Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.018
Filter
1.
Europace ; 26(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38587311

ABSTRACT

AIMS: Pericardiocentesis is usually completed under fluoroscopy. The electroanatomic mapping (EAM) system allows visualizing puncture needle tip (NT) while displaying the electrogram recorded from NT, making it possible to obtain epicardial access (EA) independent of fluoroscopy. This study was designed to establish and validate a technique by which EA is obtained under guidance of three-dimensional (3D) EAM combined with NT electrogram. METHODS AND RESULTS: 3D shell of the heart was generated, and the NT was made trackable in the EAM system. Unipolar NT electrogram was continuously monitored. Penetration into pericardial sac was determined by an increase in NT potential amplitude and an injury current. A long guidewire of which the tip was also visible in the EAM system was advanced to confirm EA. Epicardial access was successfully obtained without complication in 13 pigs and 22 patients. In the animals, NT potential amplitude was 3.2 ± 1.0 mV when it was located in mediastinum, 5.2 ± 1.6 mV when in contact with fibrous pericardium, and 9.8 ± 2.8 mV after penetrating into pericardial sac (all P ≤ 0.001). In human subjects, it measured 1.54 ± 0.40 mV, 3.61 ± 1.08 mV, and 7.15 ± 2.88 mV, respectively (all P < 0.001). Fluoroscopy time decreased in every 4-5 cases (64 ± 15, 23 ± 17, and 0 s for animals 1-4, 5-8, 9-13, respectively, P = 0.01; 44 ± 23, 31 ± 18, 4±7 s for patients 1-7, 8-14, 15-22, respectively, P < 0.001). In five pigs and seven patients, EA was obtained without X-ray exposure. CONCLUSION: By tracking NT in the 3D EAM system and continuously monitoring the NT electrogram, it is feasible and safe to obtain EA with minimum or no fluoroscopic guidance.


Subject(s)
Electrophysiologic Techniques, Cardiac , Epicardial Mapping , Imaging, Three-Dimensional , Needles , Pericardium , Humans , Male , Female , Animals , Pericardium/diagnostic imaging , Pericardium/surgery , Middle Aged , Imaging, Three-Dimensional/methods , Aged , Electrophysiologic Techniques, Cardiac/instrumentation , Electrophysiologic Techniques, Cardiac/methods , Epicardial Mapping/methods , Pericardiocentesis/methods , Punctures , Predictive Value of Tests , Adult , Swine , Models, Animal , Action Potentials , Sus scrofa , Fluoroscopy
3.
Europace ; 26(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38666444

ABSTRACT

Stereotactic arrhythmia radioablation (STAR) is a treatment option for recurrent ventricular tachycardia/fibrillation (VT/VF) in patients with structural heart disease (SHD). The current and future role of STAR as viewed by cardiologists is unknown. The study aimed to assess the current role, barriers to application, and expected future role of STAR. An online survey consisting of 20 questions on baseline demographics, awareness/access, current use, and the future role of STAR was conducted. A total of 129 international participants completed the survey [mean age 43 ± 11 years, 25 (16.4%) female]. Ninety-one (59.9%) participants were electrophysiologists. Nine participants (7%) were unaware of STAR as a therapeutic option. Sixty-four (49.6%) had access to STAR, while 62 (48.1%) had treated/referred a patient for treatment. Common primary indications for STAR were recurrent VT/VF in SHD (45%), recurrent VT/VF without SHD (7.8%), or premature ventricular contraction (3.9%). Reported main advantages of STAR were efficacy in the treatment of arrhythmias not amenable to conventional treatment (49%) and non-invasive treatment approach with overall low expected acute and short-term procedural risk (23%). Most respondents have foreseen a future clinical role of STAR in the treatment of VT/VF with or without underlying SHD (72% and 75%, respectively), although only a minority expected a first-line indication for it (7% and 5%, respectively). Stereotactic arrhythmia radioablation as a novel treatment option of recurrent VT appears to gain acceptance within the cardiology community. Further trials are critical to further define efficacy, patient populations, as well as the appropriate clinical use for the treatment of VT.


Subject(s)
Radiosurgery , Tachycardia, Ventricular , Ventricular Fibrillation , Humans , Female , Male , Tachycardia, Ventricular/surgery , Tachycardia, Ventricular/physiopathology , Adult , Middle Aged , Ventricular Fibrillation/surgery , Ventricular Fibrillation/physiopathology , Radiosurgery/trends , Health Care Surveys , Electrophysiologic Techniques, Cardiac , Recurrence , Treatment Outcome , Practice Patterns, Physicians'/trends , Practice Patterns, Physicians'/statistics & numerical data , Cardiologists/trends , Cardiac Electrophysiology/trends
4.
J Am Heart Assoc ; 13(9): e034004, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38639381

ABSTRACT

BACKGROUND: An epicardial connection (EC) through the intercaval bundle (EC-ICB) between the right pulmonary vein (RPV) and right atrium (RA) is one of the reasons for the need for carina ablation for PV isolation and may reduce the acute and chronic success of PV isolation. We evaluated the intra-atrial activation sequence during RPV pacing after failure of ipsilateral RPV isolation and sought to identify specific conduction patterns in the presence of EC-ICB. METHODS AND RESULTS: This study included 223 consecutive patients who underwent initial catheter ablation of atrial fibrillation. If the RPV was not isolated using circumferential ablation or reconnected during the waiting period, an exit map was created during mid-RPV carina pacing. If the earliest site on the exit map was the RA, the patient was classified into the EC-ICB group. The exit map, intra-atrial activation sequence, and RPV-high RA time were evaluated. First-pass isolation of the RPV was not achieved in 36 patients (16.1%), and 22 patients (9.9%) showed reconnection. Twelve and 28 patients were classified into the EC-ICB and non-EC-ICB groups, respectively, after excluding those with multiple ablation lesion sets or incomplete mapping. The intra-atrial activation sequence showed different patterns between the 2 groups. The RPV-high RA time was significantly shorter in the EC-ICB than in the non-EC-ICB group (69.2±15.2 versus 148.6±51.2 ms; P<0.001), and RPV-high RA time<89.0 ms was highly predictive of the existence of an EC-ICB (sensitivity, 91.7%; specificity, 89.3%). CONCLUSIONS: An EC-ICB can be effectively detected by intra-atrial sequencing during RPV pacing, and an RPV-high RA time of <89.0 ms was highly predictive.


Subject(s)
Atrial Fibrillation , Cardiac Pacing, Artificial , Catheter Ablation , Heart Atria , Pulmonary Veins , Humans , Pulmonary Veins/surgery , Pulmonary Veins/physiopathology , Female , Male , Catheter Ablation/methods , Middle Aged , Atrial Fibrillation/surgery , Atrial Fibrillation/physiopathology , Atrial Fibrillation/diagnosis , Cardiac Pacing, Artificial/methods , Aged , Heart Atria/physiopathology , Heart Atria/surgery , Treatment Outcome , Retrospective Studies , Pericardium/surgery , Pericardium/physiopathology , Heart Conduction System/physiopathology , Action Potentials , Electrophysiologic Techniques, Cardiac , Heart Rate/physiology
5.
Pacing Clin Electrophysiol ; 47(5): 653-660, 2024 May.
Article in English | MEDLINE | ID: mdl-38583088

ABSTRACT

Atrial tachycardia (AT) is a common rhythm disorder, especially in patients with atrial structural abnormalities. Although voltage mapping can provide a general picture of structural alterations which are mainly secondary to prior ablations, surgery or pressure/volume overload, data is scarce regarding the functional characteristics of low voltage regions in the atrium to predict critical isthmus of ATs. Recently, functional substrate mapping (FSM) emerged as a potential tool to evaluate the functionality of structurally altered regions in the atrium to predict critical sites of reentry. Current evidence suggested a clear association between deceleration zones of isochronal late activation mapping (ILAM) during sinus/paced rhythm and critical isthmus of reentry in patients with left AT. Therefore, these areas seem to be potential ablation targets even not detected during AT. Furthermore, abnormal conduction detected by ILAM may also have a role to identify the potential substrate and predict atrial fibrillation outcome after pulmonary vein isolation. Despite these promising findings, the utility of such an approach needs to be evaluated in large-scale comparative studies. In this review, we aimed to share our experience and review the current literature regarding the use of FSM during sinus/paced rhythm in the prediction of re-entrant ATs and discuss future implications and potential use in patients with atrial low-voltage areas.


Subject(s)
Heart Atria , Humans , Heart Atria/physiopathology , Cicatrix/physiopathology , Catheter Ablation/methods , Electrophysiologic Techniques, Cardiac , Tachycardia, Supraventricular/surgery , Tachycardia, Supraventricular/physiopathology , Body Surface Potential Mapping/methods
6.
Europace ; 26(4)2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38584468

ABSTRACT

AIMS: Pulsed field ablation (PFA) has significant advantages over conventional thermal ablation of atrial fibrillation (AF). This first-in-human, single-arm trial to treat paroxysmal AF (PAF) assessed the efficiency, safety, pulmonary vein isolation (PVI) durability and one-year clinical effectiveness of an 8 Fr, large-lattice, conformable single-shot PFA catheter together with a dedicated electroanatomical mapping system. METHODS AND RESULTS: After rendering the PV anatomy, the PFA catheter delivered monopolar, biphasic pulse trains (5-6 s per application; ∼4 applications per PV). Three waveforms were tested: PULSE1, PULSE2, and PULSE3. Follow-up included ECGs, Holters at 6 and 12 months, and symptomatic and scheduled transtelephonic monitoring. The primary and secondary efficacy endpoints were acute PVI and post-blanking atrial arrhythmia recurrence, respectively. Invasive remapping was conducted ∼75 days post-ablation. At three centres, PVI was performed by five operators in 85 patients using PULSE1 (n = 30), PULSE2 (n = 20), and PULSE3 (n = 35). Acute PVI was achieved in 100% of PVs using 3.9 ± 1.4 PFA applications per PV. Overall procedure, transpired ablation, PFA catheter dwell and fluoroscopy times were 56.5 ± 21.6, 10.0 ± 6.0, 19.1 ± 9.3, and 5.7 ± 3.9 min, respectively. No pre-defined primary safety events occurred. Upon remapping, PVI durability was 90% and 99% on a per-vein basis for the total and PULSE3 cohort, respectively. The Kaplan-Meier estimate of one-year freedom from atrial arrhythmias was 81.8% (95% CI 70.2-89.2%) for the total, and 100% (95% CI 80.6-100%) for the PULSE3 cohort. CONCLUSION: Pulmonary vein isolation (PVI) utilizing a conformable single-shot PFA catheter to treat PAF was efficient, safe, and effective, with durable lesions demonstrated upon remapping.


Subject(s)
Atrial Fibrillation , Cardiac Catheters , Catheter Ablation , Pulmonary Veins , Recurrence , Humans , Pulmonary Veins/surgery , Atrial Fibrillation/surgery , Atrial Fibrillation/physiopathology , Atrial Fibrillation/diagnosis , Catheter Ablation/methods , Catheter Ablation/instrumentation , Male , Female , Middle Aged , Aged , Treatment Outcome , Equipment Design , Electrophysiologic Techniques, Cardiac , Time Factors , Heart Rate , Action Potentials
8.
Europace ; 26(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38682165

ABSTRACT

AIMS: Pulmonary vein isolation (PVI) is the cornerstone of ablation for atrial fibrillation. Confirmation of PVI can be challenging due to the presence of far-field electrograms (EGMs) and sometimes requires additional pacing manoeuvres or mapping. This prospective multicentre study assessed the agreement between a previously trained automated algorithm designed to determine vein isolation status with expert opinion in a real-world clinical setting. METHODS AND RESULTS: Consecutive patients scheduled for PVI were recruited at four centres. The ECGenius electrophysiology (EP) recording system (CathVision ApS, Copenhagen, Denmark) was connected in parallel with the existing system in the laboratory. Electrograms from a circular mapping catheter were annotated during sinus rhythm at baseline pre-ablation, time of isolation, and post-ablation. The ground truth for isolation status was based on operator opinion. The algorithm was applied to the collected PV signals off-line and compared with expert opinion. The primary endpoint was a sensitivity and specificity exceeding 80%. Overall, 498 EGMs (248 at baseline and 250 at PVI) with 5473 individual PV beats from 89 patients (32 females, 62 ± 12 years) were analysed. The algorithm performance reached an area under the curve (AUC) of 92% and met the primary study endpoint with a sensitivity and specificity of 86 and 87%, respectively (P = 0.005; P = 0.004). The algorithm had an accuracy rate of 87% in classifying the time of isolation. CONCLUSION: This study validated an automated algorithm using machine learning to assess the isolation status of pulmonary veins in patients undergoing PVI with different ablation modalities. The algorithm reached an AUC of 92%, with both sensitivity and specificity exceeding the primary study endpoints.


Subject(s)
Atrial Fibrillation , Catheter Ablation , Electrophysiologic Techniques, Cardiac , Machine Learning , Pulmonary Veins , Humans , Atrial Fibrillation/surgery , Atrial Fibrillation/diagnosis , Atrial Fibrillation/physiopathology , Pulmonary Veins/surgery , Pulmonary Veins/physiopathology , Female , Male , Catheter Ablation/methods , Middle Aged , Prospective Studies , Aged , Electrophysiologic Techniques, Cardiac/methods , Treatment Outcome , Reproducibility of Results , Predictive Value of Tests , Action Potentials , Heart Rate , Algorithms , Signal Processing, Computer-Assisted
9.
Europace ; 26(4)2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38619048

ABSTRACT

AIMS: A three-dimensional electroanatomic mapping system-guided transseptal puncture (3D-TSP), without fluoroscopy or echocardiography, has been only minimally reported. Indications for 3D-TSP remain unclear. Against this background, this study aims to establish a precise technique and create a workflow for validating and selecting eligible patients for fluoroless 3D-TSP. METHODS AND RESULTS: We developed a new methodology for 3D-TSP based on a unipolar electrogram derived from a transseptal needle tip (UEGM tip) in 102 patients (the derivation cohort) with intracardiac echocardiography (ICE) from March 2018 to February 2019. The apparent current of injury (COI) was recorded at the muscular limbus of the foramen ovalis (FO) on the UEGM tip (sinus rhythm: 2.57 ± 0.95 mV, atrial fibrillation: 1.92 ± 0.77 mV), which then disappeared or significantly reduced at the central FO. Changes in the COI, serving as a major criterion to establish a 3D-TSP workflow, proved to be the most valuable indicator for identifying the FO in 99% (101/102) of patients compared with three previous techniques (three minor criteria) of reduction in atrial unipolar or bipolar potential and FO protrusion. A total of 99.9% (1042/1043) patients in the validation cohort underwent successful 3D-TSP through the workflow from March 2019 to July 2023. Intracardiac echocardiography guidance was required for 6.6% (69/1042) of patients. All four criteria were met in 740 patients, resulting in a 100% pure fluoroless 3D-TSP success rate. CONCLUSION: In most patients, fluoroless 3D-TSP was successfully achieved using changes in the COI on the UEGM tip. Patients who met all four criteria were considered suitable for 3D-TSP, while those who met none required ICE guidance.


Subject(s)
Atrial Fibrillation , Electrophysiologic Techniques, Cardiac , Imaging, Three-Dimensional , Punctures , Humans , Male , Female , Atrial Fibrillation/surgery , Atrial Fibrillation/physiopathology , Atrial Fibrillation/diagnosis , Electrophysiologic Techniques, Cardiac/methods , Aged , Middle Aged , Catheter Ablation/methods , Catheter Ablation/instrumentation , Needles , Heart Septum/surgery , Heart Septum/diagnostic imaging , Workflow , Echocardiography
10.
J Cardiovasc Electrophysiol ; 35(5): 942-949, 2024 May.
Article in English | MEDLINE | ID: mdl-38462681

ABSTRACT

INTRODUCTION: Mapping system is useful in ablation of atrioventricular nodal reentry tachycardia (AVNRT) and localization of anatomic variances. Voltage mapping identifies a low voltage area in the Koch triangle called low-voltage-bridge (LVB); propagation mapping identifies the collision point (CP) of atrial wavefront convergence. We conducted a prospective study to evaluate the relationship between LVB and CP with successful site of ablation and identify standard value for LVB. MATERIALS AND METHODS: Three-dimensional (3D) maps of the right atria were constructed from intracardiac recordings using the ablation catheter. Cut-off values on voltage map were adjusted until LVB was observed. On propagation map, atrial wavefronts during sinus rhythm collide in the site representing CP, indicating the area of slow pathway conduction. Ablation site was selected targeting LVB and CP site, confirmed by anatomic position on fluoroscopy and atrioventricular ratio. RESULTS: Twenty-seven consecutive patients were included. LVB and CP were present in all patients. Postprocedural evaluation identified standard cut-off of 0.3-1 mV useful for LVB identification. An overlap between LVB and CP was observed in 23 (85%) patients. Procedure success was achieved in all patient with effective site at first application in 22 (81%) patients. There was a significant correlation between LVB, CP, and the site of effective ablation (p = .001). CONCLUSION: We found correlation between LVB and CP with the site of effective ablation, identifying a voltage range useful for standardized LVB identification. These techniques could be useful to identify ablation site and minimize radiation exposure.


Subject(s)
Action Potentials , Catheter Ablation , Electrophysiologic Techniques, Cardiac , Heart Rate , Tachycardia, Atrioventricular Nodal Reentry , Humans , Tachycardia, Atrioventricular Nodal Reentry/surgery , Tachycardia, Atrioventricular Nodal Reentry/physiopathology , Tachycardia, Atrioventricular Nodal Reentry/diagnosis , Male , Female , Prospective Studies , Middle Aged , Treatment Outcome , Adult , Predictive Value of Tests , Aged , Atrioventricular Node/physiopathology , Atrioventricular Node/surgery , Time Factors
11.
J Cardiovasc Electrophysiol ; 35(5): 950-964, 2024 May.
Article in English | MEDLINE | ID: mdl-38477184

ABSTRACT

INTRODUCTION: Peak frequency (PF) mapping is a novel method that may identify critical portions of myocardial substrate supporting reentry. The aim of this study was to describe and evaluate PF mapping combined with omnipolar voltage mapping in the identification of critical isthmuses of left atrial (LA) atypical flutters. METHODS AND RESULTS: LA omnipolar voltage and PF maps were generated in flutter using the Advisor HD-Grid catheter (Abbott) and EnSite Precision Mapping System (Abbott) in 12 patients. Normal voltage was defined as ≥0.5 mV, low-voltage as 0.1-0.5 mV, and scar as <0.1 mV. PF distributions were compared with ANOVA and post hoc Tukey analyses. The 1 cm radius from arrhythmia termination was compared to global myocardium with unpaired t-testing. The mean age was 65.8 ± 9.7 years and 50% of patients were female. Overall, 34 312 points were analyzed. Atypical flutters most frequently involved the mitral isthmus (58%) or anterior wall (25%). Mean PF varied significantly by myocardial voltage: normal (335.5 ± 115.0 Hz), low (274.6 ± 144.0 Hz), and scar (71.6 ± 140.5 Hz) (p < .0001 for all pairwise comparisons). All termination sites resided in low-voltage regions containing intermediate or high PF. Overall, mean voltage in the 1 cm radius from termination was significantly lower than the remaining myocardium (0.58 vs. 0.95 mV, p < .0001) and PF was significantly higher (326.4 vs. 245.1 Hz, p < .0001). CONCLUSION: Low-voltage, high-PF areas may be critical targets during catheter ablation of atypical atrial flutter.


Subject(s)
Action Potentials , Atrial Flutter , Catheter Ablation , Electrophysiologic Techniques, Cardiac , Predictive Value of Tests , Humans , Atrial Flutter/physiopathology , Atrial Flutter/diagnosis , Atrial Flutter/surgery , Female , Male , Aged , Middle Aged , Heart Rate
12.
J Cardiovasc Electrophysiol ; 35(5): 965-974, 2024 May.
Article in English | MEDLINE | ID: mdl-38477371

ABSTRACT

INTRODUCTION: Repolarization dispersion in the right ventricular outflow tract (RVOT) contributes to the type-1 electrocardiographic (ECG) phenotype of Brugada syndrome (BrS), while data on the significance and feasibility of mapping repolarization dispersion in BrS patients are scarce. Moreover, the role of endocardial repolarization dispersion in BrS is poorly investigated. We aimed to assess endocardial repolarization patterns through an automated calculation of activation recovery interval (ARI) estimated on unipolar electrograms (UEGs) in spontaneous type-1 BrS patients and controls; we also investigated the relation between ARI and right ventricle activation time (RVAT), and T-wave peak-to-end interval (Tpe) in BrS patients. METHODS: Patients underwent endocardial high-density electroanatomical mapping (HDEAM); BrS showing an overt type-1 ECG were defined as OType1, while those without (latent type-1 ECG and LType1) received ajmaline infusion. BrS patients only underwent programmed ventricular stimulation (PVS). Data were elaborated to obtain ARI corrected with the Bazett formula (ARIc), while RVAT was derived from activation maps. RESULTS: 39 BrS subjects (24 OType1 and 15 LTtype1) and 4 controls were enrolled. OType1 and post-ajmaline LType1 showed longer mean ARIc than controls (306 ± 27.3 ms and 333.3 ± 16.3 ms vs. 281.7 ± 10.3 ms, p = .05 and p < .001, respectively). Ajmaline induced a significant prolongation of ARIc compared to pre-ajmaline LTtype1 (333.3 ± 16.3 vs. 303.4 ± 20.7 ms, p < .001) and OType1 (306 ± 27.3 ms, p < .001). In patients with type-1 ECG (OTtype1 and post-ajmaline LType1) ARIc correlated with RVAT (r = .34, p = .04) and Tpec (r = .60, p < .001), especially in OType1 subjects (r = .55, p = .008 and r = .65 p < .001, respectively). CONCLUSION: ARIc mapping demonstrates increased endocardial repolarization dispersion in RVOT in BrS. Endocardial ARIc positively correlates with RVAT and Tpec, especially in OType1.


Subject(s)
Action Potentials , Algorithms , Brugada Syndrome , Electrocardiography , Electrophysiologic Techniques, Cardiac , Endocardium , Heart Rate , Predictive Value of Tests , Humans , Male , Female , Middle Aged , Brugada Syndrome/physiopathology , Brugada Syndrome/diagnosis , Endocardium/physiopathology , Adult , Time Factors , Case-Control Studies , Ajmaline/administration & dosage , Automation , Ventricular Function, Right , Cardiac Pacing, Artificial , Aged , Signal Processing, Computer-Assisted
13.
Genes (Basel) ; 15(3)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38540339

ABSTRACT

Popeye domain-containing (POPDC) proteins selectively bind cAMP and mediate cellular responses to sympathetic nervous system (SNS) stimulation. The first discovered human genetic variant (POPDC1S201F) is associated with atrioventricular (AV) block, which is exacerbated by increased SNS activity. Zebrafish carrying the homologous mutation (popdc1S191F) display a similar phenotype to humans. To investigate the impact of POPDC1 dysfunction on cardiac electrophysiology and intracellular calcium handling, homozygous popdc1S191F and popdc1 knock-out (popdc1KO) zebrafish larvae and adult isolated popdc1S191F hearts were studied by functional fluorescent analysis. It was found that in popdc1S191F and popdc1KO larvae, heart rate (HR), AV delay, action potential (AP) and calcium transient (CaT) upstroke speed, and AP duration were less than in wild-type larvae, whereas CaT duration was greater. SNS stress by ß-adrenergic receptor stimulation with isoproterenol increased HR, lengthened AV delay, slowed AP and CaT upstroke speed, and shortened AP and CaT duration, yet did not result in arrhythmias. In adult popdc1S191F zebrafish hearts, there was a higher incidence of AV block, slower AP upstroke speed, and longer AP duration compared to wild-type hearts, with no differences in CaT. SNS stress increased AV delay and led to further AV block in popdc1S191F hearts while decreasing AP and CaT duration. Overall, we have revealed that arrhythmogenic effects of POPDC1 dysfunction on cardiac electrophysiology and intracellular calcium handling in zebrafish are varied, but already present in early development, and that AV node dysfunction may underlie SNS-induced arrhythmogenesis associated with popdc1 mutation in adults.


Subject(s)
Atrioventricular Block , Calcium , Adult , Animals , Humans , Calcium/metabolism , Zebrafish/genetics , Zebrafish/metabolism , Atrioventricular Node/metabolism , Electrophysiologic Techniques, Cardiac/adverse effects , Atrioventricular Block/complications , Arrhythmias, Cardiac/genetics , Cardiac Conduction System Disease
17.
J Cardiovasc Electrophysiol ; 35(5): 916-928, 2024 May.
Article in English | MEDLINE | ID: mdl-38439119

ABSTRACT

INTRODUCTION: Artificial intelligence (AI) ECG arrhythmia mapping provides arrhythmia source localization using 12-lead ECG data; whether this information impacts procedural efficiency is unknown. We performed a retrospective, case-control study to evaluate the hypothesis that AI ECG mapping may reduce time to ablation, procedural duration, and fluoroscopy. MATERIALS AND METHODS: Cases in which system output was used were retrospectively enrolled according to IRB-approved protocols at each site. Matched control cases were enrolled in reverse chronological order beginning on the last day for which the technology was unavailable. Controls were matched based upon physician, institution, arrhythmia, and a predetermined complexity rating. Procedural metrics, fluoroscopy data, and clinical outcomes were assessed from time-stamped medical records. RESULTS: The study group consisted of 28 patients (age 65 ± 11 years, 46% female, left atrial dimension 4.1 ± 0.9 cm, LVEF 50 ± 18%) and was similar to 28 controls. The most common arrhythmia types were atrial fibrillation (n = 10), premature ventricular complexes (n = 8), and ventricular tachycardia (n = 6). Use of the system was associated with a 19.0% reduction in time to ablation (133 ± 48 vs. 165 ± 49 min, p = 0.02), a 22.6% reduction in procedure duration (233 ± 51 vs. 301 ± 83 min, p < 0.001), and a 43.7% reduction in fluoroscopy (18.7 ± 13.3 vs. 33.2 ± 18.0 min, p < 0.001) versus controls. At 6 months follow-up, arrhythmia-free survival was 73.5% in the study group and 63.3% in the control group (p = 0.56). CONCLUSION: Use of forward-solution AI ECG mapping is associated with reductions in time to first ablation, procedure duration, and fluoroscopy without an adverse impact on procedure outcomes or complications.


Subject(s)
Action Potentials , Arrhythmias, Cardiac , Artificial Intelligence , Catheter Ablation , Predictive Value of Tests , Time-to-Treatment , Aged , Female , Humans , Male , Middle Aged , Arrhythmias, Cardiac/physiopathology , Arrhythmias, Cardiac/diagnosis , Arrhythmias, Cardiac/surgery , Catheter Ablation/adverse effects , Electrocardiography , Electrophysiologic Techniques, Cardiac , Fluoroscopy , Heart Rate , Operative Time , Retrospective Studies , Time Factors , Treatment Outcome , Case-Control Studies
18.
Radiol Clin North Am ; 62(3): 489-508, 2024 May.
Article in English | MEDLINE | ID: mdl-38553182

ABSTRACT

With the increasing prevalence of arrhythmias, the use of electrophysiology (EP) procedures has increased. Recent advancements in computed tomography (CT) technology have expanded its use in pre-assessments and post-assessments of EP procedures. CT provides high-resolution images, is noninvasive, and is widely available. This article highlights the strengths and weaknesses of cardiac CT in EP.


Subject(s)
Catheter Ablation , Electrophysiologic Techniques, Cardiac , Humans , Cardiac Electrophysiology , Arrhythmias, Cardiac/diagnostic imaging , Arrhythmias, Cardiac/surgery , Tomography, X-Ray Computed/methods , Radiography
20.
Curr Protoc ; 4(2): e994, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38372479

ABSTRACT

Cardiac arrhythmias are a common cardiac condition that might lead to fatal outcomes. A better understanding of the molecular and cellular basis of arrhythmia mechanisms is necessary for the development of better treatment modalities. To aid these efforts, various mouse models have been developed for studying cardiac arrhythmias. Both genetic and surgical mouse models are commonly used to assess the incidence and mechanisms of arrhythmias. Since spontaneous arrhythmias are uncommon in healthy young mice, intracardiac programmed electrical stimulation (PES) can be performed to assess the susceptibility to pacing-induced arrhythmias and uncover the possible presence of a proarrhythmogenic substrate. This procedure is performed by positioning an octopolar catheter inside the right atrium and ventricle of the heart through the right jugular vein. PES can provide insights into atrial and ventricular electrical activity and reveal whether atrial and/or ventricular arrhythmias are present or can be induced. Here, we explain detailed procedures used to perform this technique, possible troubleshooting scenarios, and methods to interpret the results obtained. © 2024 Wiley Periodicals LLC. Basic Protocol: Programmed electrical stimulation in mice.


Subject(s)
Arrhythmias, Cardiac , Electrophysiologic Techniques, Cardiac , Mice , Animals , Arrhythmias, Cardiac/therapy , Heart Ventricles , Heart Atria , Electric Stimulation
SELECTION OF CITATIONS
SEARCH DETAIL
...