Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 97
Filter
1.
Mar Pollut Bull ; 205: 116598, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38885576

ABSTRACT

The concerning of plastic pollution in different ecosystems has been worsened by the widespread presence. Phthalate esters (PAEs), plasticizers found in everyday products, can migrate into the environment, especially into the oceans. Researches on their effects on cetaceans are still rare. Metabolomics helps assess perturbations induced by exposure to PAEs, which act as persistent endocrine disruptors. Four PAEs (dimethyl phthalate - DMP, diethyl phthalate - DEP, dibutyl phthalate - DBP, and di(2-ethylhexyl phthalate - DEHP) were analyzed, along with cholesterol and fatty acid profiles of P. blainvillei's blubber samples collected in southern Brazil. The study reveals pervasive contamination by PAEs - especially DEHP, present in all samples - with positive correlations between DEP content and animal size and weight, as well as between the DEHP amount and the C17:1 fatty acid. These findings will be relevant to conservation efforts aimed at this threatened species and overall marine ecosystems.


Subject(s)
Dolphins , Environmental Monitoring , Esters , Metabolome , Phthalic Acids , Water Pollutants, Chemical , Animals , Brazil , Phthalic Acids/metabolism , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/analysis , Esters/analysis , Esters/metabolism , Dolphins/metabolism , Adipose Tissue/metabolism , Diethylhexyl Phthalate/metabolism , Plasticizers , Endocrine Disruptors/analysis , Male , Female , Dibutyl Phthalate
2.
Chemosphere ; 360: 142463, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38821126

ABSTRACT

Estrogenic compounds are the endocrine disruptors that receive major attention because of their ability to imitate the natural female hormone, 17ß-estradiol and cause adverse effects on the reproductive system of animals. The presence of estrogenic compounds in drinking water is a warning to assess the risks to which human beings are exposed. The present work has the objectives of carrying out a systematic review of studies that investigated estrogenic compounds in drinking water around the world and estimate the human health and estrogenic activity risks, based on the concentrations of each compound reported. The systematic review returned 505 scientific papers from the Web of Science®, SCOPUS® and PubMED® databases and after careful analysis, 45 papers were accepted. Sixteen estrogenic compounds were identified in drinking water, from the classes of hormones, pharmaceutical drugs and personal care products, plasticizers, corrosion inhibitors, pesticides and surfactants. Di-(2-ethylhexyl) phthalate (DEHP) was the compound found at the highest concentration, reaching a value of 1.43 mg/L. Non-carcinogenic human health risk was classified as high for 17α-ethynilestradiol and DEHP, medium for dibutyl phthalate, and low for bisphenol A. The estrogenic activity risks were negligible for all the compounds, except DEHP, with a low risk. None of the estrogenic compounds presented an unacceptable carcinogenic risk, due to estrogenic activity. However, the risk assessment did not evaluate the interactions between compounds, that occurs in drinking water and can increase the risks and adverse effects to human health. Nonetheless, this study demonstrates the need for improvement of drinking water treatment plants, with more efficient technologies for micropollutant removal.


Subject(s)
Drinking Water , Endocrine Disruptors , Estrogens , Water Pollutants, Chemical , Drinking Water/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Estrogens/analysis , Endocrine Disruptors/analysis , Endocrine Disruptors/toxicity , Humans , Risk Assessment , Animals
3.
J Pediatr (Rio J) ; 100 Suppl 1: S40-S47, 2024.
Article in English | MEDLINE | ID: mdl-37913820

ABSTRACT

OBJECTIVES: Narrative review evaluating food contamination by endocrine disruptors present in food packaging. DATA SOURCE: The terms "endocrine disruptors" and "food packaging" were used in combination in the PubMed, MEDLINE and SciELO databases, evaluating studies, in humans, published in Portuguese, English, French and Spanish between 1990 and 2023. DATA SYNTHESIS: Packaging, especially those made from plastic or recycled material, is an important source of food contamination by endocrine disruptors. Bisphenols and phthalates are the endocrine disruptors most frequently associated with food contamination from packaging. However, many unknown substances and even those legally authorized can cause harm to health when exposure is prolonged or when substances with additive effects are mixed. Furthermore, the discarding of packaging can cause contamination to continue into the environment. CONCLUSION: Although packaging materials are essential for the transport and storage of food, many of them are associated with chemical contamination. As it is not possible to exclude them from our routine, it is important to develop research aimed at identifying the endocrine disruptors present in them, including the effects of chronic exposure; and that regulatory agencies and industry come together to reduce or prevent this risk. Additionally, consumers must be instructed on how to purchase products, handle them and prepare them to reduce the migration of chemical substances into food.


Subject(s)
Endocrine Disruptors , Phthalic Acids , Humans , Food Packaging , Endocrine Disruptors/adverse effects , Endocrine Disruptors/analysis , Endocrine Disruptors/chemistry , Food , Food Contamination/analysis , Food Contamination/prevention & control , Phthalic Acids/adverse effects
4.
Mar Pollut Bull ; 197: 115727, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37918146

ABSTRACT

Endocrine Disrupting Chemicals (EDCs) encompass a wide variety of substances capable of interfering with the endocrine system, including but not limited to bisphenol A, organochlorines, polybrominated flame retardants, alkylphenols and phthalates. These compounds are widely produced and used in everyday modern life and have increasingly been detected in aquatic matrices worldwide. In this context, this study aimed to carry out a literature review to assess the evolution of EDCs detected in different matrices in the last thirty years. A bibliometric analysis was conducted at the Scopus, Web of Science, and Google Scholar databases. Data were evaluated using the Vosviewer 1.6.17 software. A total of 3951 articles in English were retrieved following filtering. The results demonstrate a gradual and significant growth in the number of published documents, strongly associated with the increasing knowledge on the real environmental impacts of these compounds. Studied were mostly conducted by developed countries in the first two decades, 1993 to 2012, but in the last decade (2013 to 2022), an exponential leap in the number of publications by countries such as China and an advance in research by developing countries, such as Brazil, was verified.


Subject(s)
Endocrine Disruptors , Flame Retardants , Endocrine Disruptors/analysis , Endocrine System , Databases, Factual , Brazil
5.
Environ Monit Assess ; 195(12): 1539, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38012428

ABSTRACT

The aim of this study was to evaluate the effect of possible endocrine disruptors in surface and wastewater using a cell proliferation assay in an estrogen-responsive cell line (MCF-7). This study was conducted in the Sinos River (Brazil). The residual water was collected from a Pilot Treatment Plant (using Typha domingensis) and surface waters of the Luis Rau stream, the Sinos River, and the Water Treatment Station (WTS). After exposures (24-120 h), a Sulforhodamine B assay was performed to determine the proliferation rate. The higher increase in proliferation rate was observed with the Luiz Rau stream and the sewage treated by macrophytes in a flotation filter. The results from WTS water remained with a proliferation rate similar to the negative control at all times, suggesting that the conventional treatment is partially effective for the withdrawal of endocrine-disrupting agents. The study demonstrated the efficiency of the MCF-7 line in assessing endocrine disruption caused by wastewater and surface water samples. Our results indicate that conventional water treatment can partially remove the polluting load of endocrine disruptors, minimizing their environmental and public health impacts. Besides, it demonstrates the need to expand sanitary services to improve the population's quality of life.


Subject(s)
Endocrine Disruptors , Water Pollutants, Chemical , Humans , Endocrine Disruptors/toxicity , Endocrine Disruptors/analysis , Wastewater , Environmental Monitoring/methods , Brazil , MCF-7 Cells , Quality of Life , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Waste Disposal, Fluid/methods
6.
Environ Pollut ; 338: 122628, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37783413

ABSTRACT

Pharmaceuticals and endocrine disrupting compounds are organic micropollutants that can cause adverse effects at low concentrations. Their occurrence in surface waters has been reported in several countries, including Brazil, at concentrations on the order of ngL-1, while the concentrations at which toxic effects are observed are often in the range of mg.L-1 to µg.L -1, however few studies have been undertaken to characterize risks they represent in Brazilian surface waters. Thus, the objective of this study was to evaluate the ecological risk to Brazilian surface waters caused by the presence of pharmaceuticals and natural and environmental estrogens. Twenty-nine pharmaceuticals, hormones and environmental estrogens were included in the risk assessment while twelve were discarded due to insufficient data availability. The endocrine disrupting compounds were the most frequently detected (39.8% of the reported concentrations), followed by non-steroidal anti-inflammatory drugs (16.3%), antibiotics (6.6%), antiseptics (5.1%), analgesics (5.1%), antihypertensives (4.6%), and to a lesser extent, lipid controllers, anticonvulsants, antidepressants, antihistamines, antivirals and corticosteroids. Bisphenol-A was the most frequently detected compound, followed by diclofenac, 17-ß-estradiol, 17-α-ethynilestradiol, naproxen, triclosan and 4-n-nonylphenol. Acute ecological risk was predicted in two thirds and chronic risk in one third of the water bodies surveyed. The presence of diclofenac or triclosan was determinant for acute risk while estrogenic hormones proved to be decisive for chronic risk. In addition to natural and synthetic endocrine disruptors, the pharmacological groups estimated to have the highest average associated risks were non-steroidal anti-inflammatory drugs, followed by anticonvulsants. No discharge limits exist for most of the compounds found to contribute to ecological risks, indicating the need for regulatory action by the proper Brazilian authorities.


Subject(s)
Endocrine Disruptors , Triclosan , Water Pollutants, Chemical , Endocrine Disruptors/analysis , Brazil , Diclofenac , Anticonvulsants , Water Pollutants, Chemical/analysis , Estrogens/analysis , Estradiol/analysis , Anti-Inflammatory Agents, Non-Steroidal , Risk Assessment , Pharmaceutical Preparations , Environmental Monitoring
7.
Environ Sci Pollut Res Int ; 30(24): 65544-65557, 2023 May.
Article in English | MEDLINE | ID: mdl-37086320

ABSTRACT

Endocrine-disrupting chemicals (EDCs) may impact sleep during the menopausal transition by altering sex hormones. However, these studies are scarce among Latin American women. This investigation utilized cross-sectional and retrospective data from midlife women enrolled in the Early Life Exposure in Mexico to Environmental Toxicants (ELEMENT) study to examine associations between exposure to EDCs (phthalates, phenols, and parabens) and sleep health measures. For cross-sectional analyses, single spot urine samples were collected between 2017-2019 from a pilot sample of women (N = 91) of midlife age to estimate the urinary concentration of individual phthalates, phenols, and parabens and to calculate the summary concentration of phthalate mixtures. Seven-day nightly sleep duration, midpoint, and fragmentation were obtained from wrist-actigraphy devices and estimated from the actigraphy data using a pruned dynamic programming algorithm. Self-reported poor sleep quality was assessed by one item from the Pittsburgh Sleep Quality Index (PSQI). We examined associations between urinary summary phthalate mixtures, phthalate metabolites, phenol, and paraben analytes with each sleep measure using linear or logistic (to compute odds of poor sleep quality only) regression models adjusted for specific gravity, age, and socioeconomic status. We ran similar regression models for retrospective analyses (N = 74), except that urine exposure biomarker data were collected in 2008 when women were 24-50 years old. At the 2017-2019 midlife visit, 38% reported poor sleep quality. Cross-sectionally, EDCs were associated with longer sleep duration, earlier sleep timing, and more fragmented sleep. For example, every 1-unit IQR increase in the phenol triclosan was associated with a 26.3 min per night (95% CI: 10.5, 42.2; P < 0.05) longer sleep duration and marginally associated with 0.2 decimal hours (95% CI: -0.4, 0.0; P < 0.10) earlier sleep midpoint; while every 1-unit IQR increase in the phthalate metabolite MEHP was associated with 1.1% higher sleep fragmentation (95% CI: 0.1, 2.1; P < 0.05). Retrospective study results generally mirrored cross-sectional results such that EDCs were linked to longer sleep duration, earlier sleep timing, and more fragmented sleep. EDCs were not significantly associated with odds of self-reported poor sleep quality. Results from cross-sectional and retrospective analyses revealed that higher exposure to EDCs was predictive of longer sleep duration, earlier sleep timing, and more fragmented sleep among midlife women.


Subject(s)
Endocrine Disruptors , Environmental Pollutants , Phthalic Acids , Sleep Initiation and Maintenance Disorders , Humans , Female , Young Adult , Adult , Middle Aged , Retrospective Studies , Parabens/analysis , Cross-Sectional Studies , Phenols/analysis , Phenol/analysis , Mexico , Phthalic Acids/metabolism , Endocrine Disruptors/analysis , Sleep , Environmental Pollutants/analysis , Environmental Exposure/analysis
8.
Environ Sci Pollut Res Int ; 30(11): 30714-30726, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36441306

ABSTRACT

The ecological risk associated with five endocrine-disrupting compounds (EDCs) was studied in four wastewater treatment plants (WWTPs) in Monterrey, Mexico. The EDCs, 17ß-estradiol (E2), 17α-ethinylestradiol (EE2), bisphenol A (BPA), 4-nonylphenol (4NP), and 4-tert-octylphenol (4TOP) were determined by SPE/GC-MS method, where EE2 and 4TOP were the most abundant in effluents at levels from 1.6 - 26.8 ng/L (EE2) and < LOD - 5.0 ng/L (4TOP), which corroborate that the wastewater discharges represent critical sources of EDCs to the aquatic environments. In this study, the potential risk associated with selected EDCs was assessed through the risk quotients (RQs) and by estimating the estrogenic activity (expressed as EEQ). This study also constitutes the first approach for the ecological risk assessment in effluents of WWTPs in Northeast Mexico. The results demonstrated that the effluents of the WWTPs represent a high risk for the organisms living in the receiving water bodies because the residual estrogens effect E2 and EE2 with RQ values up to 49.1 and 1165.2. EEQ values between 6.3 and 24.6 ngEE2/L were considered the most hazardous compounds among the target EDCs, capable of causing some alterations in the endocrine system of aquatic and terrestrial organisms due to chronic exposition.


Subject(s)
Endocrine Disruptors , Water Pollutants, Chemical , Water Purification , Mexico , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/analysis , Estrogens/analysis , Endocrine Disruptors/analysis , Risk Assessment , Benzhydryl Compounds , Environmental Monitoring/methods
9.
Environ Technol ; 44(20): 3108-3120, 2023 Aug.
Article in English | MEDLINE | ID: mdl-35259064

ABSTRACT

Bisphenol-A (BPA) and 17α-ethinylestradiol (EE2) are considered endocrine disrupting compounds (EDC) and they may be harmful to the normal functioning of endocrine systems of humans and animals. Moreover, the presence of these compounds in superficial and groundwater may represent serious risks, even in low concentrations like ng·L-1. The objectives of this study were to remove BPA and EE2 from solutions containing a mixture of these compounds in ultrapure water at low concentrations through reverse osmosis (RO) membrane combined with a UV/H2O2 process. Furthermore, to assess the estrogenic activity reduction after such treatments, in vitro recombinant yeast-estrogen screen (YES) assay was used. The removal efficiencies of target micropollutants increased with the increase of H2O2 dosage. For RO permeate stream, they enhanced from 91% to 96% for EE2 and from 76% to 90% for BPA while, for the concentrate stream, from 70% to 81% for EE2 and 41% to 84% for BPA as the H2O2 concentration were increased from 100 to 1000 µg·L-1. The OH radicals' generation was the dominant factor in the degradation of EDC during the UV/H2O2 treatment since the photolysis itself was not enough to degrade BPA or EE2. The estrogenic activity reduction after UV/H2O2 treatment was high, ranging from 92% to 98% for the permeate stream and from 50% to 93% for the concentrate stream. The EE2 was responsible for the whole observed estrogenic activity since BPA does not present estrogenicity, by in vitro YES assay, in the concentrations observed.


Subject(s)
Endocrine Disruptors , Water Pollutants, Chemical , Animals , Humans , Ethinyl Estradiol/analysis , Hydrogen Peroxide , Estrogens , Water , Saccharomyces cerevisiae , Osmosis , Water Pollutants, Chemical/analysis , Endocrine Disruptors/analysis
11.
Anal Chim Acta ; 1231: 340405, 2022 Oct 23.
Article in English | MEDLINE | ID: mdl-36220296

ABSTRACT

Phthalic acid esters (PAEs) are considered endocrine disruptors and potential carcinogens. Consequently, efficient and accurate environmental monitoring of trace levels of these organic pollutants is necessary to protect the population against their hazardous effects. Passive sampling techniques have gained notoriety for environmental monitoring and have been proven highly sensitive to temporal variations. This study developed a miniaturized passive sampling device (MPSD) based on hollow fiber liquid-phase microextraction (HF-LPME). The devices were calibrated in the laboratory using an automated calibration system. The results demonstrated the first-order uptake ranges for Diethyl phthalate (DEP), Diisobutyl phthalate (DiBP), Dibutyl phthalate (DBP), Benzyl butyl phthalate (BBP) and Bis(2-ethylhexyl phthalate) (DEHP) between 30 min and 24 h with sampling rates equivalent to 0.009; 0.021; 0.033; 0.085 and 0.003 mL h-1 respectively (R2 between 0.88 and 0.99). The calibrated devices were deployed in 12 marginal lagoons, stretching approximately 330 km along the main river. The extracts recovered from the devices were analyzed by gas chromatography (GC), resulting in the identification and quantification of DEP (0.697-13.7 ng L-1), DiBP (0.100-4.43 ng L-1), DBP (0.014-1.21 ng L-1), BBP (0.218-5.67 ng L-1), and DEHP (0.002-2.24 ng L-1). Despite being frequently identified, DEHP concentrations were well below the maximum established limits, revealing a good water quality in terms of the target PAEs. In contrast, screening the extracts using GCxGC was possible to detect other hazardous pollutants such as pesticides, drugs, and their metabolites. The described device was effective and reliable, providing accurate PAE measurements following short exposure periods. In this sense, its deployment during emergency operations, such as accidental discharges of industrial effluents into natural waters, could continuously and cost-effectively monitor water quality.


Subject(s)
Diethylhexyl Phthalate , Endocrine Disruptors , Environmental Pollutants , Liquid Phase Microextraction , Pesticides , Phthalic Acids , Carcinogens/analysis , Cellulose , Dibutyl Phthalate/analogs & derivatives , Dibutyl Phthalate/analysis , Endocrine Disruptors/analysis , Environmental Monitoring , Environmental Pollutants/analysis , Esters/analysis , Pesticides/analysis , Phthalic Acids/analysis
12.
Chemosphere ; 308(Pt 1): 136285, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36057353

ABSTRACT

This review compiles the studies (2007-2021) regarding the occurrence of emerging organic contaminants (EOCs) and endocrine disruptors (EDs) in wastewater, surface water and groundwater in Mexico. A total of 174 compounds were detected, including pharmaceuticals, hormones, plasticizers, personal care products, sweeteners, drugs, and pesticides considered as EDs. The levels of EOCs and EDs varied from ng/L to 140 mg/L, depending on the compound, location, and compartment. Raw wastewater was the most studied matrix, showing a greater abundance and number of detected compounds. Nevertheless, surface waters showed high concentrations of bisphenol-A, butylbenzil-phthalate, triclosan, pentachlorophenol, and the hormones estrone, 17 α-ethinylestradiol, and 17 ß-estradiol, which exceeded the thresholds set by international guidelines. Concentrations of 17 α-ethinylestradiol and triclosan exceeding the above-mentioned limits were reported in groundwater. Cropland irrigation with raw wastewater was the principal activity introducing EOCs and EDs into groundwater. The groundwater abundance of EOCs was considerably lesser than that of wastewater, highlighting the attenuation capacity of soils/aquifers during wastewater infiltration. However, carbamazepine and N,N-diethyl-meta-toluamide showed higher concentrations in groundwater than those in wastewater, suggesting their accumulation/concentration in soils/pore-waters. Although the contamination of water resources represents one of the most environmental concerns in Mexico, this review brings to light the lack of studies on the occurrence of EOCs in Mexican waters, which is important for public health policies and for developing legislations that incorporates EOCs as priority contaminants in national water quality guidelines. Consequently, the development of legislations will support regulatory compliance for wastewater and drinking water, reducing the human exposure.


Subject(s)
Cosmetics , Drinking Water , Endocrine Disruptors , Groundwater , Pentachlorophenol , Pesticides , Triclosan , Water Pollutants, Chemical , Carbamazepine , Cosmetics/analysis , Endocrine Disruptors/analysis , Environmental Monitoring , Estradiol , Estrone , Humans , Mexico , Pesticides/analysis , Pharmaceutical Preparations , Plasticizers , Soil , Sweetening Agents , Wastewater , Water Pollutants, Chemical/analysis
13.
Environ Monit Assess ; 194(7): 473, 2022 Jun 03.
Article in English | MEDLINE | ID: mdl-35654911

ABSTRACT

This study evaluates both the occurrence and removal of 24 compounds, including drugs and endocrine disruptors, in 8 water treatment plants (WTP) located in the metropolitan region of Belo Horizonte (Minas Gerais State, Brazil). The compounds 4-nonylphenol, 4-octylphenol, 17α-ethinylestradiol, 17ß-estradiol, acyclovir, bisphenol A, bezafibrate, caffeine, dexamethasone, diclofenac sodium, diltiazem, estrone, estriol, gemfibrozil, ibuprofen, linezolid, loratadine, losartan, metformin, naproxen, paracetamol, promethazine, propranolol and sulfamethoxazole were monitored at 3 sampling points (raw water, filtered water, treated water) over 10 or 12 collection campaigns for each WTP. The results showed that bisphenol A occurred at higher concentrations during the dry period with a maximum concentration of 3257.1 ng L-1, while the compounds 4-nonylphenol and losartan exhibited higher concentrations in the rainy period with maximum concentrations of 8577.2 ng L-1 and 705.8 ng L-1, respectively. Regarding the removal of compounds in the monitored WTPs, the clarification step demonstrated better removals for 4-nonylphenol, bisphenol-A, paracetamol, and sulfamethoxazole, whereas the disinfection step mainly removed the compounds 4-octylphenol and estrone. Margin of exposure (ME) assessment results indicated that only dexamethasone, ethinyl estradiol, diclofenac, estradiol, and estrone were classified as imminent risk or alert considering the 95th percentile concentration found in the samples of treated water.


Subject(s)
Endocrine Disruptors , Water Pollutants, Chemical , Acetaminophen , Brazil , Dexamethasone , Endocrine Disruptors/analysis , Environmental Monitoring , Estradiol/analysis , Estrone , Ethinyl Estradiol/analysis , Losartan , Sulfamethoxazole , Water Pollutants, Chemical/analysis , Water Supply
14.
Sci Rep ; 12(1): 6507, 2022 04 20.
Article in English | MEDLINE | ID: mdl-35443767

ABSTRACT

The agricultural residues are ecofriendly alternatives for removing contaminants from water. In this way, a novel biochar from the spent mushroom substrate (SMS) was produced and assessed to remove endocrine disruptor from water in batch and fixed-bed method. SMS were dried, ground, and pyrolyzed. Pyrolysis was carried out in three different conditions at 250 and 450 °C, with a residence time of 1 h, and at 600 °C with a residence time of 20 min. The biochar was firstly tested in a pilot batch with 17α-ethinylestradiol (EE2) and progesterone. The residual concentrations of the endocrine disruptors were determined by HPLC. The biochar obtained at 600 °C showed the best removal efficiency results. Then, adsorption parameters (isotherm and kinetics), fixed bed tests and biochar characterization were carried out. The Langmuir model fits better to progesterone while the Freundlich model fits better to EE2. The Langmuir model isotherm indicated a maximum adsorption capacity of 232.64 mg progesterone/g biochar, and 138.98 mg EE2/g biochar. Images from scanning electrons microscopy showed that the 600 °C biochar presented higher porosity than others. In the fixed bed test the removal capacity was more than 80% for both endocrine disruptors. Thus, the biochar showed a good and viable option for removal of contaminants, such as hormones.


Subject(s)
Endocrine Disruptors , Water Pollutants, Chemical , Adsorption , Charcoal/chemistry , Endocrine Disruptors/analysis , Kinetics , Progesterone , Water , Water Pollutants, Chemical/analysis
15.
Chemosphere ; 297: 134172, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35248594

ABSTRACT

The presence of endocrine-disrupting chemicals (EDCs) in water resources has significant negative implications for the environment. Traditional technologies implemented for water treatment are not completely efficient for removing EDCs from water. Therefore, research on sustainable remediation has been mainly directed to novel decontamination approaches including nano-remediation. This emerging technology employs engineered nanomaterials to clean up the environment quickly, efficiently, and sustainably. Thus, nanomaterials have contributed to a wide variety of remediation techniques like adsorption, filtration, coagulation/flocculation, and so on. Among the vast diversity of decontamination technologies catalytic advanced oxidation processes (AOPs) outstand as simple, clean, and efficient alternatives. A vast diversity of catalysts has been developed demonstrating high efficiencies; however, the search for novel catalysts with enhanced performances continues. In this regard, nanomaterials used as nanocatalysts are exhibiting enhanced performances on AOPs due to their special nanostructures and larger specific surface areas. Therefore, in this review we summarize, compare, and discuss the recent advances on nanocatalysts, catalysts doped with metal-based nanomaterials, and catalysts doped with carbon-based nanomaterials on the degradation of EDCs. Finally, further research opportunities are identified and discussed to achieve the real application of nanomaterials to efficiently degrade EDCs from water resources.


Subject(s)
Endocrine Disruptors , Environmental Pollutants , Nanostructures , Water Pollutants, Chemical , Water Purification , Carbon , Endocrine Disruptors/analysis , Water Pollutants, Chemical/analysis
16.
Environ Sci Pollut Res Int ; 29(25): 38645-38656, 2022 May.
Article in English | MEDLINE | ID: mdl-35080728

ABSTRACT

The Indigenous communities in Mexico show significant degrees of vulnerability to pollution due to the lack of knowledge of health risks, traditions, low levels of support, and restricted access to healthcare. As a result, exposure to environmental endocrine disruptors increases in these populations through plastic components or indoor air pollution. Therefore, the aim of the study was to evaluate the exposure to phthalate metabolites, 1-hydroxypyrene, and bisphenol A through biomonitoring data from indigenous Mexican women. A total of 45 women from the Tocoy community in San Luis Potosí, Mexico, were included. Urine samples were analyzed for Bisphenol A and 4 phthalate metabolites by ultra-performance liquid chromatography couples to tandem mass spectrometry; additionally, the 1-hydroxypyrene concentrations were evaluated by high-performance liquid chromatography coupled to a fluorescence detector. Among the main pollution sources were the use of plastic containers and burning garbage (98-100%). Indigenous women presented an exposure of 100% to mono-2-ethyl phthalate, mono-n-butyl phthalate, and 1-hydroxypyrene, with a median (25th-75th percentiles) of 17,478 (11,362-37,355), 113.8 (61.7-203.5), and 1.2 (0.9-1.7) µg/g creatinine, respectively. The major findings show urinary mono-2-ethyl phthalate concentrations higher than those measured from other studies. Therefore, these results show an impressive exposure to di(2-ethylhexyl) phthalate in Indigenous women. The current study reflects the absence of regulatory policies in marginalized populations. It highlights the need to design strategies that mitigate exposure and the importance of biological monitoring to evaluate and prevent health risk associated with exposure to environmental endocrine disruptors.


Subject(s)
Diethylhexyl Phthalate , Endocrine Disruptors , Environmental Pollutants , Phthalic Acids , Diethylhexyl Phthalate/urine , Endocrine Disruptors/analysis , Environmental Exposure/analysis , Environmental Pollutants/analysis , Female , Humans , Mexico , Phthalic Acids/metabolism , Plastics
17.
Food Chem ; 370: 131062, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34537431

ABSTRACT

A simple method was developed to determine 14 endocrine-disrupting chemicals (EDCs) in bottled waters, based on dispersive micro-solid phase extraction (d-µ-SPE) and liquid chromatography-mass spectrometry (LC-MS). Extraction was optimized using 2 k-1 factorial and Doehlert experimental designs. Optimized conditions were 80 mg C18, 25 min extraction at 1000 rpm, and 6 min desorption time. Repeatability was below 17 % for all EDCs. LOD and LOQ varied from 1.60 ng L-1 (estradiol, E2) to 23.2 ng L-1 (dimethylphthalate, DMP) and from 5.33 ng L-1 (E2) to 77.3 ng L-1 (DMP). We found DMP and bisphenol A (BPA) in samples after the heat treatment. DMP was up to 58.7 µg L-1, while BPA was up to 1.34 µg L-1. Tolerance of daily intake (TDI) for DMP were 2.50-2.94 µg kg-1 day-1 (children) and 1.43-1.68 µg kg-1 day-1 (adults). TDI for BPA were 0.03-0.07 µg kg-1 day-1 (children) and 0.01-0.04 µg kg-1 day-1 (adults).


Subject(s)
Drinking Water , Endocrine Disruptors , Mineral Waters , Water Pollutants, Chemical , Benzhydryl Compounds/analysis , Child , Endocrine Disruptors/analysis , Humans , Solid Phase Extraction , Tandem Mass Spectrometry , Water Pollutants, Chemical/analysis
18.
J Environ Manage ; 296: 113226, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34252852

ABSTRACT

Endocrine-disrupting chemicals (EDCs) are primarily studied regarding endocrine-mediated effects in mammals and fish. However, EDCs can cause toxicity by mechanisms outside the endocrine system, and, as they are released continuously into soils, they may pose risks to terrestrial organisms. In this work, the plant Allium cepa and the earthworm Eisenia foetida were used as test systems to evaluate the toxicity and cyto-/geno-toxicity of three environmental phenols known as EDCs (Bisphenol A - BPA, Octylphenol - OP, Nonylphenol - NP). The tested phenols were evaluated in environmentally relevant concentrations (µg/L) and in single forms and mixture. BPA, OP, and NP did not inhibit the seed germination and root development in A. cepa in their single forms and mixture. However, all single forms of the tested phenols caused cellular and DNA damages in A. cepa, and although these effects persist in the mixtures, the effects were verified at lower levels. These phenols caused acute toxicity to E. foetida after 48 h of exposure and at both conditions evaluated (single forms and mixture); however, unlike A. cepa, in earthworms, mixtures and single forms presented the same level of effects, indicating that interspecies physiological different might influence the mixture toxicity. In summary, our results suggest that BPA, OP, and NP are toxicants to earthworm and cyto-/geno-toxicants to monocotyledonous plants at low concentrations. However, interaction among these phenols reduces the magnitude of their individual effects (antagonistic effect) in the plant test system. Therefore, this study draws attention to the need to raise knowledge about the ecotoxicity of phenolic compounds to help predict their ecological risks and protect non-target terrestrial species.


Subject(s)
Endocrine Disruptors , Oligochaeta , Water Pollutants, Chemical , Animals , Benzhydryl Compounds/analysis , Benzhydryl Compounds/toxicity , Ecosystem , Endocrine Disruptors/analysis , Environmental Monitoring , Fishes , Phenols/analysis , Phenols/toxicity , Water Pollutants, Chemical/analysis
19.
Environ Monit Assess ; 193(5): 246, 2021 Apr 06.
Article in English | MEDLINE | ID: mdl-33821337

ABSTRACT

This study aimed to investigate the occurrence of drugs and endocrine disrupters in water supplies and in water for human consumption. Twelve sampling campaigns were carried out during the rainy and dry season at four sampling points in the Bolonha Complex, in the city of Belém, northern region of Brazil: Bolonha reservoir (catchment) and Water Treatment Plant (WTP) Bolonha (filtered water chamber, treated water tank, and washing water from the filters). The determination of the compounds was performed by solid phase extraction followed by gas and liquid chromatography coupled to mass spectrometry. The results confirmed the anthropic influence that the reservoir and WTP-Bolonha have been suffering, as consequence of the discharge of domestic sewage in natura. Among 25 microcontaminants analyzed, 12 were quantified in raw water and 10 in treated water. The antiallergic Loratadine (LRT) was the contaminant that occurred most frequently in all sample points, having been poorly removed (median 12%) in the conventional treatment used. Losartana (LST), 4-octylphenol (4-OP), and Bisphenol A (BPA) also occurred very frequently in raw water with concentrations ranging from 3.7 to 194 ng L-1. Although such contaminants occurred in treated water in concentrations varying from 4.0 to 135 ng L-1, the estimated margin of exposure ranged from 55 to 3333 times which indicates low risk of human exposure to such contaminants through ingestion of treated water.


Subject(s)
Endocrine Disruptors , Pharmaceutical Preparations , Water Pollutants, Chemical , Water Purification , Brazil , Endocrine Disruptors/analysis , Environmental Monitoring , Humans , Water Pollutants, Chemical/analysis
20.
Environ Pollut ; 274: 116551, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33529898

ABSTRACT

In this study, the biodegradation of endocrine-disrupting chemicals (EDCs) (namely the natural and synthetic estrogens 17ß-estradiol (E2) and 17α-ethinylestradiol (EE2), respectively) was assessed in an aerobic granular sludge (AGS) sequencing batch reactor (SBR) treating simulated domestic sewage. To better understand the fate of these compounds, their concentrations were determined in both liquid and solid (biomass) samples. Throughout the operation of the reactor, subjected to alternating anaerobic and aerated conditions, the removal of the hormones, both present in the influent at a concentration of 20 µg L-1, amounted to 99% (for E2) and 93% (for EE2), with the latter showing higher resistance to biodegradation. Through yeast estrogen screen assays, an average moderate residual estrogenic activity (0.09 µg L-1 EQ-E2) was found in the samples analysed. E2 and EE2 profiles over the SBR cycle suggest a rapid initial adsorption of these compounds on the granular biomass occurring anaerobically, followed by biodegradation under aeration. A possible sequence of steps for the removal of the micropollutants, including the key microbial players, was proposed. Besides the good capability of the AGS on EDCs removal, the results revealed high removal efficiencies (>90%) of COD, ammonium and phosphate. Most of the incoming organics (>80%) were consumed under anaerobic conditions, when phosphate was released (75.2 mgP L-1). Nitrification and phosphate uptake took place along the aeration phase, with effluent ammonium and phosphate levels around 2 mg L-1. Although nitrite accumulation took place over the cycle, nitrate consisted of the main oxidized nitrogen form in the effluent. The specific ammonium and phosphate uptake rates attained in the SBR were found to be 3.3 mgNH4+-N gVSS-1.h-1 and 6.7 mgPO43--P gVSS-1 h-1, respectively, while the specific denitrification rate corresponded to 1.0 mgNOx--N gVSS-1 h-1.


Subject(s)
Endocrine Disruptors , Sewage , Biodegradation, Environmental , Bioreactors , Endocrine Disruptors/analysis , Estrogens , Nitrogen/analysis , Waste Disposal, Fluid
SELECTION OF CITATIONS
SEARCH DETAIL