Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 178
Filter
1.
J Virol ; 98(3): e0170923, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38305156

ABSTRACT

Tick-borne flaviviruses (TBFs) are transmitted to humans through milk and tick bites. Although a case of possible mother-to-child transmission of tick-borne encephalitis virus (TBEV) through breast milk has been reported, this route has not been confirmed in experimental models. Therefore, in this study, using type I interferon receptor-deficient A129 mice infected with Langat virus (LGTV), we aimed to demonstrate the presence of infectious virus in the milk and mammary glands of infected mice. Our results showed viral RNA of LGTV in the pup's stomach milk clots (SMCs) and blood, indicating that the virus can be transmitted from dam to pup through breast milk. In addition, we observed that LGTV infection causes tissue lesions in the mammary gland, and viral particles were present in mammary gland epithelial cells. Furthermore, we found that milk from infected mice could infect adult mice via the intragastric route, which has a milder infection process, longer infection time, and a lower rate of weight loss than other modes of infection. Specifically, we developed a nano-luciferase-LGTV reporter virus system to monitor the dynamics of different infection routes and observed dam-to-pup infection using in vivo bioluminescence imaging. This study provides comprehensive evidence to support breast milk transmission of TBF in mice and has helped provide useful data for studying TBF transmission routes.IMPORTANCETo date, no experimental models have confirmed mother-to-child transmission of tick-borne flavivirus (TBF) through breastfeeding. In this study, we used a mouse model to demonstrate the presence of infectious viruses in mouse breast milk and mammary gland epithelial cells. Our results showed that pups could become infected through the gastrointestinal route by suckling milk, and the infection dynamics could be monitored using a reporter virus system during breastfeeding in vivo. We believe our findings have provided substantial evidence to understand the underlying mechanism of breast milk transmission of TBF in mice, which has important implications for understanding and preventing TBF transmission in humans.


Subject(s)
Encephalitis Viruses, Tick-Borne , Encephalitis, Tick-Borne , Infectious Disease Transmission, Vertical , Mammary Glands, Animal , Milk , Animals , Female , Mice , Encephalitis Viruses, Tick-Borne/growth & development , Encephalitis Viruses, Tick-Borne/physiology , Encephalitis, Tick-Borne/transmission , Encephalitis, Tick-Borne/virology , Mammary Glands, Animal/virology , Milk/virology , Animals, Newborn/virology
2.
J Gen Virol ; 102(9)2021 09.
Article in English | MEDLINE | ID: mdl-34546870

ABSTRACT

Tick-borne encephalitis virus (TBEV), a member of the genus Flavivirus, is common in Europe and Asia and causes a severe disease of the central nervous system. A promising approach in the development of therapy for TBEV infection is the search for small molecule antivirals targeting the flavivirus envelope protein E, particularly its ß-n-octyl-d-glucoside binding pocket (ß-OG pocket). However, experimental studies of candidate antivirals may be complicated by varying amounts and different forms of the protein E in the virus samples. Viral particles with different conformations and arrangements of the protein E are produced during the replication cycle of flaviviruses, including mature, partially mature, and immature forms, as well as subviral particles lacking genomic RNA. The immature forms are known to be abundant in the viral population. We obtained immature virion preparations of TBEV, characterized them by RT-qPCR, and assessed in vivo and in vitro infectivity of the residual mature virions in the immature virus samples. Analysis of the ß-OG pocket structure on the immature virions confirmed the possibility of binding of adamantylmethyl esters of 5-aminoisoxazole-3-carboxylic acid in the pocket. We demonstrated that the antiviral activity of these compounds in plaque reduction assay is significantly reduced in the presence of immature TBEV particles.


Subject(s)
Adamantane/pharmacology , Antiviral Agents/pharmacology , Encephalitis Viruses, Tick-Borne/drug effects , Encephalitis Viruses, Tick-Borne/physiology , Encephalitis, Tick-Borne/virology , Isoxazoles/pharmacology , Virion/physiology , Adamantane/metabolism , Animals , Antiviral Agents/metabolism , Cell Line , Encephalitis Viruses, Tick-Borne/growth & development , Encephalitis Viruses, Tick-Borne/pathogenicity , Glucosides/metabolism , Isoxazoles/metabolism , Mice , Mice, Inbred BALB C , Molecular Docking Simulation , Protein Binding , Protein Conformation , Swine , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/metabolism , Viral Plaque Assay , Virion/immunology , Virion/pathogenicity , Virion/ultrastructure
3.
Antiviral Res ; 185: 104968, 2021 01.
Article in English | MEDLINE | ID: mdl-33157129

ABSTRACT

The flavivirus, tick-borne encephalitis virus (TBEV) is transmitted by Ixodes spp. ticks and may cause severe and potentially lethal neurological tick-borne encephalitis (TBE) in humans. Studying TBEV requires the use of secondary methodologies to detect the virus in infected cells. To overcome this problem, we rationally designed and constructed a recombinant reporter TBEV that stably expressed the mCherry reporter protein. The resulting TBEV reporter virus (named mCherry-TBEV) and wild-type parental TBEV exhibited similar growth kinetics in cultured cells; however, the mCherry-TBEV virus produced smaller plaques. The magnitude of mCherry expression correlated well with progeny virus production but remained stable over <4 passages in cell culture. Using well-characterized antiviral compounds known to inhibit TBEV, 2'-C-methyladenosine and 2'-deoxy-2'-ß-hydroxy-4'-azidocytidine (RO-9187), we demonstrated that mCherry-TBEV is suitable for high-throughput screening of antiviral drugs. Serum samples from a TBEV-vaccinated human and a TBEV-infected dog were used to evaluate the mCherry-based neutralization test. Collectively, recombinant mCherry-TBEV reporter virus described here provides a powerful tool to facilitate the identification of potential antiviral agents, and to measure levels of neutralizing antibodies in human and animal sera.


Subject(s)
Antibodies, Neutralizing/blood , Antiviral Agents/isolation & purification , Encephalitis Viruses, Tick-Borne/genetics , High-Throughput Screening Assays/methods , Luminescent Proteins/genetics , Neutralization Tests , Animals , Antibodies, Viral/blood , Cell Line , Cricetinae , Encephalitis Viruses, Tick-Borne/growth & development , Encephalitis, Tick-Borne/immunology , Encephalitis, Tick-Borne/virology , Humans , Kidney/cytology , Red Fluorescent Protein
4.
Bull Exp Biol Med ; 170(1): 53-57, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33222083

ABSTRACT

The antiviral activity of eprosartan (compound selected in silico) towards highly and low-virulent strains of tick-borne encephalitis virus was compared in vitro with activity of ribavirin. Study of the cytopathogenic activity of the virus on SPEV cells by ELISA, IFAT, and PCR showed similar results: both substances (eprosartan and ribavirin) promoted elimination of tick-borne encephalitis virus. Ribavirin exhibited intracellular inhibition towards both strains: the selectivity index for highly virulent Dal'negorsk strain was 160, for low-virulent Primorye-437 strain - 113. Eprosartan inhibited intracellular replication of Dal'negorsk strain (13.7) and less so that of Primorye-437 strain (2.9). The efficiency of virtual screening of the ligand (eprosartan) was demonstrated for highly virulent, but not low virulent tick-borne encephalitis strain.


Subject(s)
Acrylates/pharmacology , Antiviral Agents/pharmacology , Encephalitis Viruses, Tick-Borne/drug effects , Imidazoles/pharmacology , Ribavirin/pharmacology , Thiophenes/pharmacology , Virus Replication/drug effects , Animals , Cell Line , Cell Survival/drug effects , Encephalitis Viruses, Tick-Borne/genetics , Encephalitis Viruses, Tick-Borne/growth & development , Epithelial Cells/drug effects , Epithelial Cells/pathology , Epithelial Cells/virology , Kidney/pathology , Kidney/virology , Microbial Sensitivity Tests , Swine , Virus Replication/genetics
5.
PLoS Negl Trop Dis ; 14(10): e0008683, 2020 10.
Article in English | MEDLINE | ID: mdl-33017410

ABSTRACT

Infected Ixodes scapularis (black-legged tick) transmit a host of serious pathogens via their bites, including Borrelia burgdorferi, Babesia microti, and tick-borne flaviviruses (TBFVs), such as Powassan virus (POWV). Although the role of female I. scapularis ticks in disease transmission is well characterized, the role of male ticks is poorly understood. Because the pathogens are delivered in tick saliva, we studied the capacity of male salivary glands (SGs) to support virus replication. Ex vivo cultures of SGs from unfed male I. scapularis were viable for more than a week and maintained the characteristic tissue architecture of lobular ducts and acini. When SG cultures were infected with the TBFVs Langat virus (LGTV) or POWV lineage II (deer tick virus), the production of infectious virus was demonstrated. Using a green fluorescent protein-tagged LGTV and confocal microscopy, we demonstrated LGTV infection within SG acinus types II and III. The presence of LGTV in the acini and lobular ducts of the cultures was also shown via immunohistochemistry. Furthermore, the identification by in situ hybridization of both positive and negative strand LGTV RNA confirmed that the virus was indeed replicating. Finally, transmission electron microscopy of infected SGs revealed virus particles packaged in vesicles or vacuoles adjacent to acinar lumina. These studies support the concept that SGs of male I. scapularis ticks support replication of TBFVs and may play a role in virus transmission, and further refine a useful model system for developing countermeasures against this important group of pathogens.


Subject(s)
Flavivirus Infections/veterinary , Ixodes/virology , Salivary Glands/virology , Animals , Encephalitis Viruses, Tick-Borne/growth & development , Flavivirus Infections/virology , Male , Microscopy , Microscopy, Electron, Transmission , Microscopy, Fluorescence
6.
Sci Rep ; 10(1): 13204, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32764711

ABSTRACT

Tick-borne encephalitis virus (TBEV) is the causative agent of severe human neuroinfections that most commonly occur after a tick bite. N-Glycosylation of the TBEV envelope (E) glycoprotein is critical for virus egress in mammalian cells, but not in tick cells. In addition, glycans have been reported to mask specific antigenic sites from recognition by neutralizing antibodies. In this regard, the main purpose of our study was to investigate the profile of N-glycans linked to the E protein of TBEV when grown in human neuronal cells and compare it to the profile of virus grown in tick cells. Mass spectrometric analysis revealed significant differences in these profiles. High-mannose glycan with five mannose residues (Man5GlcNAc2), a complex biantennary galactosylated structure with core fucose (Gal2GlcNAc2Man3GlcNAc2Fuc), and a group of hybrid glycans with the composition Gal0-1GlcNAc1Man3-5GlcNAc2Fuc0-1 were confirmed as the main asparagine-linked oligosaccharides on the surface of TBEV derived from human neuronal cells. The observed pattern was supported by examination of the glycopeptides, providing additional information about the glycosylation site in the E protein. In contrast, the profile of TBEV grown in tick cells showed that paucimannose (Man3-4 GlcNAc2Fuc0-1) and high-mannose structures with five and six mannoses (Man5-6GlcNAc2) were major glycans on the viral surface. The reported results complement existing crystallography and cryoelectron tomography data on the E protein structure and could be instrumental for designing carbohydrate-binding antiviral agents active against TBEV.


Subject(s)
Encephalitis Viruses, Tick-Borne/growth & development , Encephalitis Viruses, Tick-Borne/metabolism , Glycoproteins/metabolism , Ticks/virology , Viral Envelope Proteins/metabolism , Amino Acid Sequence , Animals , Cell Line, Tumor , Glycoproteins/chemistry , Glycosylation , Humans , Viral Envelope Proteins/chemistry
7.
Food Environ Virol ; 12(3): 264-268, 2020 09.
Article in English | MEDLINE | ID: mdl-32388731

ABSTRACT

Survival of tick-borne encephalitis virus was studied from pasteurized and unpasteurized goat milk and from salted/unsalted and spiced/unspiced cheese made from goat milk inoculated with low and high litres of infective virus. Both soft (63 °C, 30 min) and fast (72 °C, 15 s) pasteurization conditions destroyed viable virus particles. A small amount of infective virus could be detected only for 5‒10 days from milk, and from unsalted cheese. From milk inoculated with a higher amount of virus, infectious viral particles were detectable for 20‒25 days and from unsalted cheese samples for 10‒15 days, independently of the use of spices. Pasteurization and salt treatment made goat milk and cheese safely consumable. These two methods must be used when making any human food from goat milk to avoid milk-borne human TBEV infections.


Subject(s)
Cheese/virology , Encephalitis Viruses, Tick-Borne/growth & development , Encephalitis, Tick-Borne/virology , Foodborne Diseases/virology , Milk/virology , Animals , Consumer Product Safety , Disease Outbreaks , Encephalitis Viruses, Tick-Borne/genetics , Encephalitis Viruses, Tick-Borne/isolation & purification , Food Contamination/analysis , Goats , Humans
8.
mBio ; 10(2)2019 04 23.
Article in English | MEDLINE | ID: mdl-31015334

ABSTRACT

Tick-borne encephalitis virus (TBEV), a member of the genus Flavivirus, is one of the most medically important tick-borne pathogens of the Old World. Despite decades of active research, attempts to develop of a live attenuated virus (LAV) vaccine against TBEV with acceptable safety and immunogenicity characteristics have not been successful. To overcome this impasse, we generated a chimeric TBEV that was highly immunogenic in nonhuman primates (NHPs). The chimeric virus contains the prM/E genes of TBEV, which are expressed in the genetic background of an antigenically closely related, but less pathogenic member of the TBEV complex-Langat virus (LGTV), strain T-1674. The neurovirulence of this chimeric virus was subsequently controlled by robust targeting of the viral genome with multiple copies of central nervous system-enriched microRNAs (miRNAs). This miRNA-targeted T/1674-mirV2 virus was highly stable in Vero cells and was not pathogenic in various mouse models of infection or in NHPs. Importantly, in NHPs, a single dose of the T/1674-mirV2 virus induced TBEV-specific neutralizing antibody (NA) levels comparable to those seen with a three-dose regimen of an inactivated TBEV vaccine, currently available in Europe. Moreover, our vaccine candidate provided complete protection against a stringent wild-type TBEV challenge in mice and against challenge with a parental (not miRNA-targeted) chimeric TBEV/LGTV in NHPs. Thus, this highly attenuated and immunogenic T/1674-mirV2 virus is a promising LAV vaccine candidate against TBEV and warrants further preclinical evaluation of its neurovirulence in NHPs prior to entering clinical trials in humans.IMPORTANCE Tick-borne encephalitis virus (TBEV) is one of the most medically important tick-borne pathogens of the Old World. Despite decades of active research, efforts to develop of TBEV live attenuated virus (LAV) vaccines with acceptable safety and immunogenicity characteristics have not been successful. Here we report the development and evaluation of a highly attenuated and immunogenic microRNA-targeted TBEV LAV.


Subject(s)
Antibodies, Viral/blood , Drug Carriers , Encephalitis Viruses, Tick-Borne/genetics , Encephalitis, Tick-Borne/prevention & control , Genetic Vectors , Viral Vaccines/immunology , Animals , Antibodies, Neutralizing/blood , Chlorocebus aethiops , Encephalitis Viruses, Tick-Borne/growth & development , Encephalitis Viruses, Tick-Borne/immunology , Encephalitis, Tick-Borne/immunology , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/adverse effects , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/adverse effects , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Vero Cells , Viral Vaccines/administration & dosage , Viral Vaccines/adverse effects , Viral Vaccines/genetics , Virus Replication
9.
Bioorg Chem ; 87: 629-637, 2019 06.
Article in English | MEDLINE | ID: mdl-30947098

ABSTRACT

Infections caused by flaviviruses pose a huge threat for public health all over the world. The search for therapeutically relevant compounds targeting tick-borne flaviviruses requires the exploration of novel chemotypes. In the present work a large series of novel polyfunctionalized isoxazole derivatives bearing substituents with various steric and electronic effects was obtained by our unique versatile synthetic procedure and their antiviral activity against tick-borne encephalitis, Omsk hemorrhagic fever, and Powassan viruses was studied in vitro. The majority of studied isoxazoles showed activity in low micromolar range. No appreciable cytotoxicity was observed for tested compounds. The lead compounds, 5-aminoisoxazole derivatives containing adamantyl moiety, exhibited strong antiviral activity and excellent therapeutic index.


Subject(s)
Adamantane/pharmacology , Antiviral Agents/pharmacology , Encephalitis Viruses, Tick-Borne/drug effects , Isoxazoles/pharmacology , Adamantane/chemistry , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Cell Line , Dose-Response Relationship, Drug , Encephalitis Viruses, Tick-Borne/growth & development , Encephalitis Viruses, Tick-Borne/isolation & purification , Humans , Isoxazoles/chemistry , Microbial Sensitivity Tests , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship , Swine
10.
Vector Borne Zoonotic Dis ; 19(8): 630-636, 2019 08.
Article in English | MEDLINE | ID: mdl-30994413

ABSTRACT

Kyasanur forest disease virus (KFDV) is a tick-borne flavivirus identified in 1957 in the Karnataka state of India causing fatalities in monkeys and humans. Even after the introduction of a vaccine in the endemic areas, hundreds of cases are reported every year. Being a high-risk category pathogen, the studies on this virus in India were limited till the past decade. The growth characteristics of this virus in various mammalian cell lines have not yet been studied. In this study, we have demonstrated the growth pattern of virus in BHK-21, Vero E6, Vero CCL81, rhabdomyosarcoma, porcine stable kidney, and Pipistrellus ceylonicus bat embryo cell lines, and found BHK-21 to be the best. We have developed KFDV plaque reduction neutralization test for the first time.


Subject(s)
Encephalitis Viruses, Tick-Borne/growth & development , Neutralization Tests/methods , Viral Plaque Assay/methods , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Cell Line , Cell Line, Tumor , Chiroptera , Chlorocebus aethiops , Cricetinae , Encephalitis Viruses, Tick-Borne/immunology , Humans , Real-Time Polymerase Chain Reaction , Swine , Vero Cells
11.
mBio ; 10(1)2019 01 29.
Article in English | MEDLINE | ID: mdl-30696737

ABSTRACT

The Ixodes scapularis tick transmits a number of pathogens, including tick-borne flaviviruses (TBFVs). In the United States, confirmed human infections with the Powassan virus (POWV) TBFV have a fatality rate of ∼10% and are increasing in incidence. Tick salivary glands (SGs) serve as an organ barrier to TBFV transmission, and little is known regarding the location of TBFV infection in SGs from fed ticks. Previous studies showed I. scapularis vanin (VNN) involved with TBFV infection of I. scapularis ISE6 embryonic cells, suggesting a potential role for this gene. The overall goal of this study was to use SG cultures to compare data on TBFV biology in SGs from fully engorged, replete (fed) ticks and from unfed ticks. TBFV multiplication was higher in SGs from fed ticks than in those from unfed ticks. Virus-like particles were observed only in granular acini of SGs from unfed ticks. The location of TBFV infection of SGs from fed ticks was observed in cells lining lobular ducts and trachea but not observed in acini. Transcript knockdown of VNN decreased POWV multiplication in infected SG cultures from both fed and unfed ticks. This work was the first to identify localization of TBFV multiplication in SG cultures from a fed tick and a tick transcript important for POWV multiplication in the tick SG, an organ critical for TBFV transmission. This research exemplifies the use of SG cultures in deciphering TBFV biology in the tick and as a translational tool for screening and identifying potential tick genes as potential countermeasure targets.IMPORTANCE Tick-borne flaviviruses (TBFVs) are responsible for more than 15,000 human disease cases each year, and Powassan virus lineage 2 (POWV-L2) deer tick virus has been a reemerging threat in North America over the past 20 years. Rapid transmission of TBFVs in particular emphasizes the importance of preventing tick bites, the difficulty in developing countermeasures to prevent transmission, and the importance of understanding TBFV infection in tick salivary glands (SGs). Tick blood feeding is responsible for phenomenal physiological changes and is associated with changes in TBFV multiplication within the tick and in SGs. Using SG cultures from Ixodes scapularis female ticks, the primary aims of this study were to identify cellular localization of virus-like particles in acini of infected SGs from fed and unfed ticks, localization of TBFV infection in infected SGs from fed ticks, and a tick transcript (with associated metabolic function) involved in POWV-L2 infection in SG cultures.


Subject(s)
Encephalitis Viruses, Tick-Borne/growth & development , Flavivirus Infections/veterinary , Ixodes/virology , Salivary Glands/virology , Animals , Flavivirus Infections/virology , Microscopy , Microscopy, Electron, Transmission , Microscopy, Fluorescence , Trachea/virology
12.
ACS Infect Dis ; 4(3): 247-256, 2018 03 09.
Article in English | MEDLINE | ID: mdl-29473735

ABSTRACT

Each year there are more than 15 000 cases of human disease caused by infections with tick-borne viruses (TBVs). These illnesses occur worldwide and can range from very mild illness to severe encephalitis and hemorrhagic fever. Although TBVs are currently identified as neglected vector-borne pathogens and receive less attention than mosquito-borne viruses, TBVs are expanding into new regions, and infection rates are increasing. Furthermore, effective vaccines, diagnostic tools, and other countermeasures are limited. The application of contemporary technologies to TBV infections presents an excellent opportunity to develop improved, effective countermeasures. Experimental tick and mammal models of infection can be used to characterize determinants of infection, transmission, and virulence and to test candidate countermeasures. The use of ex vivo tick cultures in TBV research provides a unique way to look at infection in specific tick organs. Mammal ex vivo organ slice and, more recently, organoid cultures are additional models that can be used to elucidate direct tissue-specific responses to infection. These ex vivo model systems are convenient for testing methods involving transcript knockdown and small molecules under tightly controlled conditions. They can also be combined with in vitro and in vivo studies to tease out possible host factors and potential vaccine or therapeutic candidates. In this brief perspective, we describe how ex vivo cultures can be combined with modern technologies to advance research on TBV infections.


Subject(s)
Encephalitis Viruses, Tick-Borne/growth & development , Organ Culture Techniques/methods , Virology/methods , Animals , Mammals , Models, Theoretical
13.
Vector Borne Zoonotic Dis ; 18(2): 108-113, 2018 02.
Article in English | MEDLINE | ID: mdl-29298405

ABSTRACT

Alkhumra hemorrhagic fever virus (AHFV) is an emerging novel flavivirus that was discovered in Saudi Arabia in 1995. The virus has since caused several outbreaks in the country that resulted in case fatality rates ranging from 1% to 25%. Meager information has been published on the ultrastructural features of the virus on cells under in vitro or in vivo conditions. The present electron microscopic study examined and compared the intracellular growth of the AHFV on the LLC-MK2 cells and brain cells of new born Wistar rats, inoculated intracerebrally. The cytopathological changes in both cell systems were noted, and localization of the virus particles in different cellular components was observed. Both apoptotic and lytic cell interactions were seen in the electron micrographs of both the LLC-MK2 and the rat brain cells. The results were discussed in relation to similar situations reported for other virus members of the genus Flavivirus.


Subject(s)
Encephalitis Viruses, Tick-Borne/ultrastructure , Animals , Animals, Newborn , Brain/cytology , Brain/virology , Cell Line , Encephalitis Viruses, Tick-Borne/growth & development , Encephalitis, Tick-Borne/pathology , Encephalitis, Tick-Borne/virology , Macaca mulatta , Rats, Wistar
14.
PLoS Negl Trop Dis ; 10(2): e0004180, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26859745

ABSTRACT

BACKGROUND: Ticks (Family Ixodidae) transmit a variety of disease causing agents to humans and animals. The tick-borne flaviviruses (TBFs; family Flaviviridae) are a complex of viruses, many of which cause encephalitis and hemorrhagic fever, and represent global threats to human health and biosecurity. Pathogenesis has been well studied in human and animal disease models. Equivalent analyses of tick-flavivirus interactions are limited and represent an area of study that could reveal novel approaches for TBF control. METHODOLOGY/PRINCIPAL FINDINGS: High resolution LC-MS/MS was used to analyze the proteome of Ixodes scapularis (Lyme disease tick) embryonic ISE6 cells following infection with Langat virus (LGTV) and identify proteins associated with viral infection and replication. Maximal LGTV infection of cells and determination of peak release of infectious virus, was observed at 36 hours post infection (hpi). Proteins were extracted from ISE6 cells treated with LGTV and non-infectious (UV inactivated) LGTV at 36 hpi and analyzed by mass spectrometry. The Omics Discovery Pipeline (ODP) identified thousands of MS peaks. Protein homology searches against the I. scapularis IscaW1 genome assembly identified a total of 486 proteins that were subsequently assigned to putative functional pathways using searches against the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. 266 proteins were differentially expressed following LGTV infection relative to non-infected (mock) cells. Of these, 68 proteins exhibited increased expression and 198 proteins had decreased expression. The majority of the former were classified in the KEGG pathways: "translation", "amino acid metabolism", and "protein folding/sorting/degradation". Finally, Trichostatin A and Oligomycin A increased and decreased LGTV replication in vitro in ISE6 cells, respectively. CONCLUSIONS/SIGNIFICANCE: Proteomic analyses revealed ISE6 proteins that were differentially expressed at the peak of LGTV replication. Proteins with increased expression following infection were associated with cellular metabolic pathways and glutaminolysis. In vitro assays using small molecules implicate malate dehydrogenase (MDH2), the citrate cycle, cellular acetylation, and electron transport chain processes in viral replication. Proteins were identified that may be required for TBF infection of ISE6 cells. These proteins are candidates for functional studies and targets for the development of transmission-blocking vaccines and drugs.


Subject(s)
Arthropod Proteins/analysis , Encephalitis Viruses, Tick-Borne/growth & development , Host-Pathogen Interactions , Ixodes/virology , Proteome/analysis , Animals , Cells, Cultured , Chromatography, Liquid , Metabolic Networks and Pathways , Tandem Mass Spectrometry
15.
Nucleic Acids Res ; 44(7): 3330-50, 2016 Apr 20.
Article in English | MEDLINE | ID: mdl-26850640

ABSTRACT

Insertion of microRNA target sequences into the flavivirus genome results in selective tissue-specific attenuation and host-range restriction of live attenuated vaccine viruses. However, previous strategies for miRNA-targeting did not incorporate a mechanism to prevent target elimination under miRNA-mediated selective pressure, restricting their use in vaccine development. To overcome this limitation, we developed a new approach for miRNA-targeting of tick-borne flavivirus (Langat virus, LGTV) in the duplicated capsid gene region (DCGR). Genetic stability of viruses with DCGR was ensured by the presence of multiple cis-acting elements within the N-terminal capsid coding region, including the stem-loop structure (5'SL6) at the 3' end of the promoter. We found that the 5'SL6 functions as a structural scaffold for the conserved hexanucleotide motif at its tip and engages in a complementary interaction with the region present in the 3' NCR to enhance viral RNA replication. The resulting kissing-loop interaction, common in tick-borne flaviviruses, supports a single pair of cyclization elements (CYC) and functions as a homolog of the second pair of CYC that is present in the majority of mosquito-borne flaviviruses. Placing miRNA targets into the DCGR results in superior attenuation of LGTV in the CNS and does not interfere with development of protective immunity in immunized mice.


Subject(s)
Capsid Proteins/genetics , Encephalitis Viruses, Tick-Borne/genetics , Genome, Viral , MicroRNAs/genetics , RNA, Viral/chemistry , Animals , Brain/virology , Chlorocebus aethiops , Encephalitis Viruses, Tick-Borne/growth & development , Encephalitis Viruses, Tick-Borne/physiology , Encephalitis, Tick-Borne/immunology , Encephalitis, Tick-Borne/virology , Genes, Duplicate , Mice , Mutation , Nucleotides/chemistry , Open Reading Frames , Organ Specificity , Promoter Regions, Genetic , Regulatory Sequences, Ribonucleic Acid , Vaccines, Attenuated , Vero Cells , Viral Vaccines , Virus Replication
17.
PLoS Negl Trop Dis ; 9(8): e0004012, 2015.
Article in English | MEDLINE | ID: mdl-26285211

ABSTRACT

BACKGROUND: Members of the mammalian tick-borne flavivirus group, including tick-borne encephalitis virus, are responsible for at least 10,000 clinical cases of tick-borne encephalitis each year. To attempt to explain the long-term maintenance of members of this group, we followed Ornithodoros parkeri, O. sonrai, and O. tartakovskyi for >2,900 days after they had been exposed to Karshi virus, a member of the mammalian tick-borne flavivirus group. METHODOLOGY/PRINCIPAL FINDINGS: Ticks were exposed to Karshi virus either by allowing them to feed on viremic suckling mice or by intracoelomic inoculation. The ticks were then allowed to feed individually on suckling mice after various periods of extrinsic incubation to determine their ability to transmit virus by bite and to determine how long the ticks would remain infectious. The ticks remained efficient vectors of Karshi virus, even when tested >2,900 d after their initial exposure to virus, including those ticks exposed to Karshi virus either orally or by inoculation. CONCLUSIONS/SIGNIFICANCE: Ornithodoros spp. ticks were able to transmit Karshi virus for >2,900 days (nearly 8 years) after a single exposure to a viremic mouse. Therefore, these ticks may serve as a long-term maintenance mechanism for Karshi virus and potentially other members of the mammalian tick-borne flavivirus group.


Subject(s)
Arachnid Vectors/virology , Encephalitis Viruses, Tick-Borne/physiology , Encephalitis, Tick-Borne/transmission , Ornithodoros/virology , Animals , Arachnid Vectors/physiology , Encephalitis Viruses, Tick-Borne/growth & development , Encephalitis, Tick-Borne/virology , Humans , Mice , Mice, Inbred BALB C , Ornithodoros/physiology , Virus Cultivation
18.
Sci Rep ; 5: 10745, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-26073783

ABSTRACT

Tick-borne encephalitis virus (TBEV) causes serious, potentially fatal neurological infections that affect humans in endemic regions of Europe and Asia. Neurons are the primary target for TBEV infection in the central nervous system. However, knowledge about this viral infection and virus-induced neuronal injury is fragmental. Here, we directly examined the pathology that occurs after TBEV infection in human primary neurons. We exploited the advantages of advanced high-pressure freezing and freeze-substitution techniques to achieve optimal preservation of infected cell architecture. Electron tomographic (ET) reconstructions elucidated high-resolution 3D images of the proliferating endoplasmic reticulum, and individual tubule-like structures of different diameters in the endoplasmic reticulum cisternae of single cells. ET revealed direct connections between the tubule-like structures and viral particles in the endoplasmic reticulum. Furthermore, ET showed connections between cellular microtubules and vacuoles that harbored the TBEV virions in neuronal extensions. This study was the first to characterize the 3D topographical organization of membranous whorls and autophagic vacuoles in TBEV-infected human neurons. The functional importance of autophagy during TBEV replication was studied in human neuroblastoma cells; stimulation of autophagy resulted in significantly increased dose-dependent TBEV production, whereas the inhibition of autophagy showed a profound, dose-dependent decrease of the yield of infectious virus.


Subject(s)
Encephalitis Viruses, Tick-Borne/ultrastructure , Endoplasmic Reticulum/ultrastructure , Microtubules/ultrastructure , Neurons/ultrastructure , Virion/ultrastructure , Animals , Autophagy/drug effects , Autophagy/genetics , Benzylamines/pharmacology , Cell Line, Tumor , Electron Microscope Tomography , Encephalitis Viruses, Tick-Borne/drug effects , Encephalitis Viruses, Tick-Borne/growth & development , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/virology , Humans , Microtubules/drug effects , Microtubules/virology , Neurons/drug effects , Neurons/virology , Nocodazole/pharmacology , Primary Cell Culture , Quinazolines/pharmacology , Sirolimus/pharmacology , Virion/drug effects , Virion/growth & development , Virus Replication/drug effects
19.
mBio ; 6(3): e00614, 2015 Jun 04.
Article in English | MEDLINE | ID: mdl-26045539

ABSTRACT

UNLABELLED: We devised a model system to study persistent infection by the tick-borne flavivirus Langat virus (LGTV) in 293T cells. Infection with a molecularly cloned LGTV strain produced an acute lytic crisis that left few surviving cells. The culture was repopulated by cells that were ~90% positive for LGTV E protein, thus initiating a persistent infection that was maintained for at least 35 weeks without additional lytic crises. Staining of cells for viral proteins and ultrastructural analysis revealed only minor differences from the acute phase of infection. Infectious LGTV decreased markedly over the study period, but the number of viral genomes remained relatively constant, suggesting the development of defective interfering particles (DIPs). Viral genome changes were investigated by RNA deep sequencing. At the initiation of persistent infection, levels of DIPs were below the limit of detection at a coverage depth of 11,288-fold, implying that DIPs are not required for initiation of persistence. However, after 15 passages, DIPs constituted approximately 34% of the total LGTV population (coverage of 1,293-fold). Furthermore, at this point, one specific DIP population predominated in which nucleotides 1058 to 2881 had been deleted. This defective genome specified an intact polyprotein that coded for a truncated fusion protein containing 28 N-terminal residues of E and 134 C-terminal residues of NS1. Such a fusion protein has not previously been described, and a possible function in persistent infection is uncertain. DIPs are not required for the initiation of persistent LGTV infection but may play a role in the maintenance of viral persistence. IMPORTANCE: Tick-borne flaviviruses are significant infectious agents that cause serious disease and death in humans worldwide. Infections are characterized by severe neurological symptoms, such as meningitis and encephalitis. A high percentage of people who get infected and recuperate from the acute phase of infection continue to suffer from chronic debilitating neurological sequelae, most likely as a result of nervous tissue damage, viral persistence, or both. However, little is known about mechanisms of viral persistence. Therefore, we undertook studies to investigate the persistence of Langat virus, a member of the tick-borne flavivirus group, in a mammalian cell line. Using next-generation sequencing, we determined that defective viral genomes do not play a role in the initiation of persistence, but their occurrence seems to be nonstochastic and could play a role in the maintenance of viral persistence via the expression of a novel envelope-NS1 fusion protein.


Subject(s)
Encephalitis Viruses, Tick-Borne/physiology , Epithelial Cells/virology , Defective Viruses/genetics , Defective Viruses/isolation & purification , Encephalitis Viruses, Tick-Borne/growth & development , HEK293 Cells , Humans , Sequence Deletion , Virus Replication
20.
Org Biomol Chem ; 13(11): 3406-15, 2015 Mar 21.
Article in English | MEDLINE | ID: mdl-25661883

ABSTRACT

Tick-borne encephalitis virus (TBEV) belonging to Flavivirus genus causes severe infection in humans. The search for therapeutically relevant compounds targeting TBEV requires the exploration of novel chemotypes. A versatile synthesis of previously unknown 4-aminopyrimidines and 4-aminopyrimidine N-oxides based on a fluorosubstituted heterocyclic core is described. A representative series of 4-aminotetrahydroquinazoline derivatives, containing aliphatic and aromatic substituents as well as the adamantane framework, was obtained and their activity against tick-borne encephalitis virus reproduction was studied. Nine compounds were found to inhibit TBEV entry into the host cells. A bulky hydrophobic adamantyl group was identified to be important for the antiviral activity. The developed synthetic route allowed an easy access to a consistent compound library for further structure-activity relationship studies.


Subject(s)
Antiviral Agents/pharmacology , Encephalitis Viruses, Tick-Borne/drug effects , Quinazolines/pharmacology , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Cell Line , Cell Survival/drug effects , Dose-Response Relationship, Drug , Encephalitis Viruses, Tick-Borne/growth & development , Humans , Microbial Sensitivity Tests , Molecular Docking Simulation , Molecular Structure , Quinazolines/chemical synthesis , Quinazolines/chemistry , Structure-Activity Relationship , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...