Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 96
Filter
1.
Mol Genet Genomic Med ; 12(5): e2451, 2024 May.
Article in English | MEDLINE | ID: mdl-38760995

ABSTRACT

BACKGROUND: Ellis-van Creveld syndrome (EvCS) is a chondroectodermal dysplasia caused by germline pathogenic variants in ciliary complex subunit 1 and 2 genes (EVC, EVC2) on chromosome 4p16.2. This disease has a broad phenotype, and there are few described phenotype-genotype correlations. METHODS: Ethical Compliance: Written informed consent was obtained from the parents. Here, we report a genetically confirmed Mexican patient with EvCS having two inherited pathogenic variants in trans in EVC2: c.[1195C>T];[2161delC]. RESULTS: This patient allowed a genotypic-phenotypic comparison with another Mexican subject who presented a more attenuated phenotype; furthermore, our patient also presented cleft palate, a rarely reported feature. CONCLUSION: Our case shows the importance of comparing functional hemizygosity between patient's phenotypes when they share a variant, and our case also supports the association of alterations in the palate as part of the EvCS phenotype.


Subject(s)
Cleft Palate , Ellis-Van Creveld Syndrome , Phenotype , Humans , Cleft Palate/genetics , Cleft Palate/pathology , Ellis-Van Creveld Syndrome/genetics , Ellis-Van Creveld Syndrome/pathology , Mexico , Male , Female , Intercellular Signaling Peptides and Proteins
2.
Am J Med Genet A ; 194(9): e63629, 2024 09.
Article in English | MEDLINE | ID: mdl-38647386

ABSTRACT

Skeletal ciliopathies constitute a subgroup of ciliopathies characterized by various skeletal anomalies arising from mutations in genes impacting cilia, ciliogenesis, intraflagellar transport process, or various signaling pathways. Short-rib thoracic dysplasias, previously known as Jeune asphyxiating thoracic dysplasia (ATD), stand out as the most prevalent and prototypical form of skeletal ciliopathies, often associated with semilethality. Recently, pathogenic variants in GRK2, a subfamily of mammalian G protein-coupled receptor kinases, have been identified as one of the underlying causes of Jeune ATD. In this study, we report a new patient with Jeune ATD, in whom exome sequencing revealed a novel homozygous GRK2 variant, and we review the clinical features and radiographic findings. In addition, our findings introduce Morgagni hernia and an organoaxial-type rotation anomaly of the stomach and midgut malrotation for the first time in the context of this recently characterized GRK2-related skeletal ciliopathy.


Subject(s)
Ellis-Van Creveld Syndrome , G-Protein-Coupled Receptor Kinase 2 , Hernias, Diaphragmatic, Congenital , Female , Humans , Ellis-Van Creveld Syndrome/genetics , Ellis-Van Creveld Syndrome/pathology , Exome Sequencing , G-Protein-Coupled Receptor Kinase 2/genetics , Hernias, Diaphragmatic, Congenital/genetics , Hernias, Diaphragmatic, Congenital/diagnostic imaging , Hernias, Diaphragmatic, Congenital/pathology , Mutation , Phenotype , Infant
3.
J Med Genet ; 61(7): 633-644, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38531627

ABSTRACT

BACKGROUND: Ellis-van Creveld syndrome (EvC) is a recessive disorder characterised by acromesomelic limb shortening, postaxial polydactyly, nail-teeth dysplasia and congenital cardiac defects, primarily caused by pathogenic variants in EVC or EVC2. Weyers acrofacial dysostosis (WAD) is an ultra-rare dominant condition allelic to EvC. The present work aimed to enhance current knowledge on the clinical manifestations of EvC and WAD and broaden their mutational spectrum. METHODS: We conducted molecular studies in 46 individuals from 43 unrelated families with a preliminary clinical diagnosis of EvC and 3 affected individuals from a family with WAD and retrospectively analysed clinical data. The deleterious effect of selected variants of uncertain significance was evaluated by cellular assays. MAIN RESULTS: We identified pathogenic variants in EVC/EVC2 in affected individuals from 41 of the 43 families with EvC. Patients from each of the two remaining families were found with a homozygous splicing variant in WDR35 and a de novo heterozygous frameshift variant in GLI3, respectively. The phenotype of these patients showed a remarkable overlap with EvC. A novel EVC2 C-terminal truncating variant was identified in the family with WAD. Deep phenotyping of the cohort recapitulated 'classical EvC findings' in the literature and highlighted findings previously undescribed or rarely described as part of EvC. CONCLUSIONS: This study presents the largest cohort of living patients with EvC to date, contributing to better understanding of the full clinical spectrum of EvC. We also provide comprehensive information on the EVC/EVC2 mutational landscape and add GLI3 to the list of genes associated with EvC-like phenotypes.


Subject(s)
Ellis-Van Creveld Syndrome , Pedigree , Phenotype , Humans , Ellis-Van Creveld Syndrome/genetics , Ellis-Van Creveld Syndrome/pathology , Male , Female , Child , Membrane Proteins/genetics , Mutation , Child, Preschool , Zinc Finger Protein Gli3/genetics , Adolescent , Adult , Nerve Tissue Proteins/genetics , Cohort Studies , Infant , Proteins/genetics , Retrospective Studies , Intercellular Signaling Peptides and Proteins
4.
Nucleic Acids Res ; 51(13): 6684-6701, 2023 07 21.
Article in English | MEDLINE | ID: mdl-37326025

ABSTRACT

Defects in cilia genes, which are critical for cilia formation and function, can cause complicated ciliopathy syndromes involving multiple organs and tissues; however, the underlying regulatory mechanisms of the networks of cilia genes in ciliopathies remain enigmatic. Herein, we have uncovered the genome-wide redistribution of accessible chromatin regions and extensive alterations of expression of cilia genes during Ellis-van Creveld syndrome (EVC) ciliopathy pathogenesis. Mechanistically, the distinct EVC ciliopathy-activated accessible regions (CAAs) are shown to positively regulate robust changes in flanking cilia genes, which are a key requirement for cilia transcription in response to developmental signals. Moreover, a single transcription factor, ETS1, can be recruited to CAAs, leading to prominent chromatin accessibility reconstruction in EVC ciliopathy patients. In zebrafish, the collapse of CAAs driven by ets1 suppression subsequently causes defective cilia proteins, resulting in body curvature and pericardial oedema. Our results depict a dynamic landscape of chromatin accessibility in EVC ciliopathy patients, and uncover an insightful role for ETS1 in controlling the global transcriptional program of cilia genes by reprogramming the widespread chromatin state.


Subject(s)
Cilia , Proto-Oncogene Protein c-ets-1 , Zebrafish Proteins , Animals , Chromatin/genetics , Chromatin/metabolism , Cilia/metabolism , Ciliopathies/genetics , Ciliopathies/pathology , Ellis-Van Creveld Syndrome/genetics , Ellis-Van Creveld Syndrome/metabolism , Ellis-Van Creveld Syndrome/pathology , Transcription Factors/genetics , Transcription Factors/metabolism , Zebrafish/genetics , Proto-Oncogene Protein c-ets-1/metabolism , Zebrafish Proteins/metabolism
5.
Am J Med Genet A ; 185(10): 2888-2894, 2021 10.
Article in English | MEDLINE | ID: mdl-34037314

ABSTRACT

Ellis-van Creveld (EvC) syndrome is an autosomal recessive disease, characterized by ectodermal, skeletal, and cardiac anomalies. We report intrafamilial phenotypic variability in three new EvC syndrome cases. Affected males in this study showed only ectodermal abnormalities, whereas an affected female showed the classical presentation of EvC Syndrome, including bilateral postaxial polydactyly of hands and feet, and congenital heart defects. Whole exome sequencing was performed to identify the causative variant, followed by validation and segregation analysis using Sanger sequencing. A homozygous deletion variant (c.731_757del) was identified in exon 6 of the EVC gene (NM_153717.2). The identified variant is considered to be the most likely candidate variant for the EvC syndrome in the family based on previous reports validating the role of EVC variants in the EvC syndrome. The disease correctly segregated in the family members, as all affected members were homozygous, and obligate carriers were heterozygous. Our family is remarkable in highlighting the variable expressivity of the EvC phenotype within the same family, due to a homozygous deletion mutation in the EVC gene. The variable expressivity might be due to the hypomorphic nature of mutation, or the presence of additional variants in modifier genes or in the regulatory regions of the EVC/EVC2 genes.


Subject(s)
Ellis-Van Creveld Syndrome/genetics , Heart Defects, Congenital/genetics , Membrane Proteins/genetics , Polydactyly/genetics , Biological Variation, Population/genetics , Child , Ectoderm/abnormalities , Ectoderm/pathology , Ellis-Van Creveld Syndrome/diagnosis , Ellis-Van Creveld Syndrome/pathology , Exons/genetics , Female , Heart/physiopathology , Heart Defects, Congenital/pathology , Heterozygote , Homozygote , Humans , Infant, Newborn , Male , Pedigree , Polydactyly/pathology , Sequence Deletion/genetics , Skeleton/abnormalities , Skeleton/pathology , Exome Sequencing
6.
Nat Genet ; 53(4): 467-476, 2021 04.
Article in English | MEDLINE | ID: mdl-33731941

ABSTRACT

Gene regulatory divergence is thought to play a central role in determining human-specific traits. However, our ability to link divergent regulation to divergent phenotypes is limited. Here, we utilized human-chimpanzee hybrid induced pluripotent stem cells to study gene expression separating these species. The tetraploid hybrid cells allowed us to separate cis- from trans-regulatory effects, and to control for nongenetic confounding factors. We differentiated these cells into cranial neural crest cells, the primary cell type giving rise to the face. We discovered evidence of lineage-specific selection on the hedgehog signaling pathway, including a human-specific sixfold down-regulation of EVC2 (LIMBIN), a key hedgehog gene. Inducing a similar down-regulation of EVC2 substantially reduced hedgehog signaling output. Mice and humans lacking functional EVC2 show striking phenotypic parallels to human-chimpanzee craniofacial differences, suggesting that the regulatory divergence of hedgehog signaling may have contributed to the unique craniofacial morphology of humans.


Subject(s)
Chimera/genetics , Ellis-Van Creveld Syndrome/genetics , Intercellular Signaling Peptides and Proteins/genetics , Neural Crest/metabolism , Pan troglodytes/genetics , Skull/metabolism , Animals , Biological Evolution , Cell Differentiation , Chimera/metabolism , Ellis-Van Creveld Syndrome/metabolism , Ellis-Van Creveld Syndrome/pathology , Female , Gene Expression , Genotype , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Intercellular Signaling Peptides and Proteins/deficiency , Male , Mice , Mice, Knockout , Neural Crest/pathology , Pan troglodytes/anatomy & histology , Pan troglodytes/metabolism , Phenotype , Signal Transduction , Skull/anatomy & histology , Species Specificity , Tetraploidy
7.
J Cell Sci ; 132(3)2019 02 11.
Article in English | MEDLINE | ID: mdl-30659111

ABSTRACT

Intraflagellar transport (IFT), which is essential for the formation and function of cilia in most organisms, is the trafficking of IFT trains (i.e. assemblies of IFT particles) that carry cargo within the cilium. Defects in IFT cause several human diseases. IFT trains contain the complexes IFT-A and IFT-B. To dissect the functions of these complexes, we studied a Chlamydomonas mutant that is null for the IFT-A protein IFT140. The mutation had no effect on IFT-B but destabilized IFT-A, preventing flagella assembly. Therefore, IFT-A assembly requires IFT140. Truncated IFT140, which lacks the N-terminal WD repeats of the protein, partially rescued IFT and supported formation of half-length flagella that contained normal levels of IFT-B but greatly reduced amounts of IFT-A. The axonemes of these flagella had normal ultrastructure and, as investigated by SDS-PAGE, normal composition. However, composition of the flagellar 'membrane+matrix' was abnormal. Analysis of the latter fraction by mass spectrometry revealed decreases in small GTPases, lipid-anchored proteins and cell signaling proteins. Thus, IFT-A is specialized for the import of membrane-associated proteins. Abnormal levels of the latter are likely to account for the multiple phenotypes of patients with defects in IFT140.This article has an associated First Person interview with the first author of the paper.


Subject(s)
Algal Proteins/genetics , Cell Membrane/metabolism , Chlamydomonas reinhardtii/genetics , Cilia/metabolism , Flagella/metabolism , Lipid-Linked Proteins/genetics , Algal Proteins/chemistry , Algal Proteins/metabolism , Axoneme/metabolism , Axoneme/ultrastructure , Carrier Proteins/chemistry , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Membrane/ultrastructure , Cerebellar Ataxia/genetics , Cerebellar Ataxia/metabolism , Cerebellar Ataxia/pathology , Chlamydomonas reinhardtii/metabolism , Chlamydomonas reinhardtii/ultrastructure , Cilia/ultrastructure , Ellis-Van Creveld Syndrome/genetics , Ellis-Van Creveld Syndrome/metabolism , Ellis-Van Creveld Syndrome/pathology , Flagella/ultrastructure , Gene Expression , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Lipid-Linked Proteins/metabolism , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Monomeric GTP-Binding Proteins/genetics , Monomeric GTP-Binding Proteins/metabolism , Mutation , Organisms, Genetically Modified , Protein Transport , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/metabolism , Retinitis Pigmentosa/pathology , Signal Transduction , Red Fluorescent Protein
9.
J Coll Physicians Surg Pak ; 28(3): S44-S45, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29482704

ABSTRACT

Ellis-van Creveld syndrome is a rare form of skeletal and chondroectodermal dysplasia which affects all the three ectodermal, mesodermal, and endodermal derivatives. It has an autosomal recessive inheritance. This is caused by mutations in 1 of 2 genes, EVC 1 or EVC 2. This syndrome has a constellation of characteristic features that include bilateral post-axial polydactyly, mainly involving the upper limbs, hypoplastic nails and teeth, congenital heart defects, and chondroectodermal dysplasia. It is mainly a disorder of Amish population where incidence of this disease is 1/5000 and its incidence in non-Amish population is 7/1000000. Our patient had all the major characteristic features consistent with Ellis-van Creveld syndrome including post-axial polydactyly, teeth and nail abnormalities, congenital heart defect and skeletal dysplasia. Until now, only five cases have been reported from this region of the world, none of them diagnosed in neonatal life and having characteristic common atrium.


Subject(s)
Ectodermal Dysplasia/pathology , Ellis-Van Creveld Syndrome/genetics , Ellis-Van Creveld Syndrome/pathology , Mouth Abnormalities/etiology , Tooth Abnormalities/etiology , Ectodermal Dysplasia/complications , Ectodermal Dysplasia/genetics , Ellis-Van Creveld Syndrome/complications , Female , Humans , Infant, Newborn
10.
Hum Mol Genet ; 26(23): 4556-4571, 2017 12 01.
Article in English | MEDLINE | ID: mdl-28973407

ABSTRACT

GLI1, GLI2 and GLI3 form a family of transcription factors which regulate development by mediating the action of Hedgehog (Hh) morphogens. Accordingly, inactivating variants in GLI2 and GLI3 are found in several developmental disorders. In contrast, loss-of-function mutations in GLI1 have remained elusive, maintaining enigmatic the role of this gene in the human embryo. We describe eight patients from three independent families having biallelic truncating variants in GLI1 and developmental defects overlapping with Ellis-van Creveld syndrome (EvC), a disease caused by diminished Hh signaling. Two families had mutations in the last exon of the gene and a third family was identified with an N-terminal stop gain variant predicted to be degraded by the NMD-pathway. Analysis of fibroblasts from one of the patients with homozygous C-terminal truncation of GLI1 demonstrated that the corresponding mutant GLI1 protein is fabricated by patient cells and becomes upregulated in response to Hh signaling. However, the transcriptional activity of the truncated GLI1 factor was found to be severely impaired by cell culture and in vivo assays, indicating that the balance between GLI repressors and activators is altered in affected subjects. Consistent with this, reduced expression of the GLI target PTCH1 was observed in patient fibroblasts after chemical induction of the Hh pathway. We conclude that GLI1 inactivation is associated with a phenotypic spectrum extending from isolated postaxial polydactyly to an EvC-like condition.


Subject(s)
Ellis-Van Creveld Syndrome/genetics , Zinc Finger Protein GLI1/genetics , Child , Ellis-Van Creveld Syndrome/metabolism , Ellis-Van Creveld Syndrome/pathology , Exons , Female , Fibroblasts/metabolism , Fibroblasts/pathology , Gene Expression Regulation, Developmental , Gene Silencing , Hedgehog Proteins/metabolism , Humans , Infant , Infant, Newborn , Male , Pedigree , Phenotype , Polydactyly/genetics , Polydactyly/metabolism , Primary Cell Culture , Signal Transduction , Trans-Activators/genetics , Transcription, Genetic , Zinc Finger Protein GLI1/metabolism
11.
Rev. salud pública ; 19(1): 32-38, ene.-feb. 2017. tab
Article in Spanish | LILACS | ID: biblio-903067

ABSTRACT

RESUMEN Objetivo Explorar la presencia de patología genética sindrómica en el Departamento de Boyacá, mediante un acercamiento de medicina genética comunitaria. Materiales y Métodos Un grupo conformado por genetistas, neurólogo pediátrico y genetista bioquímico, llevó a cabo jornadas clínicas en las cuales se evaluaron pacientes con sospecha de enfermedad genética. Se obtuvieron datos demográficos, epidemiológicos y clínicos y se realizó el cálculo de frecuencias de los mismos. En los centros de referencia visitados se realizaron actividades de capacitación al personal médico. Resultados Se encontraron dos agrupamientos genéticos: MPSIII y Síndrome de Ellis Van Creveld, con incidencias mayores a lo reportado en la literatura, además una alta frecuencia de patologías de herencia autosómica recesiva, así como sospecha de síndromes de microdeleción-microduplicación. Conclusiones Se deben establecer mecanismos no convencionales de atención médica para facilitar el acceso a las comunidades a un diagnóstico y tratamiento adecuados en genética. Se espera que el apoyo brindado a los pacientes, familias y personal asistencial de los hospitales a través de las jornadas clínicas y la capacitación, permitan alcanzar este objetivo y a la vez sea un punto de inicio de procesos de prevención primaria y secundaria.(AU)


ABSTRACT Objectives To explore the incidence of syndromic genetic pathologies in Boyacá, Colombia, through a community genetics approach. Materials and Methods A group made up by different medical specialists (geneticists, a pediatric neurologist, and a biochemical geneticist) developed clinical campaigns, in which patients with clinical suspicion of genetic diseases were involved. Demographic, epidemiological and clinical data were collected, and frequency calculations were made based on the collected data. Several training workshops for health personnel were done in each center visited. Results Two genetic clusters were found: mucopolysaccharidosis type III, and Ellis-Van Creveld Syndrome, both of them with higher incidences than those found in the literature. Also, a high frequency of autosomal recessive diseases was found, as well as microdeletion/microduplication syndromes. Conclusions Conventional mechanisms of medical attention must be established, in order to facilitate the access to an appropriate diagnosis and treatment. This work intended to provide support to patients, families and health care services personnel through the workshops and clinical campaigns, and to become a starting point to develop primary and secondary prevention processes.(AU)


Subject(s)
Humans , Ellis-Van Creveld Syndrome/pathology , Chromosome Aberrations , Mucopolysaccharidosis III/pathology , Metabolism, Inborn Errors/pathology , Health Surveys , Statistical Data , Colombia/epidemiology
12.
PLoS Genet ; 12(12): e1006510, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28027321

ABSTRACT

Ellis-van Creveld (EvC) syndrome is a skeletal dysplasia, characterized by short limbs, postaxial polydactyly, and dental abnormalities. EvC syndrome is also categorized as a ciliopathy because of ciliary localization of proteins encoded by the two causative genes, EVC and EVC2 (aka LIMBIN). While recent studies demonstrated important roles for EVC/EVC2 in Hedgehog signaling, there is still little known about the pathophysiological mechanisms underlying the skeletal dysplasia features of EvC patients, and in particular why limb development is affected, but not other aspects of organogenesis that also require Hedgehog signaling. In this report, we comprehensively analyze limb skeletogenesis in Evc2 mutant mice and in cell and tissue cultures derived from these mice. Both in vivo and in vitro data demonstrate elevated Fibroblast Growth Factor (FGF) signaling in Evc2 mutant growth plates, in addition to compromised but not abrogated Hedgehog-PTHrP feedback loop. Elevation of FGF signaling, mainly due to increased Fgf18 expression upon inactivation of Evc2 in the perichondrium, critically contributes to the pathogenesis of limb dwarfism. The limb dwarfism phenotype is partially rescued by inactivation of one allele of Fgf18 in the Evc2 mutant mice. Taken together, our data uncover a novel pathogenic mechanism to understand limb dwarfism in patients with Ellis-van Creveld syndrome.


Subject(s)
Dwarfism/genetics , Ellis-Van Creveld Syndrome/genetics , Fibroblast Growth Factors/genetics , Membrane Proteins/genetics , Animals , Disease Models, Animal , Dwarfism/pathology , Ellis-Van Creveld Syndrome/pathology , Fibroblast Growth Factors/biosynthesis , Growth Plate/growth & development , Growth Plate/pathology , Humans , Intercellular Signaling Peptides and Proteins , Membrane Proteins/biosynthesis , Mice , Mutant Proteins/biosynthesis , Mutant Proteins/genetics , Polydactyly/genetics , Polydactyly/pathology , Signal Transduction , Tooth Abnormalities/genetics , Tooth Abnormalities/pathology
13.
Arch Oral Biol ; 68: 142-52, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27164562

ABSTRACT

OBJECTIVE: Our objectives were to determine the expression of EVC2 in craniofacial tissues and investigate the effect of Evc2 deficiency on craniofacial bones using Evc2 knockout (KO) mouse model. DESIGN: Evc2 KO mice were generated by introducing a premature stop codon followed by the Internal Ribosomal Entry Site fused to ß-galactosidase (LacZ). Samples from wild-type (WT), heterozygous (Het) and homozygous Evc2 KO mice were prepared. LacZ staining and immunohistochemistry (IHC) with anti-ß-galactosidase, anti-EVC2 and anti-SOX9 antibodies were performed. The craniofacial bones were stained with alcian blue and alizarin red. RESULTS: The LacZ activity in KO was mainly observed in the anterior parts of viscerocranium. The Evc2-expressing cells were identified in many cartilageous regions by IHC with anti-ß-galactosidase antibody in KO and Het embryos. The endogenous EVC2 protein was observed in these areas in WT embryos. Double labeling with anti-SOX9 antibody showed that these cells were mainly chondrocytes. At adult stages, the expression of EVC2 was found in chondrocytes of nasal bones and spheno-occipital synchondrosis, and osteocytes and endothelial-like cells of the premaxilla and mandible. The skeletal double staining demonstrated that craniofacial bones, where the expression of EVC2 was observed, in KO had the morphological defects as compared to WT. CONCLUSION: To our knowledge, our study was the first to identify the types of Evc2-expressing cells in craniofacial tissues. Consistent with the expression pattern, abnormal craniofacial bone morphology was found in the Evc2 KO mice, suggesting that EVC2 may be important during craniofacial growth and development.


Subject(s)
Craniofacial Abnormalities/metabolism , Membrane Proteins/biosynthesis , Animals , Bone and Bones/metabolism , Bone and Bones/pathology , Chondrocytes/metabolism , Craniofacial Abnormalities/genetics , Craniofacial Abnormalities/pathology , Disease Models, Animal , Ellis-Van Creveld Syndrome/genetics , Ellis-Van Creveld Syndrome/metabolism , Ellis-Van Creveld Syndrome/pathology , Immunohistochemistry , Intercellular Signaling Peptides and Proteins , Membrane Proteins/genetics , Membrane Proteins/immunology , Membrane Proteins/metabolism , Mice , Mice, Knockout , Mutation , Patched-1 Receptor , beta-Galactosidase
14.
Anat Rec (Hoboken) ; 299(8): 1110-20, 2016 08.
Article in English | MEDLINE | ID: mdl-27090777

ABSTRACT

Ellis-van Creveld (EvC) syndrome is a genetic disorder with mutations in either EVC or EVC2 gene. Previous case studies reported that EvC patients underwent orthodontic treatment, suggesting the presence of craniofacial bone phenotypes. To investigate whether a mutation in EVC2 gene causes a craniofacial bone phenotype, Evc2 knockout (KO) mice were generated and cephalometric analysis was performed. The heads of wild type (WT), heterozygous (Het) and homozygous Evc2 KO mice (1-, 3-, and 6-week-old) were prepared and cephalometric analysis based on the selected reference points on lateral X-ray radiographs was performed. The linear and angular bone measurements were then calculated, compared between WT, Het and KO and statistically analyzed at each time point. Our data showed that length of craniofacial bones in KO was significantly lowered by ∼20% to that of WT and Het, the growth of certain bones, including nasal bone, palatal length, and premaxilla was more affected in KO, and the reduction in these bone length was more significantly enhanced at later postnatal time points (3 and 6 weeks) than early time point (1 week). Furthermore, bone-to-bone relationship to cranial base and cranial vault in KO was remarkably changed, i.e. cranial vault and nasal bone were depressed and premaxilla and mandible were developed in a more ventral direction. Our study was the first to show the cause-effect relationship between Evc2 deficiency and craniofacial defects in EvC syndrome, demonstrating that Evc2 is required for craniofacial bone development and its deficiency leads to specific facial bone growth defect. Anat Rec, 299:1110-1120, 2016. © 2016 Wiley Periodicals, Inc.


Subject(s)
Bone Development/genetics , Bone and Bones/pathology , Craniofacial Abnormalities/pathology , Ellis-Van Creveld Syndrome/pathology , Facial Bones/pathology , Membrane Proteins/physiology , Animals , Animals, Newborn , Bone and Bones/metabolism , Craniofacial Abnormalities/metabolism , Ellis-Van Creveld Syndrome/genetics , Facial Bones/metabolism , Female , Heterozygote , Homozygote , Intercellular Signaling Peptides and Proteins , Mice , Mice, Inbred C57BL , Mice, Knockout , Phenotype
16.
Arch Argent Pediatr ; 113(6): e357-62, 2015 Dec 01.
Article in Spanish | MEDLINE | ID: mdl-26593817

ABSTRACT

UNLABELLED: Asphyxiating thoracic dysplasia is an uncommon condition with multiple organ affectation and high neonatal mortality. It presents with short stature, short extremities, narrow thorax. With growth, there is respiratory improvement, but emergence of renal, hepatic, pancreatic and/or retinal impairment. OBJECTIVE: to describe the long-term evolution of 8 patients of a pediatric hospital. METHODS: we retrospectively evaluated age at diagnosis, sex, anthropometric variables, complications and radiology. RESULTS: male/female 6/2. Median age at diagnosis: 2.54 years. EVOLUTION: 8/8 respiratory compromise, 3/8 kidney, liver 2/8, 1/8 ophthalmologic, cardiac 1/8. Median height at diagnosis -1.76 DS, normal postnatal growth and body proportions. Radiology: 8/8 narrow chest and brachyphalangia in hands. 5/8 acetabular abnormalities. DISCUSSION: for surveillance it is recommended to monitor renal, liver and eye function. The pediatrician should suspect this entity in a newborn with narrow thorax and respiratory distress.


Subject(s)
Ellis-Van Creveld Syndrome/pathology , Thorax/pathology , Child, Preschool , Ellis-Van Creveld Syndrome/diagnostic imaging , Female , Humans , Male , Retrospective Studies , Thorax/diagnostic imaging
17.
Vet Pathol ; 52(5): 957-66, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26077781

ABSTRACT

Ellis-van Creveld (EvC) syndrome is a human autosomal recessive disorder caused by a mutation in either the EVC or EVC2 gene, and presents with short limbs, polydactyly, and ectodermal and heart defects. The aim of this study was to understand the pathologic basis by which deletions in the EVC2 gene lead to chondrodysplastic dwarfism and to describe the morphologic, immunohistochemical, and molecular hallmarks of EvC syndrome in cattle. Five Grey Alpine calves, with a known mutation in the EVC2 gene, were autopsied. Immunohistochemistry was performed on bone using antibodies to collagen II, collagen X, sonic hedgehog, fibroblast growth factor 2, and Ki67. Reverse transcription polymerase chain reaction was performed to analyze EVC1 and EVC2 gene expression. Autopsy revealed long bones that were severely reduced in length, as well as genital and heart defects. Collagen II was detected in control calves in the resting, proliferative, and hypertrophic zones and in the primary and secondary spongiosa, with a loss of labeling in the resting zone of 2 dwarfs. Collagen X was expressed in hypertrophic zone in the controls but was absent in the EvC cases. In affected calves and controls, sonic hedgehog labeled hypertrophic chondrocytes and primary and secondary spongiosa similarly. FGF2 was expressed in chondrocytes of all growth plate zones in the control calves but was lost in most EvC cases. The Ki67 index was lower in cases compared with controls. EVC and EVC2 transcripts were detected. Our data suggest that EvC syndrome of Grey Alpine cattle is a disorder of chondrocyte differentiation, with accelerated differentiation and premature hypertrophy of chondrocytes, and could be a spontaneous model for the equivalent human disease.


Subject(s)
Cattle Diseases/pathology , Ellis-Van Creveld Syndrome/veterinary , Animals , Bone and Bones/pathology , Cattle , Cattle Diseases/genetics , Cattle Diseases/immunology , Ellis-Van Creveld Syndrome/genetics , Ellis-Van Creveld Syndrome/immunology , Ellis-Van Creveld Syndrome/pathology , Female , Genes/genetics , Male , Mutation
18.
Am J Hum Genet ; 93(5): 926-31, 2013 Nov 07.
Article in English | MEDLINE | ID: mdl-24183449

ABSTRACT

Short-rib polydactyly (SRP) syndrome type III, or Verma-Naumoff syndrome, is an autosomal-recessive chondrodysplasia characterized by short ribs, a narrow thorax, short long bones, an abnormal acetabulum, and numerous extraskeletal malformations and is lethal in the perinatal period. Presently, mutations in two genes, IFT80 and DYNC2H1, have been identified as being responsible for SRP type III. Via homozygosity mapping in three affected siblings, a locus for the disease was identified on chromosome 9q34.11, and homozygosity for three missense mutations in WDR34 were found in three independent families, as well as compound heterozygosity for mutations in one family. WDR34 encodes a member of the WD repeat protein family with five WD40 domains, which acts as a TAK1-associated suppressor of the IL-1R/TLR3/TLR4-induced NF-κB activation pathway. We showed, through structural modeling, that two of the three mutations altered specific structural domains of WDR34. We found that primary cilia in WDR34 mutant fibroblasts were significantly shorter than normal and had a bulbous tip. This report expands on the pathogenesis of SRP type III and demonstrates that a regulator of the NF-κB activation pathway is involved in the pathogenesis of the skeletal ciliopathies.


Subject(s)
Carrier Proteins/genetics , Cilia/genetics , Ellis-Van Creveld Syndrome/genetics , NF-kappa B/metabolism , Short Rib-Polydactyly Syndrome/genetics , Signal Transduction , Carrier Proteins/metabolism , Cilia/pathology , Cytoplasmic Dyneins/genetics , Ellis-Van Creveld Syndrome/pathology , Fibroblasts , Heterozygote , Homozygote , Humans , Infant, Newborn , Male , Mutation , Mutation, Missense , Ribs/abnormalities , Ribs/pathology , Short Rib-Polydactyly Syndrome/pathology
19.
Am J Hum Genet ; 93(5): 932-44, 2013 Nov 07.
Article in English | MEDLINE | ID: mdl-24183451

ABSTRACT

Bidirectional (anterograde and retrograde) motor-based intraflagellar transport (IFT) governs cargo transport and delivery processes that are essential for primary cilia growth and maintenance and for hedgehog signaling functions. The IFT dynein-2 motor complex that regulates ciliary retrograde protein transport contains a heavy chain dynein ATPase/motor subunit, DYNC2H1, along with other less well functionally defined subunits. Deficiency of IFT proteins, including DYNC2H1, underlies a spectrum of skeletal ciliopathies. Here, by using exome sequencing and a targeted next-generation sequencing panel, we identified a total of 11 mutations in WDR34 in 9 families with the clinical diagnosis of Jeune syndrome (asphyxiating thoracic dystrophy). WDR34 encodes a WD40 repeat-containing protein orthologous to Chlamydomonas FAP133, a dynein intermediate chain associated with the retrograde intraflagellar transport motor. Three-dimensional protein modeling suggests that the identified mutations all affect residues critical for WDR34 protein-protein interactions. We find that WDR34 concentrates around the centrioles and basal bodies in mammalian cells, also showing axonemal staining. WDR34 coimmunoprecipitates with the dynein-1 light chain DYNLL1 in vitro, and mining of proteomics data suggests that WDR34 could represent a previously unrecognized link between the cytoplasmic dynein-1 and IFT dynein-2 motors. Together, these data show that WDR34 is critical for ciliary functions essential to normal development and survival, most probably as a previously unrecognized component of the mammalian dynein-IFT machinery.


Subject(s)
Carrier Proteins/genetics , Cytoplasmic Dyneins/genetics , Ellis-Van Creveld Syndrome/genetics , Intracellular Signaling Peptides and Proteins/genetics , Animals , Asian People/genetics , Axoneme/genetics , Child , Chlamydomonas/genetics , Cilia/genetics , Cilia/metabolism , Cytoskeleton/genetics , Cytoskeleton/metabolism , Ellis-Van Creveld Syndrome/pathology , Exome , Exons , Humans , Infant , Infant, Newborn , Mutation , Protein Conformation , Proteomics , White People/genetics
20.
Am J Hum Genet ; 93(5): 915-25, 2013 Nov 07.
Article in English | MEDLINE | ID: mdl-24140113

ABSTRACT

Intraflagellar transport (IFT) depends on two evolutionarily conserved modules, subcomplexes A (IFT-A) and B (IFT-B), to drive ciliary assembly and maintenance. All six IFT-A components and their motor protein, DYNC2H1, have been linked to human skeletal ciliopathies, including asphyxiating thoracic dystrophy (ATD; also known as Jeune syndrome), Sensenbrenner syndrome, and Mainzer-Saldino syndrome (MZSDS). Conversely, the 14 subunits in the IFT-B module, with the exception of IFT80, have unknown roles in human disease. To identify additional IFT-B components defective in ciliopathies, we independently performed different mutation analyses: candidate-based sequencing of all IFT-B-encoding genes in 1,467 individuals with a nephronophthisis-related ciliopathy or whole-exome resequencing in 63 individuals with ATD. We thereby detected biallelic mutations in the IFT-B-encoding gene IFT172 in 12 families. All affected individuals displayed abnormalities of the thorax and/or long bones, as well as renal, hepatic, or retinal involvement, consistent with the diagnosis of ATD or MZSDS. Additionally, cerebellar aplasia or hypoplasia characteristic of Joubert syndrome was present in 2 out of 12 families. Fibroblasts from affected individuals showed disturbed ciliary composition, suggesting alteration of ciliary transport and signaling. Knockdown of ift172 in zebrafish recapitulated the human phenotype and demonstrated a genetic interaction between ift172 and ift80. In summary, we have identified defects in IFT172 as a cause of complex ATD and MZSDS. Our findings link the group of skeletal ciliopathies to an additional IFT-B component, IFT172, similar to what has been shown for IFT-A.


Subject(s)
Cerebellar Ataxia/genetics , Ellis-Van Creveld Syndrome/genetics , Intracellular Signaling Peptides and Proteins/genetics , Retinitis Pigmentosa/genetics , Alleles , Amino Acid Sequence , Animals , Asian People/genetics , Bone and Bones/abnormalities , Bone and Bones/metabolism , Bone and Bones/pathology , Cerebellar Ataxia/pathology , Craniosynostoses/genetics , Craniosynostoses/pathology , Cytoplasmic Dyneins/genetics , Cytoplasmic Dyneins/metabolism , Dyneins/genetics , Dyneins/metabolism , Ectodermal Dysplasia/genetics , Ectodermal Dysplasia/pathology , Ellis-Van Creveld Syndrome/pathology , Epistasis, Genetic , Female , Fibroblasts/pathology , Gene Knockdown Techniques , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Kidney Diseases, Cystic/genetics , Kidney Diseases, Cystic/pathology , Male , Molecular Sequence Data , Mutation , Phenotype , Retinitis Pigmentosa/pathology , White People/genetics , Zebrafish/genetics
SELECTION OF CITATIONS
SEARCH DETAIL