Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.080
Filter
1.
PLoS One ; 19(9): e0308146, 2024.
Article in English | MEDLINE | ID: mdl-39302961

ABSTRACT

Packet information encoding of neural signals was proposed for vision about 50 years ago and has recently been revived as a plausible strategy generalizable to natural and artificial sensory systems. It involves discrete image segmentation controlled by feedback and the ability to store and compare packets of information. This article shows that neurons of the cerebellum-like electrosensory lobe (EL) of the electric fish Gymnotus omarorum use spike-count and spike-timing distribution as constitutive variables of packets of information that encode one-by-one the electrosensory images generated by a self-timed series of electric organ discharges (EODs). To evaluate this hypothesis, extracellular unitary activity was recorded from the centro-medial map of the EL. Units recorded in high-decerebrate preparations were classified into six types using hierarchical cluster analysis of post-EOD spiking histograms. Cross-correlation analysis indicated that each EOD strongly influences the unit firing probability within the next inter-EOD interval. Units of the same type were similarly located in the laminar organization of the EL and showed similar stimulus-specific changes in spike count and spike timing after the EOD when a metal object was moved close by, along the fish's body parallel to the skin, or when the longitudinal impedance of a static cylindrical probe placed at the center of the receptive field was incremented in a stepwise manner in repetitive trials. These last experiments showed that spike-counts and the relative entropy, expressing a comparative measure of information before and after the step, were systematically increased with respect to a control in all unit types. The post-EOD spike-timing probability distribution and the relatively independent contribution of spike-timing and number to the content of information in the transmitted packet suggest that these are the constitutive image-encoding variables of the packets. Comparative analysis suggests that packet information transmission is a general principle for processing superposition images in cerebellum-like networks.


Subject(s)
Cerebellum , Animals , Cerebellum/physiology , Action Potentials/physiology , Electric Organ/physiology , Neurons/physiology , Electric Fish/physiology , Gymnotiformes/physiology , Nerve Net/physiology
3.
Horm Behav ; 164: 105576, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38852479

ABSTRACT

Sexually dimorphic behaviors are often regulated by gonadal steroid hormones. Species diversity in behavioral sex differences may arise as expression of genes mediating steroid action in brain regions controlling these behaviors evolves. The electric communication signals of apteronotid knifefishes are an excellent model for comparatively studying neuroendocrine regulation of sexually dimorphic behavior. These fish produce and detect weak electric organ discharges (EODs) for electrolocation and communication. EOD frequency (EODf), controlled by the medullary pacemaker nucleus (Pn), is sexually dimorphic and regulated by androgens and estrogens in some species, but is sexually monomorphic and unaffected by hormones in other species. We quantified expression of genes for steroid receptors, metabolizing enzymes, and cofactors in the Pn of two species with sexually dimorphic EODf (Apteronotus albifrons and Apteronotus leptorhynchus) and two species with sexually monomorphic EODf ("Apteronotus" bonapartii and Parapteronotus hasemani). The "A." bonapartii Pn expressed lower levels of androgen receptor (AR) genes than the Pn of species with sexually dimorphic EODf. In contrast, the P. hasemani Pn robustly expressed AR genes, but expressed lower levels of genes for 5α-reductases, which convert androgens to more potent metabolites, and higher levels of genes for 17ß-hydroxysteroid dehydrogenases that oxidize androgens and estrogens to less potent forms. These findings suggest that sexual monomorphism of EODf arose convergently via two different mechanisms. In "A." bonapartii, reduced Pn expression of ARs likely results in insensitivity of EODf to androgens, whereas in P. hasemani, gonadal steroids may be metabolically inactivated in the Pn, reducing their potential to influence EODf.


Subject(s)
Animal Communication , Electric Fish , Electric Organ , Sex Characteristics , Species Specificity , Animals , Male , Electric Fish/genetics , Electric Fish/physiology , Female , Electric Organ/physiology , Electric Organ/metabolism , Gonadal Steroid Hormones/metabolism , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Gene Expression/physiology , Gene Expression Regulation/physiology
4.
J Exp Biol ; 227(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38712896

ABSTRACT

Weakly electric gymnotiform fishes use self-generated electric organ discharges (EODs) to navigate and communicate. The electrosensory range for these processes is a function of EOD amplitude, determined by the fish's electric organ (EO) output and the electrical conductivity of the surrounding water. Anthropogenic activity, such as deforestation, dams and industrial/agricultural runoff, are known to increase water conductivity in neotropical habitats, likely reducing the electrosensory range of these fish. We investigated whether fish modulate EO output as means of re-expanding electrosensory range after a rapid increase in water conductivity in the pulse-type Brachyhypopomus gauderio and the wave-type Eigenmannia virescens. Furthermore, because EOD production incurs significant metabolic costs, we assessed whether such compensation is associated with an increase in metabolic rate. Following the conductivity increase, B. gauderio increased EOD amplitude by 20.2±4.3% over 6 days but with no associated increase in metabolic rate, whereas the EOD amplitude of E. virescens remained constant, accompanied by an unexpected decrease in metabolic rate. Our results suggest that B. gauderio uses a compensation mechanism that requires no metabolic investment, such as impedance matching, or a physiological trade-off wherein energy is diverted from other physiological processes to increase EO output. These divergent responses between species could be the result of differences in reproductive life history or evolutionary adaptations to different aquatic habitats. Continued investigation of electrosensory responses to changing water conditions will be essential for understanding the effects of anthropogenic disturbances on gymnotiforms, and potential physiological mechanisms for adapting to a rapidly changing aquatic environment.


Subject(s)
Electric Conductivity , Electric Organ , Gymnotiformes , Animals , Electric Organ/physiology , Gymnotiformes/physiology , Electric Fish/physiology , Water/metabolism
5.
Curr Biol ; 34(10): 2118-2131.e5, 2024 05 20.
Article in English | MEDLINE | ID: mdl-38692275

ABSTRACT

Humans and other animals can readily learn to compensate for changes in the dynamics of movement. Such changes can result from an injury or changes in the weight of carried objects. These changes in dynamics can lead not only to reduced performance but also to dramatic instabilities. We evaluated the impacts of compensatory changes in control policies in relation to stability and robustness in Eigenmannia virescens, a species of weakly electric fish. We discovered that these fish retune their sensorimotor control system in response to experimentally generated destabilizing dynamics. Specifically, we used an augmented reality system to manipulate sensory feedback during an image stabilization task in which a fish maintained its position within a refuge. The augmented reality system measured the fish's movements in real time. These movements were passed through a high-pass filter and multiplied by a gain factor before being fed back to the refuge motion. We adjusted the gain factor to gradually destabilize the fish's sensorimotor loop. The fish retuned their sensorimotor control system to compensate for the experimentally induced destabilizing dynamics. This retuning was partially maintained when the augmented reality feedback was abruptly removed. The compensatory changes in sensorimotor control improved tracking performance as well as control-theoretic measures of robustness, including reduced sensitivity to disturbances and improved phase margins.


Subject(s)
Adaptation, Physiological , Feedback, Sensory , Animals , Feedback, Sensory/physiology , Gymnotiformes/physiology , Electric Fish/physiology
6.
Curr Biol ; 34(9): R351-R353, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38714163

ABSTRACT

When animals using active sensing, e.g., sonar or an electric organ discharge, cooperate while foraging, the emitted sound or electric field is available to neighboring conspecifics. Experimental and modelling studies have shown that an electric fish can use the discharge of neighbors to extend their own electrosensory prey detection range.


Subject(s)
Electric Fish , Predatory Behavior , Animals , Predatory Behavior/physiology , Electric Fish/physiology , Electric Organ/physiology
7.
Gen Comp Endocrinol ; 355: 114549, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38797340

ABSTRACT

The production of communication signals can be modulated by hormones acting on the brain regions that regulate these signals. However, less is known about how signal perception is regulated by hormones. The electrocommunication signals of weakly electric fishes are sexually dimorphic, sensitive to hormones, and vary across species. The neural circuits that regulate the production and perception of these signals are also well-characterized, and electric fishes are thus an excellent model to examine the neuroendocrine regulation of sensorimotor mechanisms of communication. We investigated (1) whether steroid-related genes are expressed in sensory brain regions that process communication signals; and (2) whether this expression differs across sexes and species that have different patterns of sexual dimorphism in their signals. Apteronotus leptorhynchus and Apteronotus albifrons produce continuous electric organ discharges (EODs) that are used for communication. Two brain regions, the electrosensory lateral line lobe (ELL) and the dorsal torus semicircularis (TSd), process inputs from electroreceptors to allow fish to detect and discriminate electrocommunication signals. We used qPCR to quantify the expression of genes for two androgen receptors (ar1, ar2), two estrogen receptors (esr1, esr2b), and aromatase (cyp19a1b). Four out of five steroid-related genes were expressed in both sensory brain regions, and their expression often varied between sexes and species. These results suggest that expression of steroid-related genes in the brain may differentially influence how EOD signals are encoded across species and sexes, and that gonadal steroids may coordinately regulate central circuits that control both the production and perception of EODs.


Subject(s)
Brain , Electric Fish , Electric Organ , Sex Characteristics , Animals , Female , Electric Fish/genetics , Electric Fish/metabolism , Male , Brain/metabolism , Electric Organ/metabolism , Electric Organ/physiology
8.
Am J Physiol Regul Integr Comp Physiol ; 326(6): R461-R471, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38557151

ABSTRACT

Nutrient absorption is essential for animal survival and development. Our previous study on zebrafish reported that nutrient absorption in lysosome-rich enterocytes (LREs) is promoted by the voltage-sensing phosphatase (VSP), which regulates phosphoinositide (PIP) homeostasis via electrical signaling in biological membranes. However, it remains unknown whether this VSP function is shared by different absorptive tissues in other species. Here, we focused on the function of VSP in a viviparous teleost Xenotoca eiseni, whose intraovarian embryos absorb nutrients from the maternal ovarian fluid through a specialized hindgut-derived pseudoplacental structure called trophotaenia. Xenotoca eiseni VSP (Xe-VSP) is expressed in trophotaenia epithelium, an absorptive tissue functionally similar to zebrafish LREs. Notably, the apical distribution of Xe-VSP in trophotaenia epithelial cells closely resembles zebrafish VSP (Dr-VSP) distribution in zebrafish LREs, suggesting a shared role for VSP in absorptive tissues between the two species. Electrophysiological analysis using a heterologous expression system revealed that Xe-VSP preserves functional voltage sensors and phosphatase activity with the leftward shifted voltage sensitivity compared with zebrafish VSP (Dr-VSP). We also identified a single amino acid variation in the S4 helix of Xe-VSP as one of the factors contributing to the leftward shifted voltage sensitivity. This study highlights the biological variation and significance of VSP in various animal species, as well as hinting at the potential role of VSP in nutrient absorption in X. eiseni trophotaenia.NEW & NOTEWORTHY We investigate the voltage-sensing phosphatase (VSP) in Xenotoca eiseni, a viviparous fish whose intraovarian embryos utilize trophotaenia for nutrient absorption. Although X. eiseni VSP (Xe-VSP) shares key features with known VSPs, its distinct voltage sensitivity arises from species-specific amino acid variation. Xe-VSP in trophotaenia epithelium suggests its involvement in nutrient absorption, similar to VSP in zebrafish enterocytes and potentially in species with similar absorptive cells. Our findings highlight the potential role of VSP across species.


Subject(s)
Phosphoric Monoester Hydrolases , Viviparity, Nonmammalian , Animals , Female , Phosphoric Monoester Hydrolases/metabolism , Phosphoric Monoester Hydrolases/genetics , Fish Proteins/metabolism , Fish Proteins/genetics , Enterocytes/metabolism , Enterocytes/enzymology , Electric Fish/physiology , Electric Fish/metabolism , Zebrafish , Membrane Potentials
9.
Biophys J ; 123(14): 2097-2109, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38429925

ABSTRACT

The voltage dependence of different voltage-gated potassium channels, described by the voltage at which half of the channels are open (V1/2), varies over a range of 80 mV and is influenced by factors such as the number of positive gating charges and the identity of the hydrophobic amino acids in the channel's voltage sensor (S4). Here we explore by experimental manipulations and molecular dynamics simulation the contributions of two derived features of an electric fish potassium channel (Kv1.7a) that is among the most voltage-sensitive Shaker family potassium channels known. These are a patch of four contiguous negatively charged glutamates in the S3-S4 extracellular loop and a glutamate in the S3b helix. We find that these negative charges affect V1/2 by separate, complementary mechanisms. In the closed state, the S3-S4 linker negative patch reduces the membrane surface charge biasing the channel to enter the open state while, upon opening, the negative amino acid in the S3b helix faces the second (R2) gating charge of the voltage sensor electrostatically biasing the channel to remain in the open state. This work highlights two evolutionary novelties that illustrate the potential influence of negatively charged amino acids in extracellular loops and adjacent helices to voltage dependence.


Subject(s)
Ion Channel Gating , Molecular Dynamics Simulation , Animals , Electric Fish/physiology , Amino Acid Sequence , Shaker Superfamily of Potassium Channels/chemistry , Shaker Superfamily of Potassium Channels/metabolism
10.
Nature ; 628(8006): 139-144, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38448593

ABSTRACT

A number of organisms, including dolphins, bats and electric fish, possess sophisticated active sensory systems that use self-generated signals (for example, acoustic or electrical emissions) to probe the environment1,2. Studies of active sensing in social groups have typically focused on strategies for minimizing interference from conspecific emissions2-4. However, it is well known from engineering that multiple spatially distributed emitters and receivers can greatly enhance environmental sensing (for example, multistatic radar and sonar)5-8. Here we provide evidence from modelling, neural recordings and behavioural experiments that the African weakly electric fish Gnathonemus petersii utilizes the electrical pulses of conspecifics to extend its electrolocation range, discriminate objects and increase information transmission. These results provide evidence for a new, collective mode of active sensing in which individual perception is enhanced by the energy emissions of nearby group members.


Subject(s)
Animal Communication , Cooperative Behavior , Electric Fish , Electric Organ , Animals , Electric Fish/physiology , Electric Organ/physiology , Male , Female
11.
J Exp Zool B Mol Dev Evol ; 342(3): 144-163, 2024 May.
Article in English | MEDLINE | ID: mdl-38361399

ABSTRACT

Mormyroidea is a superfamily of weakly electric African fishes with great potential as a model in a variety of biomedical research areas including systems neuroscience, muscle cell and craniofacial development, ion channel biophysics, and flagellar/ciliary biology. However, they are currently difficult to breed in the laboratory setting, which is essential for any tractable model organism. As such, there is a need to better understand the reproductive biology of mormyroids to breed them more reliably in the laboratory to effectively use them as a biomedical research model. This review seeks to (1) briefly highlight the biomedically relevant phenotypes of mormyroids and (2) compile information about mormyroid reproduction including sex differences, breeding season, sexual maturity, gonads, gametes, and courtship/spawning behaviors. We also highlight areas of mormyroid reproductive biology that are currently unexplored and/or have the potential for further investigation that may provide insights into more successful mormyroid laboratory breeding methods.


Subject(s)
Reproduction , Animals , Reproduction/physiology , Electric Fish/physiology , Biomedical Research , Male , Female , Sexual Behavior, Animal/physiology
12.
Biol Lett ; 20(2): 20230480, 2024 02.
Article in English | MEDLINE | ID: mdl-38412964

ABSTRACT

Active electroreception-the ability to detect objects and communicate with conspecifics via the detection and generation of electric organ discharges (EODs)-has evolved convergently in several fish lineages. South American electric fishes (Gymnotiformes) are a highly species-rich group, possibly in part due to evolution of an electric organ (EO) that can produce diverse EODs. Neofunctionalization of a voltage-gated sodium channel gene accompanied the evolution of electrogenic tissue from muscle and resulted in a novel gene (scn4aa) uniquely expressed in the EO. Here, we investigate the link between variation in scn4aa and differences in EOD waveform. We combine gymnotiform scn4aa sequences encoding the C-terminus of the Nav1.4a protein, with biogeographic data and EOD recordings to test whether physiological transitions among EOD types accompany differential selection pressures on scn4aa. We found positive selection on scn4aa coincided with shifts in EOD types. Species that evolved in the absence of predators, which likely selected for reduced EOD complexity, exhibited increased scn4aa evolutionary rates. We model mutations in the protein that may underlie changes in protein function and discuss our findings in the context of gymnotiform signalling ecology. Together, this work sheds light on the selective forces underpinning major evolutionary transitions in electric signal production.


Subject(s)
Electric Fish , Animals , Electric Fish/genetics , Electric Organ/physiology , Phylogeny , Sodium Channels/genetics , South America
13.
Mol Biol Evol ; 41(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38410843

ABSTRACT

In the African weakly electric fish genus Campylomormyrus, electric organ discharge signals are strikingly different in shape and duration among closely related species, contribute to prezygotic isolation, and may have triggered an adaptive radiation. We performed mRNA sequencing on electric organs and skeletal muscles (from which the electric organs derive) from 3 species with short (0.4 ms), medium (5 ms), and long (40 ms) electric organ discharges and 2 different cross-species hybrids. We identified 1,444 upregulated genes in electric organ shared by all 5 species/hybrid cohorts, rendering them candidate genes for electric organ-specific properties in Campylomormyrus. We further identified several candidate genes, including KCNJ2 and KLF5, and their upregulation may contribute to increased electric organ discharge duration. Hybrids between a short (Campylomormyrus compressirostris) and a long (Campylomormyrus rhynchophorus) discharging species exhibit electric organ discharges of intermediate duration and showed imbalanced expression of KCNJ2 alleles, pointing toward a cis-regulatory difference at this locus, relative to electric organ discharge duration. KLF5 is a transcription factor potentially balancing potassium channel gene expression, a crucial process for the formation of an electric organ discharge. Unraveling the genetic basis of the species-specific modulation of the electric organ discharge in Campylomormyrus is crucial for understanding the adaptive radiation of this emerging model taxon of ecological (perhaps even sympatric) speciation.


Subject(s)
Electric Fish , Animals , Electric Fish/genetics , Alleles , Electric Organ/metabolism , Up-Regulation , Potassium Channels/genetics
14.
J Biol Chem ; 300(3): 105727, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38325739

ABSTRACT

Hypoxia is a significant source of metabolic stress that activates many cellular pathways involved in cellular differentiation, proliferation, and cell death. Hypoxia is also a major component in many human diseases and a known driver of many cancers. Despite the challenges posed by hypoxia, there are animals that display impressive capacity to withstand lethal levels of hypoxia for prolonged periods of time and thus offer a gateway to a more comprehensive understanding of the hypoxic response in vertebrates. The weakly electric fish genus Brachyhypopomus inhabits some of the most challenging aquatic ecosystems in the world, with some species experiencing seasonal anoxia, thus providing a unique system to study the cellular and molecular mechanisms of hypoxia tolerance. In this study, we use closely related species of Brachyhypopomus that display a range of hypoxia tolerances to probe for the underlying molecular mechanisms via hypoxia inducible factors (HIFs)-transcription factors known to coordinate the cellular response to hypoxia in vertebrates. We find that HIF1⍺ from hypoxia tolerant Brachyhypopomus species displays higher transactivation in response to hypoxia than that of intolerant species, when overexpressed in live cells. Moreover, we identified two SUMO-interacting motifs near the oxygen-dependent degradation and transactivation domains of the HIF1⍺ protein that appear to boost transactivation of HIF1, regardless of the genetic background. Together with computational analyses of selection, this shows that evolution of HIF1⍺ are likely to underlie adaptations to hypoxia tolerance in Brachyhypopomus electric fishes, with changes in two SUMO-interacting motifs facilitating the mechanism of this tolerance.


Subject(s)
Electric Fish , Hypoxia-Inducible Factor 1, alpha Subunit , Oxygen , Animals , Ecosystem , Electric Fish/genetics , Electric Fish/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Anaerobiosis , Oxygen/metabolism
15.
Article in English | MEDLINE | ID: mdl-38227005

ABSTRACT

The Journal of Comparative Physiology lived up to its name in the last 100 years by including more than 1500 different taxa in almost 10,000 publications. Seventeen phyla of the animal kingdom were represented. The honeybee (Apis mellifera) is the taxon with most publications, followed by locust (Locusta migratoria), crayfishes (Cambarus spp.), and fruitfly (Drosophila melanogaster). The representation of species in this journal in the past, thus, differs much from the 13 model systems as named by the National Institutes of Health (USA). We mention major accomplishments of research on species with specific adaptations, specialist animals, for example, the quantitative description of the processes underlying the axon potential in squid (Loligo forbesii) and the isolation of the first receptor channel in the electric eel (Electrophorus electricus) and electric ray (Torpedo spp.). Future neuroethological work should make the recent genetic and technological developments available for specialist animals. There are many research questions left that may be answered with high yield in specialists and some questions that can only be answered in specialists. Moreover, the adaptations of animals that occupy specific ecological niches often lend themselves to biomimetic applications. We go into some depth in explaining our thoughts in the research of motion vision in insects, sound localization in barn owls, and electroreception in weakly electric fish.


Subject(s)
Electric Fish , Sound Localization , Strigiformes , Animals , Drosophila melanogaster , Sound Localization/physiology , Vision, Ocular , Electrophorus
16.
J Fish Biol ; 104(1): 252-264, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37804519

ABSTRACT

This study was the first to investigate the key reproductive traits of the electric lantern fish Electrona risso (Myctophidae, n = 918) and the bigscale fishes (Melamphaidae) Melamphaes polylepis (n = 260) and Scopelogadus mizolepis (n = 649). Specimens of these mesopelagic species were collected in March and April 2015 in the eastern Central Atlantic (0-24° N, 20-26° W). Sex ratio was not significantly different from 1:1 in E. risso and M. polylepis but significantly skewed toward female dominance in S. mizolepis. Reproductive phases were determined macroscopically and by histological analyses on selected individuals. Female length at 50% maturity (L50 ) was 55.1 mm standard length (LS ) in E. risso, with an observed female maximum length (Lmax ) of 81.2 mm LS . M. polylepis females had an L50 of 40.2 mm LS and an Lmax of 86.7 mm LS . S. mizolepis had an L50 of 46 mm LS and an Lmax of 97.9 mm LS . The three species show histological features of iteroparity, but the E. risso population appears to occur in two year-classes and experience only one spawning season per lifetime in the study region. All three species are batch-spawners. A batch fecundity of 2668 eggs was estimated from one E. risso individual, with a relative batch fecundity of 369 eggs g-1 gonad-free body mass. M. polylepis had a batch fecundity of 1027 eggs and a relative batch fecundity of 149 eggs g-1 (n = 3). S. polylepis had a batch fecundity of 1545 eggs and a relative batch fecundity of 215 eggs g-1 (n = 21). The median gonado-somatic index during the actively spawning phase of E. risso was 4.5, significantly lower than that of M. polylepis (7.5) and S. mizolepis (7.1). No regressing or regenerating phases were observed in this study. Batch-spawning in all three species is suggested to be advantageous to cope with intra-annual variability in food supply and other risks for offspring survival. With what appears to be in effect a (facultative) semelparous strategy in combination with a short life span in E. risso, interannual differences would have a great effect on population dynamics of this species. Knowledge is still lacking on temporal aspects of reproduction such as the duration of the spawning season and the frequency of spawning, as well as age and growth.


Subject(s)
Electric Fish , Reproduction , Female , Animals , Fertility , Fishes , Gonads , Seasons , Biology
17.
Article in English | MEDLINE | ID: mdl-37987801

ABSTRACT

This paper is not meant to be a review article. Instead, it gives an overview of the major research projects that the author, together with his students, colleagues and collaborators, has worked on. Although the main focus of the author's work has always been the fish lateral line, this paper is mainly about all the other research projects he did or that were done in his laboratory. These include studies on fishing spiders, weakly electric fish, seals, water rats, bottom dwelling sharks, freshwater rays, venomous snakes, birds of prey, fire loving beetles and backswimmers. The reasons for this diversity of research projects? Simple. The authors's lifelong enthusiasm for animals, and nature's ingenuity in inventing new biological solutions. Indeed, this most certainly was a principal reason why Karl von Frisch and Alfred Kühn founded the Zeitschrift für vergleichende Physiologie (now Journal of Comparative Physiology A) 100 years ago.


Subject(s)
Electric Fish , Seals, Earless , Humans , Animals , Physiology, Comparative , Birds , Fresh Water
18.
Horm Behav ; 158: 105446, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37945472

ABSTRACT

The establishment of the dominant-subordinate status implies a clear behavioral asymmetry between contenders that arises immediately after the resolution of the agonistic encounter and persists during the maintenance of stable dominance hierarchies. Changes in the activity of the brain social behavior network (SBN) are postulated to be responsible for the establishment and maintenance of the dominant-subordinate status. The hypothalamic nonapeptides of the vasopressin (AVP) and oxytocin (OT) families are known to modulate the activity of the SBN in a context-dependent manner across vertebrates, including status-dependent modulations. We searched for status-dependent asymmetries in AVP-like (vasotocin, AVT) and OT-like (isotocin, IT) cell number and activation immediately after the establishment of dominance in males of the weakly electric fish, Gymnotus omarorum, which displays the best understood example of non-breeding territorial aggression among teleosts. We used immunolabeling (FOS, AVT, and IT) of preoptic area (POA) neurons after dyadic agonistic encounters. This study is among the first to show in teleosts that AVT, but not IT, is involved in the establishment of the dominant-subordinate status. We also found status-dependent subregion-specific changes of AVT cell number and activation. These results confirm the involvement of AVT in the establishment of dominance and support the speculation that AVT is released from dominants' AVT neurons.


Subject(s)
Electric Fish , Vasotocin , Humans , Male , Animals , Electric Fish/physiology , Oxytocin , Aggression
19.
Article in English | MEDLINE | ID: mdl-37002418

ABSTRACT

Living organisms display molecular, physiological and behavioral rhythms synchronized with natural environmental cycles. Understanding the interaction between environment, physiology and behavior requires taking into account the complexity of natural habitats and the diversity of behavioral and physiological adaptations. Brachyhypopomus gauderio is characterized by the emission of electric organ discharges (EOD), with a very stable rate modulated by social and environmental cues. The nocturnal arousal in B. gauderio coincides with a melatonin-dependent EOD rate increase. Here, we first show a daily cycle in both the EOD basal rate (EOD-BR) and EOD-BR variability of B. gauderio in nature. We approached the understanding of the role of melatonin in this natural behavior through both behavioral pharmacology and in vitro assays. We report, for the first time in gymnotiformes, a direct effect of melatonin on the pacemaker nucleus (PN) in in vitro preparation. Melatonin treatment lowered EOD-BR in freely moving fish and PN basal rate, while increasing the variability of both. These results show that melatonin plays a key role in modulating the electric behavior of B. gauderio through its effect on rate and variability, both of which must be under a tight temporal regulation to prepare the animal for the challenging nocturnal environment.


Subject(s)
Electric Fish , Gymnotiformes , Melatonin , Animals , Electric Fish/physiology , Melatonin/pharmacology , Gymnotiformes/physiology , Electric Organ/physiology , Behavior, Animal/physiology
20.
Horm Behav ; 159: 105475, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38154435

ABSTRACT

The South American weakly electric fish, Gymnotus omarorum, displays territorial aggression year-round in both sexes. To examine the role of rapid androgen modulation in non-breeding aggression, we administered acetate cyproterone (CPA), a potent inhibitor of androgen receptors, to both male and females, just before staged agonistic interactions. Wild-caught fish were injected with CPA and, 30 min later, paired in intrasexual dyads. We then recorded the agonistic behavior which encompasses both locomotor displays and emission of social electric signals. We found that CPA had no discernible impact on the levels of aggression or the motivation to engage in aggressive behavior for either sex. However, CPA specifically decreased the expression of social electric signals in both males and female dyads. The effect was status-dependent as it only affected subordinate electrocommunication behavior, the emission of brief interruptions in their electric signaling ("offs"). This study is the first demonstration of a direct and rapid androgen effect mediated via androgen receptors on non-breeding aggression. Elucidating the mechanisms involved in non-breeding aggression in this teleost model allows us to better understand potentially conserved or convergent neuroendocrine mechanisms underlying aggression in vertebrates.


Subject(s)
Electric Fish , Gymnotiformes , Animals , Female , Male , Aggression , Receptors, Androgen , Agonistic Behavior , Androgens/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL