus (1043 vs. 2042 kPa), and elastic fiber content (1.92 vs. 3.15 µg/mg tissue). Decreases in elastin were particularly noted closer to the implant's surface (Fb-PECM = 71% vs. Fb-P = 143% relative to dermal elastin at mid-tangential sections) and verified with a solid mechanics hyperelasticity with direction-dependent fiber viscoelasticity compression simulation (r2 ≥ 98.9%). CONCLUSIONS: The biologic envelope composed of decellularized porcine small intestine submucosa ECM for CIEDs promoted fibrous tissues with less elastic fibers. Novel compression modeling analyses directly correlated this singular reduction to more desirable subcutaneous tissue mechanics.


Subject(s)
Biological Products , Elastin , Swine , Animals , Elastin/analysis , Elastin/metabolism , Swine, Miniature/metabolism , Elastic Tissue/metabolism , Extracellular Matrix/chemistry , Elastic Modulus/physiology , Biological Products/analysis , Biological Products/metabolism , Biomechanical Phenomena
SELECTION OF CITATIONS
SEARCH DETAIL
...