Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.487
Filter
1.
Invertebr Syst ; 382024 Feb.
Article in English | MEDLINE | ID: mdl-38744495

ABSTRACT

Ninetinae is a group of small to tiny short-legged spiders largely restricted to arid habitats. Among daddy-long-legs spiders (Pholcidae) this is by far the least diverse subfamily but this may partly be a result of inadequate collecting, poor representation in collections or scientific neglect. We build on a large recent collection of the ninetine genus Papiamenta Huber, 2000 from the Leeward Antilles and use cytochrome oxidase 1 (COI ) sequences, extensive scanning electron microscopy data, transmission electron microscopy data and karyotyping to analyse this geographically isolated and poorly known island genus. COI sequences support the split between the two morphologically distinct species on Curaçao but genetic distances between these are surprisingly low (7.4-9.8%; mean 8.6%). The type species P. levii (Gertsch, 1982) may include more than one species but COI and morphology suggest conflicting clade limits. A third species, P. bonay Huber sp. nov. is newly described from Bonaire. Our data on sperm ultrastructure and karyology are puzzling as these suggest different phylogenetic affinities of Papiamenta to other genera. Males transfer sperm as individual sperm (cleistosperm), agreeing with the putative closest relatives as suggested by molecular data, the North American genera Pholcophora and Tolteca . The sex chromosome system (X 1 X 2 X 3 Y ) of P. levii , however, is as in the South American Ninetinae genera Gertschiola and Nerudia but different from the putative closest relatives. ZooBank: urn:lsid:zoobank.org:pub:7A6A2E84-3A61-4637-AF6F-0E31A9FA79A8.


Subject(s)
Phylogeny , Spiders , Animals , Spiders/genetics , Spiders/classification , Male , Electron Transport Complex IV/genetics , Species Specificity , Female , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission
2.
Invertebr Syst ; 382024 Feb.
Article in English | MEDLINE | ID: mdl-38744496

ABSTRACT

A fine-scale phylogenetic and phylogeographic analysis of Peripatopsis lawrencei s.l. was conducted with both mitochondrial and nuclear DNA sequence data, using both external morphology and scanning electron microscopy of taxonomically important characters. A total of 119 sequences were used for the mitochondrial cytochrome c oxidase subunit I (COI ) whereas a single representative specimen from each locality was sequenced for the nuclear 18S rRNA locus. Phylogenetic analyses were conducted on the total COI data set and the combined COI + 18S rRNA data set using a Bayesian analysis and maximum likelihood analyses. For the combined DNA sequence data set, a divergence time estimation was further undertaken in BEAST and specimens placed in a phylogenetic framework including all the described Peripatopsis species from South Africa. In addition, a phylogeographic study was conducted exclusively on P. lawrencei s.s. (clade A) using an analysis of molecular variance and haplotype network. Phylogenetic results indicated that, at the Oubos sample locality, two highly distinct genetic lineages were present (clades A and B), whereas a divergence time estimation suggests a Miocene cladogenesis of the novel Oubos lineage. Marked phylogeographic structure was observed for P. lawrencei s.s. (restricted to clade A) across the distribution range with limited maternal dispersal. Morphologically, the two sympatric lineages at Oubos A and B differed in leg pair number, ventral colour and dorsal scale rank counts, as evident from scanning electron microscopy. Our results support the recognition of a distinct species that occurs in sympatry with P. lawrencei s.s. The new species, P. aereus sp. nov. (clade B) is described and the implication for fine-scale taxonomic studies on saproxylic taxa is discussed. ZooBank: urn:lsid:zoobank.org:pub:AB6E0BDA-7B5F-4FD3-A863-BA7C814E278C.


Subject(s)
Biodiversity , Phylogeny , Animals , South Africa , Phylogeography , Electron Transport Complex IV/genetics , RNA, Ribosomal, 18S/genetics , Species Specificity
3.
Invertebr Syst ; 382024 Mar.
Article in English | MEDLINE | ID: mdl-38744499

ABSTRACT

Mastigusa is a genus of small palearctic spiders that has recently been moved to the family Cybaeidae after the first inclusion of the genus in a phylogenetic matrix. Three species are currently recognised: M. arietina , M. lucifuga and M. macrophthalma . The status and delimitation, though, has always been problematic due to inconsistency in the characters used to discriminate between these, leading to great confusion in identity and distribution. We present a detailed morphological redescription of the genus and a taxonomic revision of the included species by the combined use of morphological data and molecular species-delimitation techniques based on the mitochondrial COI gene. The status of the three currently described species has been reevaluated and Mastigusa diversa was revalidated based on material from the Iberian Peninsula, North Africa and the United Kingdom. The distribution of Mastigusa species is updated based on novel taxonomic considerations, and comments on the natural history and ecological differences observed in the species are provided. ZooBank: urn:lsid:zoobank.org:pub:AAD3FAED-440F-4295-B458-455B1D913F81.


Subject(s)
Phylogeny , Spiders , Spiders/classification , Spiders/anatomy & histology , Spiders/genetics , Animals , Male , Female , Species Specificity , Genitalia/anatomy & histology , Animal Distribution , Electron Transport Complex IV/genetics
4.
Parasit Vectors ; 17(1): 216, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734639

ABSTRACT

BACKGROUND: Mosquitoes pose a risk to human health worldwide, and correct species identification and detection of cryptic species are the most important keys for surveillance and control of mosquito vectors. In addition to traditional identification based on morphology, DNA barcoding has recently been widely used as a complementary tool for reliable identification of mosquito species. The main objective of this study was to create a reference DNA barcode library for the Croatian mosquito fauna, which should contribute to more accurate and faster identification of species, including cryptic species, and recognition of relevant vector species. METHODS: Sampling was carried out in three biogeographical regions of Croatia over six years (2017-2022). The mosquitoes were morphologically identified; molecular identification was based on the standard barcoding region of the mitochondrial COI gene and the nuclear ITS2 region, the latter to identify species within the Anopheles maculipennis complex. The BIN-RESL algorithm assigned the COI sequences to the corresponding BINs (Barcode Index Number clusters) in BOLD, i.e. to putative MOTUs (Molecular Operational Taxonomic Units). The bPTP and ASAP species delimitation methods were applied to the genus datasets in order to verify/confirm the assignment of specimens to specific MOTUs. RESULTS: A total of 405 mosquito specimens belonging to six genera and 30 morphospecies were collected and processed. Species delimitation methods assigned the samples to 31 (BIN-RESL), 30 (bPTP) and 28 (ASAP) MOTUs, with most delimited MOTUs matching the morphological identification. Some species of the genera Culex, Aedes and Anopheles were assigned to the same MOTUs, especially species that are difficult to distinguish morphologically and/or represent species complexes. In total, COI barcode sequences for 34 mosquito species and ITS2 sequences for three species of the genus Anopheles were added to the mosquito sequence database for Croatia, including one individual from the Intrudens Group, which represents a new record for the Croatian mosquito fauna. CONCLUSION: We present the results of the first comprehensive study combining morphological and molecular identification of most mosquito species present in Croatia, including several invasive and vector species. With the exception of some closely related species, this study confirmed that DNA barcoding based on COI provides a reliable basis for the identification of mosquito species in Croatia.


Subject(s)
Culicidae , DNA Barcoding, Taxonomic , Electron Transport Complex IV , Mosquito Vectors , Animals , Croatia , Mosquito Vectors/genetics , Mosquito Vectors/classification , Mosquito Vectors/anatomy & histology , Culicidae/classification , Culicidae/genetics , Electron Transport Complex IV/genetics , Anopheles/genetics , Anopheles/classification , Phylogeny , Gene Library
5.
Vet Parasitol Reg Stud Reports ; 51: 101030, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38772646

ABSTRACT

Spirometra mansoni is a diphyllobothroid cestode and one of the causing agents of sparganosis, a zoonotic foodborne and waterborne infection in humans. This parasite has an indirect life cycle with domestic and wild canids or felids as definitive hosts. The last report of S. mansoni in Costa Rica was done in 2004 by morphological assessment of worms, whereas molecular evidence of this species was obtained recently in the Americas. Herein, we present seven cases of spirometrosis in four dogs, three cats and a coyote from different regions of Costa Rica occurring in a time span of a year. Dog cases presented vomiting, hyporexia, lethargy and diarrhea, whereas cats were mostly asymptomatic. Moreover, the coyote was found with Spirometra sp. proglottids incidentally. Cytochrome oxidase subunit 1 (cox1) sequences of eggs or proglottids derived from all cases were analyzed with a Bayesian Inference phylogenetic tree and a haplotype network. These analyses showed the clustering of S. mansoni from Costa Rica with other sequences derived from Asia and America. Moreover, cox1 sequences clustered in two separate haplotypes, suggesting the high genetic diversity of the species. The present cases represent the first molecular evidence of the parasite in Central America; thus, extending its known range in the American continent.


Subject(s)
Animals, Wild , Cat Diseases , Dog Diseases , Phylogeny , Spirometra , Animals , Costa Rica/epidemiology , Spirometra/genetics , Spirometra/isolation & purification , Cats/parasitology , Dog Diseases/parasitology , Dog Diseases/epidemiology , Dogs , Male , Cat Diseases/parasitology , Cat Diseases/epidemiology , Female , Animals, Wild/parasitology , Coyotes/parasitology , Cestode Infections/veterinary , Cestode Infections/parasitology , Cestode Infections/epidemiology , Electron Transport Complex IV/analysis , Electron Transport Complex IV/genetics
6.
BMC Ecol Evol ; 24(1): 67, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773413

ABSTRACT

BACKGROUND: The ecology and biology of oysters (Ostreidae) across the tropics is poorly understood. Morphological plasticity and shared characteristics among oysters have resulted in the misidentification of species, creating challenges for understanding basic species-specific biological information that is required for restoration and aquaculture. Genetic barcoding has proven essential for accurate species identification and understanding species geographic ranges. To reduce the costs of molecular species identification we developed multiplex assays using the cytochrome c oxidase subunit I (COI or cox1) barcoding gene for the rapid identification of five species of oysters within the genus Saccostrea that are commonly found in Queensland, Australia: Saccostrea glomerata, Saccostrea lineage B, Saccostrea lineage F, Saccostrea lineage G, and Saccostrea spathulata (lineage J). RESULTS: Multiplex assays were successful in species-specific amplification of targeted species. The practical application of these primers was tested on wild spat collected from a pilot restoration project in Moreton Bay, Queensland, with identified species (S. glomerata, lineage B and lineage G) validated by Sanger sequencing. DNA sampling by extraction of oyster pallial fluid was also tested on adult oysters collected from the Noosa estuary in Queensland to assess whether oysters were able to be identified non-destructively. DNA concentrations as low as 1 ng/ µL still amplified in most cases, allowing for identification, and mortality at 6 weeks post pallial fluid collection was low (3 out of 104 sampled oysters). CONCLUSION: These multiplex assays will be essential tools for species identification in future studies, and we successfully demonstrate their practical application in both restoration and aquaculture contexts in Queensland. The multiplex assays developed in this study outline easily replicable methods for the development of additional species-specific primer sets for the rapid identification of other species of Saccostrea found across the Indo-Pacific, which will be instrumental in unravelling the taxonomic ambiguities within this genus in tropical regions.


Subject(s)
Aquaculture , DNA Barcoding, Taxonomic , Electron Transport Complex IV , Multiplex Polymerase Chain Reaction , Ostreidae , Animals , Multiplex Polymerase Chain Reaction/methods , Aquaculture/methods , DNA Barcoding, Taxonomic/methods , Electron Transport Complex IV/genetics , Ostreidae/genetics , Queensland , Species Specificity , Conservation of Natural Resources/methods
7.
J Parasitol ; 110(3): 186-194, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38700436

ABSTRACT

Leech specimens of the genus Pontobdella (Hirudinida: Piscicolidae) were found off the coast of the state of Oaxaca (Pacific) as well as in Veracruz and Tabasco (Gulf of Mexico), Mexico. Based on the specimens collected in Oaxaca, a redescription of Pontobdella californiana is provided, with emphasis on the differences in the reproductive organs with the original description of the species. In addition, leech cocoons assigned to P. californiana were found attached to items hauled by gillnets and studied using scanning electron microscopy and molecular approaches. Samples of Pontobdella macrothela were found in both Pacific and Atlantic oceans, representing new geographic records. The phylogenetic position of P. californiana is investigated for the first time, and with the addition of Mexican samples of both species, the phylogenetic relationships within Pontobdella are reinvestigated. Parsimony and maximum-likelihood phylogenetic analysis were based on mitochondrial (cytochrome oxidase subunit I [COI] and 12S rRNA) and nuclear (18S rRNA and 28S rRNA) DNA sequences. Based on our results, we confirm the monophyly of Pontobdella and the pantropical distribution of P. macrothela with a new record in the Tropical Eastern Pacific.


Subject(s)
Leeches , Microscopy, Electron, Scanning , Phylogeny , Animals , Leeches/classification , Leeches/genetics , Leeches/anatomy & histology , Mexico , Microscopy, Electron, Scanning/veterinary , Pacific Ocean , Atlantic Ocean , DNA, Ribosomal/chemistry , RNA, Ribosomal, 28S/genetics , Fish Diseases/parasitology , Gulf of Mexico/epidemiology , Electron Transport Complex IV/genetics , Ectoparasitic Infestations/parasitology , Ectoparasitic Infestations/veterinary , RNA, Ribosomal, 18S/genetics , Molecular Sequence Data , Sequence Alignment/veterinary , Likelihood Functions , Fishes/parasitology
8.
Microb Ecol ; 87(1): 64, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691215

ABSTRACT

Mosquitoes are a complex nuisance around the world and tropical countries bear the brunt of the burden of mosquito-borne diseases. Rwanda has had success in reducing malaria and some arboviral diseases over the last few years, but still faces challenges to elimination. By building our understanding of in situ mosquito communities in Rwanda at a disturbed, human-occupied site and at a natural, preserved site, we can build our understanding of natural mosquito microbiomes toward the goal of implementing novel microbial control methods. Here, we examined the composition of collected mosquitoes and their microbiomes at two diverse sites using Cytochrome c Oxidase I sequencing and 16S V4 high-throughput sequencing. The majority (36 of 40 species) of mosquitoes captured and characterized in this study are the first-known record of their species for Rwanda but have been characterized in other nations in East Africa. We found significant differences among mosquito genera and among species, but not between mosquito sexes or catch method. Bacteria of interest for arbovirus control, Asaia, Serratia, and Wolbachia, were found in abundance at both sites and varied greatly by species.


Subject(s)
Bacteria , Culicidae , Microbiota , Wolbachia , Rwanda , Animals , Culicidae/microbiology , Wolbachia/genetics , Wolbachia/isolation & purification , Wolbachia/classification , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Mosquito Vectors/microbiology , Female , Male , RNA, Ribosomal, 16S/genetics , Serratia/genetics , Serratia/isolation & purification , Serratia/classification , Electron Transport Complex IV/genetics , High-Throughput Nucleotide Sequencing
9.
Parasit Vectors ; 17(1): 229, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755689

ABSTRACT

BACKGROUND: This study examined population genetics of Aedes aegypti in El Salvador and Honduras, two adjacent countries in Central America. Aedes aegypti is associated with yellow fever, dengue, chikungunya, and Zika. Each year, thousands of cases of dengue are typically reported in El Salvador and Honduras. METHODS: In El Salvador, collections were obtained from five Departments. In Honduras, samples were obtained from six municipalities in four Departments. Mitochondrial DNA cytochrome oxidase I (COI) was sequenced, and consensus sequences were combined with available sequences from El Salvador to determine haplotype number, haplotype diversity, nucleotide diversity, and Tajima's D. A haplotype network was produced to examine the relationship between genotypes. RESULTS: In El Salvador, there were 17 haplotypes, while in Honduras there were 4 haplotypes. In both El Salvador and Honduras, Haplotype 1 is most abundant and widespread. In El Salvador, haplotype H2 was also widespread in 10 of 11 sampled municipalities, but it was not present in Honduras. The capital of El Salvador (San Salvador) and the eastern region of ES had the highest haplotype diversity of regions sampled. CONCLUSIONS: Haplotype 1 and H2 each belong to different phylogenetic lineages of Ae. aegypti. The most geographically widespread haplotype (H1) may have been present the longest and could be a remnant from previous eradication programs. These data may contribute to future control programs for Ae. aegypti in the two countries.


Subject(s)
Aedes , Genetic Variation , Haplotypes , Mosquito Vectors , Animals , Honduras , Aedes/genetics , Aedes/classification , El Salvador , Mosquito Vectors/genetics , Mosquito Vectors/classification , Mosquito Control , Electron Transport Complex IV/genetics , Phylogeny , DNA, Mitochondrial/genetics , Genotype
10.
Parasitol Res ; 123(5): 210, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38743097

ABSTRACT

Fasciola gigantica is a widespread parasite that causes neglected disease in livestock worldwide. Its high transmissibility and dispersion are attributed to its ability to infect intermediate snail hosts and adapt to various mammalian definitive hosts. This study investigated the variation and population dynamics of F. gigantica in cattle, sheep, and goats from three states in Sudan. Mitochondrial cytochrome c oxidase subunit I (COI) and NADH dehydrogenase subunit 1 (ND1) genes were sequenced successfully to examine intra and interspecific differences. ND1 exhibited higher diversity than COI, with 15 haplotypes and 10 haplotypes, respectively. Both genes had high haplotype diversity but low nucleotide diversity, with 21 and 11 polymorphic sites for ND1 and COI, respectively. Mismatch distribution analysis and neutrality tests revealed that F. gigantica from different host species was in a state of population expansion. Maximum likelihood phylogenetic trees and median networks revealed that F. gigantica in Sudan and other African countries had host-specific and country-specific lineages for both genes. The study also indicated that F. gigantica-infected small ruminants were evolutionarily distant, suggesting deep and historical interspecies adaptation.


Subject(s)
Electron Transport Complex IV , Fasciola , Fascioliasis , Genetic Variation , Goats , Haplotypes , NADH Dehydrogenase , Phylogeny , Population Dynamics , Animals , Sudan/epidemiology , Fasciola/genetics , Fasciola/classification , Fasciola/isolation & purification , Fascioliasis/veterinary , Fascioliasis/parasitology , Fascioliasis/epidemiology , Sheep/parasitology , Goats/parasitology , Cattle , NADH Dehydrogenase/genetics , Electron Transport Complex IV/genetics , Goat Diseases/parasitology , Goat Diseases/epidemiology , Ruminants/parasitology , Sheep Diseases/parasitology , Sheep Diseases/epidemiology , Cattle Diseases/parasitology , Cattle Diseases/epidemiology , Sequence Analysis, DNA
11.
J Biosci ; 492024.
Article in English | MEDLINE | ID: mdl-38726822

ABSTRACT

Fish of the genus Hypselobarbus (Bleeker 1860) are widely dispersed in the rivers of the Western Ghats in India and endemic to southern Indian peninsular freshwaters. These are small- to medium-sized fishes of the family Cyprinidae. Although fish with deformed bodies or body parts are rare in natural waters, this article deals with four abnormal specimens of Hypselobarbus curmuca (Hamilton 1807) collected from the rivers Tunga, Bhadra, and Kali during 2022. The abnormalities observed in four different individuals are pughead deformity, pelvic fin deformity, pectoral fin deformity, and enlarged scales. The morphological comparison of normal individuals of Hypselobarbus curmuca (Hamilton 1807) with abnormal specimens revealed variation. Using the MT-COI gene, species identity was confirmed and the mean genetic divergence between the normal and abnormal specimens was estimated to be less than 1%.


Subject(s)
Cyprinidae , Rivers , Animals , India/epidemiology , Cyprinidae/genetics , Phylogeny , Electron Transport Complex IV/genetics , Genetic Variation , Animal Fins/anatomy & histology , Animal Fins/abnormalities , Fish Proteins/genetics
12.
Sci Rep ; 14(1): 10930, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38740928

ABSTRACT

The Scutellaris Group of Aedes comprises 47 mosquito species, including Aedes albopictus. While Ae. albopictus is widely distributed, the other species are mostly found in the Asia-Pacific region. Evolutionary history researches of Aedes species within the Scutellaris Group have mainly focused on Ae. albopictus, a species that raises significant public health concerns, neglecting the other species. In this study, we aimed to assess genetic diversity and estimate speciation times of several species within the Scutellaris Group. Mosquitoes were therefore collected from various Asia-Pacific countries. Their mitochondrial cytochrome c oxidase subunit 1 (cox1) and subunit 3 (cox3) sequences were analyzed alongside those of other Scutellaris Group species available in the GenBank database. To estimate the divergence time, we analyzed 1849 cox1 gene sequences from 21 species, using three species (Aedes aegypti, Aedes notoscriptus and Aedes vigilax) as outgroups. We found that most of the speciation dates occurred during the Paleogene and the Neogene periods. A separation between the Scutellaris Subgroup and the Albopictus Subgroup occurred approximately 64-61 million years ago (MYA). We also identified a split between species found in Asia/Micronesia and those collected in Melanesia/Polynesia approximately 36-35 MYA. Our findings suggest that the speciation of Aedes species within the Scutellaris Group may be driven by diversity in mammalian hosts, climate and environmental changes, and geological dynamics rather than human migration.


Subject(s)
Aedes , Electron Transport Complex IV , Genetic Speciation , Mitochondria , Phylogeny , Animals , Aedes/genetics , Aedes/classification , Electron Transport Complex IV/genetics , Mitochondria/genetics , Genetic Variation , DNA, Mitochondrial/genetics , Evolution, Molecular , Asia
13.
Gene ; 917: 148448, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38583817

ABSTRACT

This study embarked on an exploration into the genetic structure and evolutionary history of the Chrysichthys auratus species, leveraging PCR amplification, phylogenetic trees, and haplotype networks. Specific DNA segments were successfully amplified and visualized through electrophoresis. Newly obtained sequences were Bank into GenBank and given accession numbers (OR730807-OR730808-OR730809). The Neighbor-Joining method provided insights into the evolutionary relationships among taxa, further augmented by bootstrap values and the Tamura 3-parameter method. A comprehensive geographical haplotype network showcased pronounced genetic differentiation, especially between remote populations. Nonetheless, shared haplotypes between proximate regions indicated either ancestral genetic connections or ongoing gene flow. Employing the COI-DNA barcodes, an in-depth understanding of intra- and inter-populational genetic diversity was achieved. The study's findings unravel the intricate genetic landscape and evolutionary dynamics of C. auratus, offering novel perspectives into its demographic history across its vast native habitat.


Subject(s)
DNA Barcoding, Taxonomic , Haplotypes , Phylogeny , Phylogeography , Animals , DNA Barcoding, Taxonomic/methods , Evolution, Molecular , Genetic Variation , Goldfish/genetics , Goldfish/classification , Gene Flow , Electron Transport Complex IV/genetics
14.
Parasitol Res ; 123(4): 195, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38658460

ABSTRACT

Among the species described within the Onchocercidae family, Dirofilaria immitis is regarded as the most common worldwide, causing severe and often fatal conditions in dogs, cats, and occasionally humans. Dirofilaria spp. are vectored by mosquitoes, simulids, and culicoids, with their epidemiology dependent on the geographical distribution of competent vectors. Eight species of Dirofilaria have been reported so far in Brazil, of which six parasitize non-human primates, deer, procyonids, and marsupials. Here, we investigated the occurrence of Onchocercidae in wild felids (i.e., Panthera onca, Puma concolor, Herpailurus yagouaroundi, Leopardus geoffroyi, Leopardus guttulus, Leopardus pardalis, Leopardus wiedii, Leopardus munoai) from different locations in Brazil. Overall, 82 samples (n = 63 blood; n = 19 tissues) were molecularly screened for cytochrome c oxidase subunit-1 (cox1) gene. Four (i.e., 4.8%) wild felid samples were positive, and at BLAST analysis, the obtained sequences showed varying percentage of nucleotide identity with the genera Brugia (i.e., 87-88%), Setaria (i.e., 89%), and D. immitis (i.e., 94.4%). Phylogenetic analyses clustered sequences obtained into three distinct clades, one with D. immitis and the remaining two with other Onchocercidae spp. Data herein obtained highlight the need for a more comprehensive understanding of the diversity and biology of Onchocercidae in South America in order to assess the potential impact that these species may have for domestic and wild animals, as well as humans.


Subject(s)
Dirofilaria immitis , Dirofilariasis , Felidae , Animals , Brazil/epidemiology , Felidae/parasitology , Dirofilariasis/parasitology , Dirofilariasis/epidemiology , Dirofilaria immitis/genetics , Dirofilaria immitis/isolation & purification , Dirofilaria immitis/classification , Phylogeny , Electron Transport Complex IV/genetics , Animals, Wild/parasitology , Sequence Analysis, DNA , DNA, Helminth/genetics , Molecular Sequence Data
15.
Genes (Basel) ; 15(4)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38674434

ABSTRACT

Oxidative phosphorylation involves a complex multi-enzymatic mitochondrial machinery critical for proper functioning of the cell, and defects herein cause a wide range of diseases called "primary mitochondrial disorders" (PMDs). Mutations in about 400 nuclear and 37 mitochondrial genes have been documented to cause PMDs, which have an estimated birth prevalence of 1:5000. Here, we describe a 4-year-old female presenting from early childhood with psychomotor delay and white matter signal changes affecting several brain regions, including the brainstem, in addition to lactic and phytanic acidosis, compatible with Leigh syndrome, a genetically heterogeneous subgroup of PMDs. Whole genome sequencing of the family trio identified a homozygous 12.9 Kb deletion, entirely overlapping the NDUFA4 gene. Sanger sequencing of the breakpoints revealed that the genomic rearrangement was likely triggered by Alu elements flanking the gene. NDUFA4 encodes for a subunit of the respiratory chain Complex IV, whose activity was significantly reduced in the patient's fibroblasts. In one family, dysfunction of NDUFA4 was previously documented as causing mitochondrial Complex IV deficiency nuclear type 21 (MC4DN21, OMIM 619065), a relatively mild form of Leigh syndrome. Our finding confirms the loss of NDUFA4 function as an ultra-rare cause of Complex IV defect, clinically presenting as Leigh syndrome.


Subject(s)
Electron Transport Complex I , Leigh Disease , Humans , Leigh Disease/genetics , Leigh Disease/pathology , Female , Child, Preschool , Electron Transport Complex IV/genetics , Mitochondrial Diseases/genetics , Mitochondrial Diseases/pathology , Pedigree , Sequence Deletion
16.
BMC Genomics ; 25(1): 388, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649808

ABSTRACT

BACKGROUND: Myxozoa is a class of cnidarian parasites that encompasses over 2,400 species. Phylogenetic relationships among myxozoans remain highly debated, owing to both a lack of informative morphological characters and a shortage of molecular markers. Mitochondrial (mt) genomes are a common marker in phylogeny and biogeography. However, only five complete myxozoan mt genomes have been sequenced: four belonging to two closely related genera, Enteromyxum and Kudoa, and one from the genus Myxobolus. Interestingly, while cytochrome oxidase genes could be identified in Enteromyxum and Kudoa, no such genes were found in Myxobolus squamalis, and another member of the Myxobolidae (Henneguya salminicola) was found to have lost its entire mt genome. To evaluate the utility of mt genomes to reconstruct myxozoan relationships and to understand if the loss of cytochrome oxidase genes is a characteristic of myxobolids, we sequenced the mt genome of five myxozoans (Myxobolus wulii, M. honghuensis, M. shantungensis, Thelohanellus kitauei and, Sphaeromyxa zaharoni) using Illumina and Oxford Nanopore platforms. RESULTS: Unlike Enteromyxum, which possesses a partitioned mt genome, the five mt genomes were encoded on single circular chromosomes. An mt plasmid was found in M. wulii, as described previously in Kudoa iwatai. In all new myxozoan genomes, five protein-coding genes (cob, cox1, cox2, nad1, and nad5) and two rRNAs (rnl and rns) were recognized, but no tRNA. We found that Myxobolus and Thelohanellus species shared unidentified reading frames, supporting the view that these mt open reading frames are functional. Our phylogenetic reconstructions based on the five conserved mt genes agree with previously published trees based on the 18S rRNA gene. CONCLUSIONS: Our results suggest that the loss of cytochrome oxidase genes is not a characteristic of all myxobolids, the ancestral myxozoan mt genome was likely encoded on a single circular chromosome, and mt plasmids exist in a few lineages. Our findings indicate that myxozoan mt sequences are poor markers for reconstructing myxozoan phylogenetic relationships because of their fast-evolutionary rates and the abundance of repeated elements, which complicates assembly.


Subject(s)
Evolution, Molecular , Genome, Mitochondrial , Myxozoa , Phylogeny , Animals , Myxozoa/genetics , Myxozoa/classification , Electron Transport Complex IV/genetics
17.
Acta Trop ; 254: 107207, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38579961

ABSTRACT

Species of the Simulium varicorne group in Thailand have veterinary significance as vectors of haemosporidian parasites. Accurate identification is, therefore, critical to the study of vectors and parasites. We used morphology and molecular markers to investigate cryptic genetic lineages in samples identified as Simulium chumpornense Takaoka & Kuvangkadilok, 2000. We also tested the efficiency of the nuclear internal transcribed spacer 2 (ITS2) marker for the identification of species in this group. Morphological examinations revealed that S. chumpornense lineage A is most similar to S. khelangense Takaoka, Srisuka & Saeung, 2022, with minor morphological differences. They are also genetically similar based on mitochondrial cytochrome c oxidase I (COI) sequences. Geographically, the sampling site where paratypes of S. khelangense were originally collected is <50 km from where S. chumpornense lineage A was collected. We concluded that cryptic lineage A of S. chumpornense is actually S. khelangense. COI sequences could not differentiate S. kuvangkadilokae Pramual and Tangkawanit, 2008 from S. chumpornense and S. khelangense. In contrast, ITS2 sequences provided perfect accuracy in the identification of these species. Molecular analyses of the blood protozoa Leucocytozoon and Trypanosoma demonstrated that S. khelangense carries L. shoutedeni, Leucocytozoon sp., and Trypanosoma avium. The Leucocytozoon sp. in S. khelangense differs genetically from that in S. asakoae Takaoka & Davies, 1995, signaling the possibility of vector-parasite specificity.


Subject(s)
Electron Transport Complex IV , Phylogeny , Simuliidae , Animals , Simuliidae/parasitology , Simuliidae/genetics , Simuliidae/classification , Thailand , Electron Transport Complex IV/genetics , DNA, Protozoan/genetics , DNA, Ribosomal Spacer/genetics , Sequence Analysis, DNA , Haemosporida/genetics , Haemosporida/isolation & purification , Haemosporida/classification
18.
Sci Rep ; 14(1): 9532, 2024 04 25.
Article in English | MEDLINE | ID: mdl-38664507

ABSTRACT

The Arabian Peninsula accounts for approximately 6% of the world's coral reefs. Some thrive in extreme environments of temperature and salinity. Using 51 Autonomous Reef Monitoring Structure (ARMS), a standardized non-destructive monitoring device, we investigated the spatial patterns of coral reef cryptobenthic diversity in four ecoregions around the Arabian Peninsula and analyzed how geographical and/or environmental drivers shape those patterns. The mitochondrial cytochrome c oxidase subunit I (COI) gene was used to identify Amplicon Sequence Variants and assign taxonomy of the cryptobenthic organisms collected from the sessile and mobile fractions of each ARMS. Cryptobenthic communities sampled from the two ecoregions in the Red Sea showed to be more diverse than those inhabiting the Arabian (Persian) Gulf and the Gulf of Oman. Geographic distance revealed a stronger relationship with beta diversity in the Mantel partial correlation than environmental distance. However, the two mobile fractions (106-500 µm and 500-2000 µm) also had a significant correlation between environmental distance and beta diversity. In our study, dispersal limitations explained the beta diversity patterns in the selected reefs, supporting the neutral theory of ecology. Still, increasing differences in environmental variables (environmental filtering) also had an effect on the distribution patterns of assemblages inhabiting reefs within short geographic distances. The influence of geographical distance in the cryptofauna assemblages makes these relevant, yet usually ignored, communities in reef functioning vulnerable to large scale coastal development and should be considered in ecosystem management of such projects.


Subject(s)
Biodiversity , Coral Reefs , Electron Transport Complex IV , Animals , Electron Transport Complex IV/genetics , Anthozoa/genetics , Anthozoa/classification , Indian Ocean
19.
PeerJ ; 12: e17172, 2024.
Article in English | MEDLINE | ID: mdl-38680885

ABSTRACT

A peculiar population of Ravenna nivea (Nire, 1920) was discovered from the Yinggeling Mountain Mass of central Hainan. Its wing pattern and COI barcode data show considerable distinction from other geographic populations of R. nivea, including that of Bawangling, approximately only 40 km away and also located in Hainan. The p-distance value of the COI barcode between the Yinggeling and Bawangling populations was 1.1%, considerably higher than the value (0.6%) between Bawangling population and populations in eastern China, where the subspecific name howarthi Saigusa, 1993 applies. The population is regarded as a distinct subspecies ngiunmoiae Lo & Hsu, subsp. nov. The distinctness and high degree of COI haplotype diversity of R. nivea found in Hainan and Taiwan suggest continental islands may serve as glacial refugees for the butterfly and other organisms during previous glaciations, and the presence of the relict populations of montane butterflies like R. nivea may provide useful clues towards a better understanding of the geological history of mountain formation within islands.


Subject(s)
Butterflies , Animals , China , Butterflies/genetics , Islands , Wings, Animal/anatomy & histology , Haplotypes , Genetic Variation/genetics , DNA Barcoding, Taxonomic , Phylogeny , Electron Transport Complex IV/genetics
20.
PeerJ ; 12: e16932, 2024.
Article in English | MEDLINE | ID: mdl-38680893

ABSTRACT

Eulimidae is a highly diverse family of gastropods that are often parasites of echinoderms. They are cosmopolitan and live from the intertidal to great depths. Despite its wide geographic and bathymetric distribution, no species of Eulimidae have been reported for the Salas & Gómez Ridge to date. In this study, we describe Melanella martarum sp. nov., which was collected during the EPIC oceanographic cruise onboard RV Mirai (JAMSTEC, Japan) in 2019. Seven specimens were collected with a modified Agassiz trawl on the summit of seamount "Pearl" (Zhemchuznaya) in the Salas & Gómez Ridge (25.59°S, 89.13°W) at 545 m depth. The morphology of M. martarum sp. nov. was compared with other Melanella species reported for the area, including Chile and Rapa Nui. DNA was extracted and partial sequences of the mitochondrial genes Cytochrome Oxidase 1 (COI) and 16S rDNA, and the nuclear gene Histone 3 (H3) were sequenced. Melanella martarum sp. nov. has morphological characteristics that separate it from other species of Melanella, such as the thickness and color of the shell, and the shape of the protoconch. In addition, M. martarum sp. nov. was genetically differentiated from other Melanella spp. sequences (uncorrected p distances from 18,1-8.6% in mitochondrial COI and 16S rDNA to 3% in nuclear H3 sequences). Although there is not much molecular data available for Eulimidae, the phylogenetic analysis confirms the results obtained by morphology, placing the species found on the Salas & Gómez Ridge within the genus Melanella. The current study advances the understanding of the poorly known benthic fauna found on seamounts in the easternmost part of the Sala & Gómez ridge, a location distinguished by a high level of endemism.


Subject(s)
Phylogeny , Snails , Animals , Snails/parasitology , Snails/genetics , Snails/anatomy & histology , Electron Transport Complex IV/genetics , Japan
SELECTION OF CITATIONS
SEARCH DETAIL
...