Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.038
Filter
1.
Article in English | MEDLINE | ID: mdl-38765538

ABSTRACT

Objective: To show the experience of a Latin American public hospital, with SNM in the management of either OAB, NOUR or FI, reporting feasibility, short to medium-term success rates, and complications. Methods: A retrospective cohort was conducted using data collected prospectively from patients with urogynecological conditions and referred from colorectal surgery and urology services between 2015 and 2022. Results: Advanced or basic trial phases were performed on 35 patients, 33 (94%) of which were successful and opted to move on Implantable Pulse Generator (GG) implantation. The average follow-up time after definitive implantation was 82 months (SD 59). Of the 33 patients undergoing, 27 (81%)reported an improvement of 50% or more in their symptoms at last follow-up. Moreover, 30 patients (90%) with a definitive implant reported subjective improvement, with an average PGI-I "much better" and 9 of them reporting to be "excellent" on PGI-I. Conclusion: SNM is a feasible and effective treatment for pelvic floor dysfunction. Its implementation requires highly trained groups and innovative leadership. At a nation-wide level, greater diffusion of this therapy among professionals is needed to achieve timely referral of patients who require it.


Subject(s)
Electric Stimulation Therapy , Hospitals, Public , Humans , Female , Retrospective Studies , Middle Aged , Electric Stimulation Therapy/methods , Adult , Aged , Pelvic Floor Disorders/therapy , Latin America , Feasibility Studies , Fecal Incontinence/therapy , Treatment Outcome
2.
J Coll Physicians Surg Pak ; 34(5): 568-572, 2024 May.
Article in English | MEDLINE | ID: mdl-38720218

ABSTRACT

OBJECTIVE: To explore the impact of the Geko neuromuscular stimulator on preoperative preparation in patients with ankle fractures. STUDY DESIGN: Quasi-experiment study. Place and Duration of the Study: Department of Foot and Ankle Surgery and Department of Orthopaedics, Beijing Tongren Hospital, Capital Medical University, Beijing, China, between December 2020 and 2021. METHODOLOGY: This quasi-experiment study included patients with ankle fractures treated with Geko neuromuscular stimulator before surgical fixation. The primary outcome was limb swelling at 24, 48, and 72 hours (h) after admission, and the secondary outcomes were pain according to visual analogue scale (VAS) at 12, 24, and 48 hours after admission, preoperative waiting time, and comfort 4 and 72 h after admission. RESULTS: A total of 60 patients were included in the study; 30 in the conventional treatment group (mean age 41.16 ± 2.01 years) and 30 in the Geko group (mean age 40.22 ± 2.68 years). The limb swelling in patients was significantly different between the Geko and conventional treatment groups (p = 0.004). Besides, the swelling values at 48 (p < 0.001) and 72 (p < 0.001) hours were significantly lower than those at 24 hours. The pain in patients was significantly different between the Geko and conventional treatment groups (p = 0.007). Besides, the swelling values at 24 (p < 0.001) and 48 (p < 0.001) hours are significantly lower than those at 24 hours. Comfort was significantly higher at 4 h (69.54 ± 2.18 vs. 67.22 ± 3.14, p = 0.002) and 72 h [(88.50 (84.00 - 94.00) vs. 82.14 ± 3.08, p < 0.001)] after admission. The preoperative waiting time (3.52 ± 1.8 vs. 5.15 ± 2.1 hours, p = 0.002) was significantly shorter in the Geko group. CONCLUSION: The Geko neuromuscular stimulator is a useful option for preoperative preparation in patients with ankle fractures to reduce local swelling and pain and improve patients' comfort. KEY WORDS: Ankle fractures, Lower extremity, Neuromuscular stimulator, Peroneal nerve, Pain.


Subject(s)
Ankle Fractures , Preoperative Care , Humans , Male , Female , Ankle Fractures/surgery , Adult , Preoperative Care/methods , Pain Measurement , Fracture Fixation, Internal/methods , Middle Aged , Electric Stimulation Therapy/methods , Treatment Outcome , China
3.
CNS Neurosci Ther ; 30(5): e14720, 2024 05.
Article in English | MEDLINE | ID: mdl-38715344

ABSTRACT

BACKGROUND: Glioblastoma multiforme (GBM) is an aggressive malignant tumor with a high mortality rate and is the most prevalent primary intracranial tumor that remains incurable. The current standard treatment, which involves surgery along with concurrent radiotherapy and chemotherapy, only yields a survival time of 14-16 months. However, the introduction of tumor electric fields therapy (TEFT) has provided a glimmer of hope for patients with newly diagnosed and recurrent GBM, as it has been shown to extend the median survival time to 20 months. The combination of TEFT and other advanced therapies is a promising trend in the field of GBM, facilitated by advancements in medical technology. AIMS: In this review, we provide a concise overview of the mechanism and efficacy of TEFT. In addition, we mainly discussed the innovation of TEFT and our proposed blueprint for TEFT implementation. CONCLUSION: Tumor electric fields therapy is an effective and highly promising treatment modality for GBM. The full therapeutic potential of TEFT can be exploited by combined with other innovative technologies and treatments.


Subject(s)
Brain Neoplasms , Electric Stimulation Therapy , Glioblastoma , Humans , Glioblastoma/therapy , Brain Neoplasms/therapy , Electric Stimulation Therapy/methods , Electric Stimulation Therapy/trends , Animals
4.
Trials ; 25(1): 313, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730383

ABSTRACT

BACKGROUND: Pressure ulcers account for a substantial fraction of hospital-acquired pathology, with consequent morbidity and economic cost. Treatments are largely focused on preventing further injury, whereas interventions that facilitate healing remain limited. Intermittent electrical stimulation (IES) increases local blood flow and redistributes pressure from muscle-bone interfaces, thus potentially reducing ulcer progression and facilitating healing. METHODS: The Pressure Injury Treatment by Intermittent Electrical Stimulation (PROTECT-2) trial will be a parallel-arm multicenter randomized trial to test the hypothesis that IES combined with routine care reduces sacral and ischial pressure injury over time compared to routine care alone. We plan to enroll 548 patients across various centers. Hospitalized patients with stage 1 or stage 2 sacral or ischial pressure injuries will be randomized to IES and routine care or routine care alone. Wound stage will be followed until death, discharge, or the development of an exclusion criteria for up to 3 months. The primary endpoint will be pressure injury score measured over time. DISCUSSION: Sacral and ischial pressure injuries present a burden to hospitalized patients with both clinical and economic consequences. The PROTECT-2 trial will evaluate whether IES is an effective intervention and thus reduces progression of stage 1 and stage 2 sacral and ischial pressure injuries. TRIAL REGISTRATION: ClinicalTrials.gov NCT05085288 Registered October 20, 2021.


Subject(s)
Electric Stimulation Therapy , Multicenter Studies as Topic , Pressure Ulcer , Randomized Controlled Trials as Topic , Humans , Pressure Ulcer/therapy , Electric Stimulation Therapy/methods , Treatment Outcome , Time Factors , Wound Healing
5.
Sci Rep ; 14(1): 10252, 2024 05 04.
Article in English | MEDLINE | ID: mdl-38704459

ABSTRACT

About one in three critically ill patients requires mechanical ventilation (MV). Prolonged MV, however, results in diaphragmatic weakness, which itself is associated with delayed weaning and increased mortality. Inducing active diaphragmatic contraction via electrical phrenic nerve stimulation (PNS) not only provides the potential to reduce diaphragmatic muscular atrophy but also generates physiological-like ventilation and therefore offers a promising alternative to MV. Reasons why PNS is not yet used in critical care medicine are high procedural invasiveness, insufficient evidence, and lack of side-by-side comparison to MV. This study aims to establish a minimal-invasive percutaneous, bilateral electrode placement approach for sole PNS breathing and thereby enable, for the first time, a breath-by-breath comparison to MV. Six juvenile German Landrace pigs received general anesthesia and orotracheal intubation. Following the novel ultrasound-guided, landmark-based, 4-step approach, two echogenic needles per phrenic nerve were successfully placed. Stimulation effectiveness was evaluated measuring tidal volume, diaphragmatic thickening and tomographic electrical impedance in a breath-by-breath comparison to MV. Following sufficient bilateral phrenic nerve stimulation in all pigs, PNS breaths showed a 2.2-fold increase in diaphragmatic thickening. It induced tidal volumes in the lung-protective range by negative pressure inspiration and improved dorso-caudal regional ventilation in contrast to MV. Our study demonstrated the feasibility of a novel ultrasound-guided, percutaneous phrenic nerve stimulation approach, which generated sufficient tidal volumes and showed more resemblance to physiological breathing than MV in a breath-by-breath comparison.


Subject(s)
Diaphragm , Phrenic Nerve , Respiration, Artificial , Animals , Phrenic Nerve/physiology , Respiration, Artificial/methods , Swine , Pilot Projects , Diaphragm/innervation , Diaphragm/physiology , Tidal Volume , Electric Stimulation Therapy/methods , Transcutaneous Electric Nerve Stimulation/methods , Electric Stimulation/methods
6.
Lasers Med Sci ; 39(1): 120, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38695965

ABSTRACT

Cellulite, a perceived alteration in skin topography, is predominantly found in adipose tissue-rich body regions such as the hips, buttocks, thighs, and abdomen. Contrary to common belief, the etiology and pathophysiology of cellulite are not well-established or universally agreed upon. This lack of understanding about the actual etiology of cellulite directly influences the selection of suitable treatments that can address both the aesthetic and inflammatory aspects of the condition. Various treatment methods, including electrophysical agents like electric currents, radiofrequency, ultrasound, and photobiomodulation, have been tested. However, the questionable methodological quality of many studies complicates the determination of effective treatments for cellulite. In this study, we conducted a systematic review of clinical studies that utilized electrophysical agents in cellulite treatment. METHODS: We employed the PICO (population, intervention, control, and outcome) process to develop our search strategy and establish inclusion/exclusion criteria. We searched five databases: Medline, Central, Scopus, Lilacs, and PEDro, for studies conducted between 2001 and July 2021 that involved cellulite treatment with electrophysical agents. To ensure systematicity and guide study selection, we adhered to the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines. RESULTS: Our initial search yielded 556 articles: 379 from Medline, 159 from Central, and 18 from Lilacs. After applying our inclusion criteria, only 32 studies remained. Of these, only two (6.2%) were evaluated as having strong and good methodology via the QualSyst tool. CONCLUSIONS: Our findings indicate that the quality of evidence from clinical studies on the use of electrophysical agents for cellulite treatment remains subpar. Further studies with robust experimental designs and more precise assessment techniques are necessary. While our study does not refute the effectiveness of the techniques used for cellulite treatment, it underscores the need for additional well-designed trials.


Subject(s)
Cellulite , Humans , Cellulite/therapy , Electric Stimulation Therapy/methods , Low-Level Light Therapy/methods , Clinical Trials as Topic , Radiofrequency Therapy/methods
7.
Nat Med ; 30(5): 1276-1283, 2024 May.
Article in English | MEDLINE | ID: mdl-38769431

ABSTRACT

Cervical spinal cord injury (SCI) leads to permanent impairment of arm and hand functions. Here we conducted a prospective, single-arm, multicenter, open-label, non-significant risk trial that evaluated the safety and efficacy of ARCEX Therapy to improve arm and hand functions in people with chronic SCI. ARCEX Therapy involves the delivery of externally applied electrical stimulation over the cervical spinal cord during structured rehabilitation. The primary endpoints were safety and efficacy as measured by whether the majority of participants exhibited significant improvement in both strength and functional performance in response to ARCEX Therapy compared to the end of an equivalent period of rehabilitation alone. Sixty participants completed the protocol. No serious adverse events related to ARCEX Therapy were reported, and the primary effectiveness endpoint was met. Seventy-two percent of participants demonstrated improvements greater than the minimally important difference criteria for both strength and functional domains. Secondary endpoint analysis revealed significant improvements in fingertip pinch force, hand prehension and strength, upper extremity motor and sensory abilities and self-reported increases in quality of life. These results demonstrate the safety and efficacy of ARCEX Therapy to improve hand and arm functions in people living with cervical SCI. ClinicalTrials.gov identifier: NCT04697472 .


Subject(s)
Arm , Hand , Quadriplegia , Spinal Cord Injuries , Humans , Quadriplegia/therapy , Quadriplegia/physiopathology , Male , Hand/physiopathology , Female , Middle Aged , Adult , Arm/physiopathology , Spinal Cord Injuries/therapy , Spinal Cord Injuries/physiopathology , Spinal Cord Injuries/rehabilitation , Spinal Cord Stimulation/methods , Treatment Outcome , Quality of Life , Prospective Studies , Chronic Disease , Aged , Electric Stimulation Therapy/methods , Electric Stimulation Therapy/adverse effects
8.
Sci Rep ; 14(1): 11386, 2024 05 18.
Article in English | MEDLINE | ID: mdl-38762573

ABSTRACT

Aspiration pneumonia is the leading cause of death in patients with Parkinson's disease. The incidence of silent aspiration is high in such patients owing to decreased pharyngeal and laryngeal sensation; thus, interventions for this condition may help prevent pneumonia. In this single-arm, open-label study, we used a cervical percutaneous interferential current stimulation device to activate pharyngeal and laryngeal sensory nerves. We evaluated its effectiveness in patients with Hoehn-Yahr stages 2-4 Parkinson's disease. The primary endpoint was the proportion of patients with a normal cough reflex after consuming 1% citric acid at the end of the intervention compared with baseline measurements. In total, 25 patients received neck percutaneous interferential current stimulation for 20 min twice weekly for 8 weeks. Afterward, the proportion of patients with a normal cough reflex after 1% citric acid consumption increased significantly (p = 0.001), whereas other indicators, such as tongue pressure, peak expiratory flow, and penetration or aspiration during videofluoroscopic examination, remained unchanged. A longer duration of illness, higher Unified Parkinson's Disease Rating Scale total scores, and higher levodopa equivalent daily doses were significantly associated with improved cough test outcomes. Hence, cervical percutaneous interferential current stimulation significantly improved cough reflexes and may improve silent aspiration. Trial Registration: Japan Registry of Clinical Trials, jRCTs062220013, first registered 09/05/2022.


Subject(s)
Citric Acid , Cough , Parkinson Disease , Humans , Parkinson Disease/therapy , Parkinson Disease/physiopathology , Female , Male , Aged , Cough/drug therapy , Middle Aged , Pneumonia, Aspiration/etiology , Pneumonia, Aspiration/prevention & control , Electric Stimulation Therapy/methods
9.
Sci Rep ; 14(1): 10440, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38714750

ABSTRACT

A wide variety of treatments have been developed to improve respiratory function and quality of life in patients with bilateral vocal fold paresis (BVFP). One experimental method is the electrical activation of the posterior cricoarytenoid (PCA) muscle with a laryngeal pacemaker (LP) to open the vocal folds. We used an ovine (sheep) model of unilateral VFP to study the long-term effects of functional electrical stimulation on the PCA muscles. The left recurrent laryngeal nerve was cryo-damaged in all animals and an LP was implanted except for the controls. After a reinnervation phase of six months, animals were pooled into groups that received either no treatment, implantation of an LP only, or implantation of an LP and six months of stimulation with different duty cycles. Automated image analysis of fluorescently stained PCA cross-sections was performed to assess relevant muscle characteristics. We observed a fast-to-slow fibre type shift in response to nerve damage and stimulation, but no complete conversion to a slow-twitch-muscle. Fibre size, proportion of hybrid fibres, and intramuscular collagen content were not substantially altered by the stimulation. These results demonstrate that 30 Hz burst stimulation with duty cycles of 40% and 70% did not induce PCA atrophy or fibrosis. Thus, long-term stimulation with an LP is a promising approach for treating BVFP in humans without compromising muscle conditions.


Subject(s)
Disease Models, Animal , Electric Stimulation Therapy , Laryngeal Muscles , Vocal Cord Paralysis , Animals , Sheep , Vocal Cord Paralysis/therapy , Vocal Cord Paralysis/physiopathology , Electric Stimulation Therapy/methods , Laryngeal Muscles/physiopathology , Humans , Pacemaker, Artificial/adverse effects , Vocal Cords/physiopathology , Vocal Cords/pathology , Female
10.
Physiol Res ; 73(2): 285-294, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38710059

ABSTRACT

This study aimed to determine whether electrical stimulation-based twitch exercise is effective in inhibiting the progression of immobilization-induced muscle fibrosis. 19 Wistar rats were randomly divided into a control group (n=6), an immobilization group (n=6; with immobilization only), and a Belt group (n=7; with immobilization and twitch exercise through the belt electrode device, beginning 2 weeks after immobilization). The bilateral soleus muscles were harvested after the experimental period. The right soleus muscles were used for histological analysis, and the left soleus muscles were used for biochemical and molecular biological analysis. As a result, in the picrosirius red images, the perimysium and endomysium were thicker in both the immobilization and Belt groups compared to the control group. However, the perimysium and endomysium thickening were suppressed in the Belt group. The hydroxyproline content and alpha-SMA, TGF-beta1, and HIF-1alpha mRNA expressions were significantly higher in the immobilization and belt groups than in the control group. These expressions were significantly lower in the Belt group than in the immobilization group. The capillary-to-myofiber ratio and the mRNA expressions of VEGF and PGC-1alpha were significantly lower in the immobilization and belt groups than in the control group, these were significantly higher in the Belt group than in the immobilization group. From these results, Electrical stimulation-based twitch exercise using the belt electrode device may prevent the progression of immobilization-induced muscle fibrosis caused by downregulating PGC-1alpha/VEGF pathway, we surmised that this intervention strategy might be effective against the progression of muscle contracture. Keywords: Immobilization, Skeletal muscle, Fibrosis, Electrical stimulation-based twitch exercise, PGC-1alpha/VEGF pathway.


Subject(s)
Down-Regulation , Fibrosis , Muscle, Skeletal , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Physical Conditioning, Animal , Rats, Wistar , Vascular Endothelial Growth Factor A , Animals , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Male , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Rats , Physical Conditioning, Animal/physiology , Signal Transduction/physiology , Electric Stimulation , Electric Stimulation Therapy/methods , Disease Progression , Muscular Diseases/metabolism , Muscular Diseases/pathology , Muscular Diseases/prevention & control , Muscular Diseases/etiology
11.
Clin Interv Aging ; 19: 795-806, 2024.
Article in English | MEDLINE | ID: mdl-38745745

ABSTRACT

The World Health Organization recommends that older adults undertake at least 150 minutes of moderate intensity physical activity over the course of each week in order to maintain physical, mental, and social health. This goal turns out to be very difficult for most community dwelling older adults to achieve, due to both actual and perceived barriers. These barriers include personal health limitations, confinement issues, and self-imposed restrictions such as fear of injury. Climate change exacerbates the confinement issues and injury fears among the elderly. To assist older adults in obtaining the benefits of increased physical activity under increasingly challenging climate conditions, we propose a targeted non-volitional intervention which could serve as a complement to volitional physical activity. Exogenous neuro-muscular stimulation of the soleus muscles is a non-invasive intervention capable of significantly increasing cardiac output in sedentary individuals. Long-term daily use has been shown to improve sleep, reduce bone loss, and reverse age-related cognitive decline, all of which are significant health concerns for older adults. These outcomes support the potential benefit of exogenous neuro-muscular stimulation as a complementary form of physical activity which older adults may find convenient to incorporate into their daily life when traditional forms of exercise are difficult to achieve due to barriers to completing traditional physical activities as a result of in-home or in-bed confinement, perceptual risks, or real environmental risks such as those arising from climate change.


Subject(s)
Climate Change , Muscle, Skeletal , Muscular Atrophy , Aged , Humans , Electric Stimulation Therapy/methods , Exercise , Exercise Therapy/methods , Muscular Atrophy/prevention & control , Muscular Atrophy/therapy
12.
Aging (Albany NY) ; 16(9): 7946-7960, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38713160

ABSTRACT

BACKGROUND: Traumatic brain injury (TBI) is a significant contributor to global mortality and disability, and emerging evidence indicates that trigeminal nerve electrical stimulation (TNS) is a promising therapeutic intervention for neurological impairment following TBI. However, the precise mechanisms underlying the neuroprotective effects of TNS in TBI are poorly understood. Thus, the objective of this study was to investigate the potential involvement of the orexin-A (OX-A)/orexin receptor 1 (OX1R) mediated TLR4/NF-κB/NLRP3 signaling pathway in the neuroprotective effects of TNS in rats with TBI. METHODS: Sprague-Dawley rats were randomly assigned to four groups: sham, TBI, TBI+TNS+SB334867, and TBI+TNS. TBI was induced using a modified Feeney's method, and subsequent behavioral assessments were conducted to evaluate neurological function. The trigeminal nerve trunk was isolated, and TNS was administered following the establishment of the TBI model. The levels of neuroinflammation, brain tissue damage, and proteins associated with the OX1R/TLR4/NF-κB/NLRP3 signaling pathway were assessed using hematoxylin-eosin staining, Nissl staining, western blot analysis, quantitative real-time polymerase chain reaction, and immunofluorescence techniques. RESULTS: The findings of our study indicate that TNS effectively mitigated tissue damage, reduced brain edema, and alleviated neurological deficits in rats with TBI. Furthermore, TNS demonstrated the ability to attenuate neuroinflammation levels and inhibit the expression of proteins associated with the TLR4/NF-κB/NLRP3 signaling pathway. However, it is important to note that the aforementioned effects of TNS were reversible upon intracerebroventricular injection of an OX1R antagonist. CONCLUSION: TNS may prevent brain damage and relieve neurological deficits after a TBI by inhibiting inflammation, possibly via the TLR4/NF-κB/NLRP3 signaling pathway mediated by OX-A/OX1R.


Subject(s)
Brain Injuries, Traumatic , NF-kappa B , NLR Family, Pyrin Domain-Containing 3 Protein , Orexin Receptors , Rats, Sprague-Dawley , Signal Transduction , Toll-Like Receptor 4 , Trigeminal Nerve , Animals , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/therapy , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Orexin Receptors/metabolism , Orexin Receptors/genetics , Rats , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Male , Trigeminal Nerve/metabolism , Orexins/metabolism , Electric Stimulation Therapy/methods , Disease Models, Animal
14.
J Bodyw Mov Ther ; 38: 474-482, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38763596

ABSTRACT

OBJECTIVE: Restoring the degree of kyphosis to be consistent with good sagittal alignment of the spine is a key concern. This study aimed to compare the effect of core stability exercises (CSE) versus whole-body electromyostimulation (WB-EMS) and a combined program (PLUS) on kyphosis angle and core muscle endurance in sedentary individuals with hyperkyphosis. DESIGN: A quasi-experimental single group pre-post study. SETTINGS: Laboratory of corrective exercise. PARTICIPANTS: seventy-five untrained men (28.9 ± 5.3 years) with thoracic hyperkyphosis. MAIN OUTCOME MEASURES: A flexible ruler was used to measure the angle of kyphosis and McGill's test was used to evaluate core stability. RESULTS: The results of the post hoc test demonstrated that the kyphosis angle was improved in the WB-EMS and PLUS groups compared to that in the CG (P < 0.05), but no significant difference was observed among the three groups(P > 0.05). In the post-test, core stability was significantly improved in CSE, WB-EMS and PLUS groups compared to that in the CG. CONCLUSIONS: The WB-EMS and PLUS protocols as new training methods seem to be effective in changing posture parameters and correcting postural deformities, including kyphosis. Therefore, these protocols along with other rehabilitation programs can be used to correct kyphosis and improve core muscle endurance.


Subject(s)
Exercise Therapy , Kyphosis , Humans , Kyphosis/rehabilitation , Kyphosis/physiopathology , Male , Adult , Exercise Therapy/methods , Young Adult , Electric Stimulation Therapy/methods , Physical Endurance/physiology
15.
PLoS One ; 19(5): e0302970, 2024.
Article in English | MEDLINE | ID: mdl-38728244

ABSTRACT

Hematopoietic stem cell transplantation is a common life-saving treatment for hematologic malignancies, though can lead to long-term functional impairment, fatigue, muscle atrophy, with decreased quality of life. Although traditional exercise has helped reduce these effects, it is inconsistently recommended and infrequently maintained, and most patients remain sedentary during and after treatment. There is need for alternative rehabilitation strategies, like neuromuscular electrical stimulation, that may be more amenable to the capabilities of hematopoietic stem cell transplant recipients. Patients receiving autologous HCT are being enroled in a randomized controlled trial with 1:1 (neuromuscular electrical stimulation:sham) design stratified by diagnosis and sex. Physical function, body composition, quality of life, and fatigue are assessed prior to hematopoietic stem cell transplant (prior to initiating preparatory treatment) and 24±5 days post hematopoietic stem cell transplant (Follow-up 1); physical function and quality of life are also assessed 6-months post hematopoietic stem cell transplant (Follow-up 2). The primary outcome is between-group difference in the 6-minute walk test change scores (Follow-up 1-Pre-transplant; final enrolment goal N = 23/group). We hypothesize that 1) neuromuscular electrical stimulation will attenuate hematopoietic stem cell transplant-induced adverse effects on physical function, muscle mass, quality of life, and fatigue compared to sham at Follow-up 1, and 2) Pre-transplant physical function will significantly predict fatigue and quality of life at Follow-up 2. We will also describe feasibility and acceptability of neuromuscular electrical stimulation during hematopoietic stem cell transplant. This proposal will improve rehabilitative patient care and quality of life by determining efficacy and feasibility of a currently underutilized therapeutic strategy aimed at maintaining daily function and reducing the impact of a potent and widely used cancer treatment. This trial is registered with clinicaltrials.gov (NCT04364256).


Subject(s)
Electric Stimulation Therapy , Hematopoietic Stem Cell Transplantation , Quality of Life , Humans , Hematopoietic Stem Cell Transplantation/methods , Electric Stimulation Therapy/methods , Male , Female , Adult , Electric Stimulation/methods , Fatigue/therapy , Middle Aged , Hematologic Neoplasms/therapy , Transplantation, Autologous , Body Composition
16.
Ger Med Sci ; 22: Doc03, 2024.
Article in English | MEDLINE | ID: mdl-38651019

ABSTRACT

Introduction: Rhinophonia aperta may result from velopharyngeal insufficiency. Neuromuscular electrical stimulation (NMES) has been discussed in the context of muscle strengthening. The aim of this study was to evaluate in healthy subjects whether NMES can change the velopharyngeal closure pattern during phonation and increase muscle strength. Method: Eleven healthy adult volunteers (21-57 years) were included. Pressure profiles were measured by high resolution manometry (HRM): isolated sustained articulation of /a/ over 5 s (protocol 1), isolated NMES applied to soft palate above motor threshold (protocol 2) and combined articulation with NMES (protocol 3). Mean activation pressures (MeanAct), maximum pressures (Max), Area under curve (AUC) and type of velum reactions were compared. A statistical comparison of mean values of protocol 1 versus protocol 3 was carried out using the Wilcoxon signed rank test. Ordinally scaled parameters were analyzed by cross table. Results: MeanAct values measured: 17.15±20.69 mmHg (protocol 1), 34.59±25.75 mmHg (protocol 3) on average, Max: 37.86±49.17 mmHg (protocol 1), 87.24±59.53 mmHg (protocol 3) and AUC: 17.06±20.70 mmHg.s (protocol 1), 33.76±23.81 mmHg.s (protocol 3). Protocol 2 produced velum reactions on 32 occasions. These presented with MeanAct values of 13.58±12.40 mmHg, Max values of 56.14±53.14 mmHg and AUC values of 13.84±12.78 mmHg.s on average. Statistical analysis comparing protocol 1 and 3 showed more positive ranks for MeanAct, Max and AUC. This difference reached statistical significance (p=0.026) for maximum pressure values. Conclusions: NMES in combination with articulation results in a change of the velopharyngeal closure pattern with a pressure increase of around 200% in healthy individuals. This might be of therapeutic benefit for patients with velopharyngeal insufficiency.


Subject(s)
Phonation , Pressure , Humans , Adult , Male , Female , Phonation/physiology , Young Adult , Middle Aged , Palate, Soft/physiology , Electric Stimulation Therapy/methods , Manometry/methods , Velopharyngeal Insufficiency/physiopathology , Muscle Strength/physiology , Healthy Volunteers
17.
NeuroRehabilitation ; 54(3): 391-398, 2024.
Article in English | MEDLINE | ID: mdl-38607771

ABSTRACT

BACKGROUND: Stroke patients often experience difficulty swallowing. OBJECTIVE: To assist in the improvement of dysphagia symptoms by introducing a novel approach to the treatment of patients with post-stroke aspiration. METHODS: A total of 60 patients with post-stroke aspiration were enrolled and divided into an experimental group (n = 30) and a control group (n = 30). The control group received standard treatment, sham intraoral stimulation, and the Masako maneuver, while the experimental group was administered standard treatment, deep pharyngeal electrical stimulation (DPES), and a modified Masako maneuver. Changes in their Functional Oral Intake Scale (FOIS) and Rosenbek scale scores were observed. RESULTS: The FOIS scores of both groups increased significantly after treatment (p < 0.01, respectively). The Rosenbek scale scores of both groups decreased significantly after treatment, with the experimental group scoring significantly lower than the control group (1.01±0.09 vs. 2.30±0.82) (p < 0.05). After treatment, the overall response rate in the experimental group (93.33%) was significantly higher than that in the control group (83.33%) (p < 0.001). CONCLUSION: In terms of effectively improving dysphagia in aspiration patients after stroke, DPES combined with modified Masako maneuver is clinically recommended.


Subject(s)
Deglutition Disorders , Electric Stimulation Therapy , Stroke , Humans , Male , Female , Middle Aged , Deglutition Disorders/etiology , Deglutition Disorders/therapy , Stroke/complications , Aged , Electric Stimulation Therapy/methods , Treatment Outcome , Pharynx , Combined Modality Therapy , Stroke Rehabilitation/methods
18.
BMC Cancer ; 24(1): 527, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664630

ABSTRACT

BACKGROUND: Tumor Treating Fields (TTFields) Therapy is an FDA-approved therapy in the first line and recurrent setting for glioblastoma. Despite Phase 3 evidence showing improved survival with TTFields, it is not uniformly utilized. We aimed to examine patient and clinician views of TTFields and factors shaping utilization of TTFields through a unique research partnership with medical neuro oncology and medical social sciences. METHODS: Adult glioblastoma patients who were offered TTFields at a tertiary care academic hospital were invited to participate in a semi-structured interview about their decision to use or not use TTFields. Clinicians who prescribe TTFields were invited to participate in a semi-structured interview about TTFields. RESULTS: Interviews were completed with 40 patients with a mean age of 53 years; 92.5% were white and 60% were male. Participants who decided against TTFields stated that head shaving, appearing sick, and inconvenience of wearing/carrying the device most influenced their decision. The most influential factors for use of TTFields were the efficacy of the device and their clinician's opinion. Clinicians (N = 9) stated that TTFields was a good option for glioblastoma patients, but some noted that their patients should consider the burdens and benefits of TTFields as it may not be the desired choice for all patients. CONCLUSIONS: This is the first study to examine patient decision making for TTFields. Findings suggest that clinician support and efficacy data are among the key decision-making factors. Properly understanding the path to patients' decision making is crucial in optimizing the use of TTFields and other therapeutic decisions for glioblastoma patients.


Subject(s)
Brain Neoplasms , Decision Making , Glioblastoma , Humans , Male , Middle Aged , Brain Neoplasms/therapy , Female , Glioblastoma/therapy , Adult , Aged , Electric Stimulation Therapy/methods , Qualitative Research , Physicians/psychology , Clinical Decision-Making
19.
Pediatrics ; 153(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38602032

ABSTRACT

Obstructive sleep apnea (OSA) is common in children with Down syndrome (DS). Adenoidectomy and/or tonsillectomy are the usual first interventions employed to treat OSA in children with DS but sometimes do not achieve adequate resolution of clinical signs. Positive airway pressure treatment is often used next, but this treatment is poorly tolerated by this population. Persistent OSA can adversely affect a child's health and cognitive development. Hypoglossal nerve stimulation (HGNS), previously shown to be safe and effective in adults with OSA, has been used in children as young as 10 years old with DS and has achieved measurable neurocognitive benefits. The US Food and Drug Administration recently lowered the age for HGNS implantation to 13 years for children with DS. However, questions remain regarding treatment of refractory OSA in younger children. Here, we report the case of a 4-year-old boy with DS and treatment-refractory OSA who underwent successful HGNS implantation. The decision to proceed with HGNS implantation in such a young child involved discussions about anatomic feasibility and potential neurocognitive benefits. The device was implanted without complication and with minimal postoperative bulk. This case suggests a possible treatment option that can be discussed in the course of shared decision-making between clinicians and families of young children with DS and treatment-refractory OSA.


Subject(s)
Down Syndrome , Electric Stimulation Therapy , Hypoglossal Nerve , Sleep Apnea, Obstructive , Humans , Down Syndrome/complications , Down Syndrome/therapy , Sleep Apnea, Obstructive/therapy , Male , Electric Stimulation Therapy/methods , Child, Preschool
20.
Trends Pharmacol Sci ; 45(5): 391-394, 2024 May.
Article in English | MEDLINE | ID: mdl-38641490

ABSTRACT

Electroceuticals have evolved beyond devices manipulating neuronal signaling for symptomatic treatment, becoming more precise and disease modulating and expanding beyond the nervous system. These advancements promise transformative applications in arthritis, cancer treatment, tissue regeneration, and more. Here, we discuss these recent advances and offer insights for future research.


Subject(s)
Neoplasms , Humans , Animals , Neoplasms/therapy , Arthritis/therapy , Electric Stimulation Therapy/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...