Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 612
Filter
1.
Immunity ; 52(5): 872-884.e5, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32433950

ABSTRACT

Some endocrine organs are frequent targets of autoimmune attack. Here, we addressed the origin of autoimmune disease from the viewpoint of feedback control. Endocrine tissues maintain mass through feedback loops that balance cell proliferation and removal according to hormone-driven regulatory signals. We hypothesized the existence of a dedicated mechanism that detects and removes mutant cells that missense the signal and therefore hyperproliferate and hypersecrete with potential to disrupt organismal homeostasis. In this mechanism, hypersecreting cells are preferentially eliminated by autoreactive T cells at the cost of a fragility to autoimmune disease. The "autoimmune surveillance of hypersecreting mutants" (ASHM) hypothesis predicts the presence of autoreactive T cells in healthy individuals and the nature of self-antigens as peptides from hormone secretion pathway. It explains why some tissues get prevalent autoimmune disease, whereas others do not and instead show prevalent mutant-expansion disease (e.g., hyperparathyroidism). The ASHM hypothesis is testable, and we discuss experimental follow-up.


Subject(s)
Autoimmune Diseases/immunology , Diabetes Mellitus, Type 1/immunology , Endocrine Glands/immunology , Endocrine System/immunology , Immunologic Surveillance/immunology , Animals , Autoimmune Diseases/genetics , Autoimmune Diseases/pathology , Cell Proliferation/genetics , Cell Proliferation/physiology , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/pathology , Endocrine Glands/cytology , Endocrine Glands/metabolism , Endocrine System/cytology , Endocrine System/metabolism , Female , Humans , Immunologic Surveillance/genetics , Male , Mutation , T-Lymphocytes/cytology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
2.
Am J Pathol ; 188(9): 2059-2073, 2018 09.
Article in English | MEDLINE | ID: mdl-30126547

ABSTRACT

Peribiliary glands (PBGs) are accessory glands with mucinous and serous acini in the biliary tree. The PBG is composed of a heterogeneous cell population, such as mucus- and pancreatic enzyme-producing epithelial cells, whereas it constitutes niches for multipotential stem/progenitor cells in the human extrahepatic bile duct (EHBD). By contrast, the nature of PBGs in the mouse EHBD remains unclear. Our aim was to establish a method for isolating and characterizing PBG-constituting cells in the mouse EHBD. We found that trophoblast cell surface protein 2 (Trop2) was expressed in the luminal epithelium of mouse EHBD exclusively, but not in the PBG. On the basis of the differential expression profile of Trop2, lumen-forming biliary epithelial cells (LBECs) and PBG-constituting epithelial cells (PBECs) were separately isolated for further characterization. Gene expression analysis revealed that the isolated mouse PBECs expressed several marker genes related to human PBGs. In the colony formation assay, PBECs showed significantly higher colony formation capacity than LBECs. In the organoid formation assay, PBECs formed cystic organoid with LBEC-like phenotype. Interestingly, PBECs proliferated, accompanied by reexpression of Trop2 in vivo after bile duct ligation. Furthermore, the unique expression profile of Trop2 was conserved in human EHBD. Our findings indicate that Trop2 is a useful marker in investigating the pathophysiological roles and characteristics of mouse and human PBGs in biliary diseases.


Subject(s)
Antigens, Neoplasm/metabolism , Bile Ducts, Extrahepatic/cytology , Cell Adhesion Molecules/metabolism , Endocrine Glands/cytology , Stem Cells/cytology , Animals , Bile Ducts, Extrahepatic/metabolism , Biliary Tract Neoplasms/metabolism , Biliary Tract Neoplasms/pathology , Cell Proliferation , Cells, Cultured , Endocrine Glands/metabolism , Female , Humans , Male , Mice , Mice, Inbred C57BL , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Phenotype , Stem Cells/metabolism
4.
Endocr Dev ; 32: 20-37, 2017.
Article in English | MEDLINE | ID: mdl-28873382

ABSTRACT

The gastrointestinal (GI) tract exhibits an enormous surface area that consists mostly of absorptive enterocytes. Enteroendocrine cells (EECs) are found scattered along the GI tract between absorptive enterocytes and other secretory cells, and comprise around 1% of the epithelial cell population. Interestingly, they develop from the same crypt stem cell as the other absorptive or secretory cells of the gut. EECs differentiate along the crypt villus axis and are renewed every 4-6 days, and hence possess a high plasticity. They constitute the largest endocrine system in the human body by secreting multiple peptide hormones to control, for example, postprandial digestion, insulin homeostasis, food intake, and gut motility. For this purpose, most EECs exhibit luminal sensors that detect the GI tract content. Thereafter, they may act either in a classical endocrine fashion, or by paracrine effects on nearby neural and immune cells. This creates a pivotal role for EECs to influence the GI immune system and the enteric nervous system. In this chapter, the anatomical characteristics, development, differentiation and maturation of EECs are described, and their important biological potential illustrated as part of the gut interacting sensory system.


Subject(s)
Enteroendocrine Cells/physiology , Gastrointestinal Tract/physiology , Cell Differentiation , Endocrine Glands/cytology , Gastrointestinal Tract/immunology , Gastrointestinal Tract/innervation , Homeostasis , Humans , Intestine, Small , Paracrine Communication
5.
eNeuro ; 4(1)2017.
Article in English | MEDLINE | ID: mdl-28317020

ABSTRACT

Oxytocin regulates a diverse set of processes including stress, analgesia, metabolism, and social behavior. How such diverse functions are mediated by a single hormonal system is not well understood. Different functions of oxytocin could be mediated by distinct cell groups, yet it is currently unknown whether different oxytocinergic cell types exist that specifically mediate peripheral neuroendocrine or various central neuromodulatory processes via dedicated pathways. Using the Brainbow technique to map the morphology and projections of individual oxytocinergic cells in the larval zebrafish brain, we report here the existence of two main types of oxytocinergic cells: those that innervate the pituitary and those that innervate diverse brain regions. Similar to the situation in the adult rat and the adult midshipman, but in contrast to the situation in the adult trout, these two cell types are mutually exclusive and can be distinguished based on morphological and anatomical criteria. Further, our results reveal that complex oxytocinergic innervation patterns are already established in the larval zebrafish brain.


Subject(s)
Brain/cytology , Brain/growth & development , Larva/cytology , Oxytocin/metabolism , Zebrafish/anatomy & histology , Zebrafish/growth & development , Animals , Animals, Genetically Modified , Brain/metabolism , Endocrine Glands/cytology , Endocrine Glands/growth & development , Endocrine Glands/metabolism , Female , Imaging, Three-Dimensional , Immunohistochemistry , Larva/metabolism , Male , Microscopy, Confocal , Neural Pathways/cytology , Neural Pathways/growth & development , Neural Pathways/metabolism , Zebrafish/metabolism
7.
Sci Rep ; 6: 20229, 2016 Feb 05.
Article in English | MEDLINE | ID: mdl-26847502

ABSTRACT

Ecdysteroids secreted by the prothoracic gland (PG) cells of insects control the developmental timing of their immature life stages. These cells have been historically considered as carrying out a single function in insects, namely the biochemical conversion of cholesterol to ecdysteroids and their secretion. A growing body of evidence shows that PG cells receive multiple cues during insect development so we tested the hypothesis that they carry out more than just one function in insects. We characterised the molecular nature and developmental profiles of cell membrane receptors in PG cells of Bombyx mori during the final larval stage and determined what receptors decode nutritional, developmental and physiological signals. Through iterative approaches we identified a complex repertoire of cell membrane receptors that are expressed in intricate patterns and activate previously unidentified signal transduction cascades in PG cells. The expression patterns of some of these receptors explain precisely the mechanisms that are known to control ecdysteroidogenesis. However, the presence of receptors for the notch, hedgehog and wingless signalling pathways and the expression of innate immunity-related receptors such as phagocytosis receptors, receptors for microbial ligands and Toll-like receptors call for a re-evaluation of the role these cells play in insects.


Subject(s)
Endocrine Glands/metabolism , Insect Proteins/metabolism , Receptors, Cell Surface/metabolism , Animals , Bombyx/growth & development , Bombyx/metabolism , Cell Membrane/metabolism , Chromatography, High Pressure Liquid , Ecdysteroids/metabolism , Endocrine Glands/cytology , Insect Proteins/genetics , Larva/growth & development , Larva/metabolism , Life Cycle Stages , Proteome/analysis , Real-Time Polymerase Chain Reaction , Receptors, Cell Surface/genetics , Tandem Mass Spectrometry , Transcriptome
8.
Eur J Histochem ; 59(2): 2458, 2015 May 18.
Article in English | MEDLINE | ID: mdl-26150152

ABSTRACT

The Esophageal Cancer Related Gene 4 (ECRG4) is a highly conserved tumour suppressor gene encoding various peptides (augurin, CΔ16 augurin, ecilin, argilin, CΔ16 argilin) which can be processed and secreted. In the present work, we examined ECRG4 expression and location in a wide range of rat organs and reviewed the available literature. ECRG4 mRNA was identified in all examined tissues by quantitative PCR (qPCR). ECRG4 immunoreaction was mainly cytoplasmic, and was detected in heart and skeletal muscles, smooth muscle cells showing only weak reactions. In the digestive system, ECRG4 immunostaining was stronger in the esophageal epithelium, bases of gastric glands, hepatocytes and pancreatic acinar epithelium. In the lymphatic system, immunoreactive cells were detectable in the thymus cortex, lymph node medulla and splenic red pulp. In the central and peripheral nervous systems, different neuronal groups showed different reaction intensities. In the endocrine system, ECRG4 immunoreaction was detected in the hypothalamic paraventricular and supraoptic nuclei, hypophysis, thyroid and parathyroid glands, adrenal zona glomerularis and medulla and Leydig cells, as well as in follicular and luteal cells of the ovary. In the literature, ECRG4 has been reported to inhibit cell proliferation and increase apoptosis in various cell types. It is down-regulated, frequently due to hypermethylation, in esophageal, prostate, breast and colon cancers, together with glioma (oncosuppressor function), although it is up-regulated in papillary thyroid cancer (oncogenic role). ECRG4 expression is also higher in non-proliferating cells of the lymphatic system. In conclusion, our identification of ECRG4 in many structures suggests the involvement of ECRG4 in the tumorigenesis of other organs and also the need for further research. In addition, on the basis of the location of ECRG4 in neurons and endocrine cells and the fact that it can be secreted, its role as a neurotransmitter/neuromodulator and endocrine factor must be examined in depth in the future.


Subject(s)
Gene Expression Regulation, Neoplastic/genetics , Tumor Suppressor Proteins/biosynthesis , Tumor Suppressor Proteins/genetics , Amino Acid Sequence , Animals , Endocrine Glands/cytology , Endocrine Glands/metabolism , Female , Immunohistochemistry , Male , Molecular Sequence Data , Neurons/metabolism , Polymerase Chain Reaction , RNA, Messenger/biosynthesis , Rats , Rats, Wistar , Tissue Distribution
9.
J Mol Endocrinol ; 52(2): R151-63, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24565917

ABSTRACT

Autophagy is an important cellular process involving the degradation of intracellular components. Its regulation is complex and while there are many methods available, there is currently no single effective way of detecting and monitoring autophagy. It has several cellular functions that are conserved throughout the body, as well as a variety of different physiological roles depending on the context of its occurrence in the body. Autophagy is also involved in the pathology of a wide range of diseases. Within the endocrine system, autophagy has both its traditional conserved functions and specific functions. In the endocrine glands, autophagy plays a critical role in controlling intracellular hormone levels. In peptide-secreting cells of glands such as the pituitary gland, crinophagy, a specific form of autophagy, targets the secretory granules to control the levels of stored hormone. In steroid-secreting cells of glands such as the testes and adrenal gland, autophagy targets the steroid-producing organelles. The dysregulation of autophagy in the endocrine glands leads to several different endocrine diseases such as diabetes and infertility. This review aims to clarify the known roles of autophagy in the physiology of the endocrine system, as well as in various endocrine diseases.


Subject(s)
Autophagy , Endocrine Glands/cytology , Animals , Cytological Techniques , Humans , Models, Biological
10.
Prog Biophys Mol Biol ; 114(1): 33-48, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24291663

ABSTRACT

The placenta is an indispensable organ for intrauterine protection, development and growth of the embryo and fetus. It provides tight contact between mother and conceptus, enabling the exchange of gas, nutrients and waste products. The human placenta is discoidal in shape, and bears a hemo-monochorial interface as well as villous materno-fetal interdigitations. Since Peter Medawar's astonishment to the paradoxical nature of the mother-fetus relationship in 1953, substantial knowledge in the domain of placental physiology has been gathered. In the present essay, an attempt has been made to build an integrated understanding of morphological dynamics, cell biology, and functional aspects of genomic and proteomic expression of human early placental villous trophoblast cells followed by a commentary on the future directions of research in this field.


Subject(s)
Chorionic Villi/physiology , Physiological Phenomena , Apoptosis , Chorionic Villi/immunology , Chorionic Villi/metabolism , Chorionic Villi/pathology , Endocrine Glands/cytology , Endocrine Glands/metabolism , Female , Humans , Pregnancy , Pregnancy Complications/immunology , Pregnancy Complications/metabolism , Pregnancy Complications/pathology , Pregnancy Complications/physiopathology , Signal Transduction
11.
Dev Biol ; 385(2): 253-62, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-24247008

ABSTRACT

Hormone-induced changes in gene expression initiate periodic molts and metamorphosis during insect development. Successful execution of these developmental steps depends upon successive phases of rising and falling 20-hydroxyecdysone (20E) levels, leading to a cascade of nuclear receptor-driven transcriptional activity that enables stage- and tissue-specific responses to the steroid. Among the cellular processes associated with declining steroids is acquisition of secretory competence in endocrine Inka cells, the source of ecdysis triggering hormones (ETHs). We show here that Inka cell secretory competence is conferred by the orphan nuclear receptor ßFTZ-F1. Selective RNA silencing of ßftz-f1 in Inka cells prevents ETH release, causing developmental arrest at all stages. Affected larvae display buttoned-up, the ETH-null phenotype characterized by double mouthparts, absence of ecdysis behaviors, and failure to shed the old cuticle. During the mid-prepupal period, individuals fail to translocate the air bubble, execute head eversion and elongate incipient wings and legs. Those that escape to the adult stage are defective in wing expansion and cuticle sclerotization. Failure to release ETH in ßftz-f1 silenced animals is indicated by persistent ETH immunoreactivity in Inka cells. Arrested larvae are rescued by precisely-timed ETH injection or Inka cell-targeted ßFTZ-F1 expression. Moreover, premature ßftz-f1 expression in these cells also results in developmental arrest. The Inka cell therefore functions as a "gateway cell", whose secretion of ETH serves as a key downstream physiological output enabling stage-specific responses to 20E that are required to advance through critical developmental steps. This secretory function depends on transient and precisely timed ßFTZ-F1 expression late in the molt as steroids decline.


Subject(s)
DNA-Binding Proteins/physiology , Drosophila melanogaster/growth & development , Ecdysone/physiology , Endocrine Glands/cytology , Receptors, Steroid/physiology , Animals , Base Sequence , DNA Primers , DNA-Binding Proteins/genetics , Drosophila melanogaster/physiology , Gene Knockdown Techniques , Polymerase Chain Reaction , RNA, Messenger/genetics , Receptors, Steroid/genetics
12.
Elife ; 2: e00940, 2013 Nov 19.
Article in English | MEDLINE | ID: mdl-24252877

ABSTRACT

Pancreatic islet ß-cell insufficiency underlies pathogenesis of diabetes mellitus; thus, functional ß-cell replacement from renewable sources is the focus of intensive worldwide effort. However, in vitro production of progeny that secrete insulin in response to physiological cues from primary human cells has proven elusive. Here we describe fractionation, expansion and conversion of primary adult human pancreatic ductal cells into progeny resembling native ß-cells. FACS-sorted adult human ductal cells clonally expanded as spheres in culture, while retaining ductal characteristics. Expression of the cardinal islet developmental regulators Neurog3, MafA, Pdx1 and Pax6 converted exocrine duct cells into endocrine progeny with hallmark ß-cell properties, including the ability to synthesize, process and store insulin, and secrete it in response to glucose or other depolarizing stimuli. These studies provide evidence that genetic reprogramming of expandable human pancreatic cells with defined factors may serve as a general strategy for islet replacement in diabetes. DOI: http://dx.doi.org/10.7554/eLife.00940.001.


Subject(s)
Cell Differentiation , Endocrine Glands/cytology , Insulin/metabolism , Pancreatic Ducts/cytology , Adult , Cell Separation , Endocrine Glands/immunology , Endocrine Glands/metabolism , Female , Flow Cytometry , Humans , Immunophenotyping , Insulin Secretion , Male , Middle Aged , Young Adult
13.
J Vet Med Sci ; 75(7): 887-93, 2013 Jul 31.
Article in English | MEDLINE | ID: mdl-23428778

ABSTRACT

The olfactory organ of African lungfish, Protopterus annectens, contains two distinct sensory epithelia: the lamellar olfactory epithelium and the recess epithelium. These epithelia correspond to the olfactory epithelium and the vomeronasal organ of tetrapods, respectively. In contrast to the lamellar olfactory epithelium, which has no associated gland, the recess epithelium is equipped with associated glands. Although the glandular cells and/or the supporting cells are generally presumed to secrete proteins involved in the function of olfactory sensory epithelia, the properties of these proteins in lungfish have not been evaluated to date. In this study, we investigated the associated glands in the olfactory organ of lungfish by transmission electron microscopy and found that the glandular cells contain numerous secretory granules and secrete them from the apical membrane. In addition, we analyzed the olfactory organ by lectin histochemistry using 16 biotinylated lectins. All lectins labeled the secretory granules in the glandular cells with different staining patterns from those of the supporting cells in the lamellar olfactory epithelium or in the recess epithelium. Furthermore, lectin blotting analysis showed that multiple bands were detected by the lectins which specifically labeled the glandular epithelium of the olfactory organ. These results indicate that the secretory products of the associated glands in the recess epithelium have different properties from those of the supporting cells in the olfactory sensory epithelia and contain multiple glycoproteins with different carbohydrate moieties.


Subject(s)
Endocrine Glands/metabolism , Fishes/metabolism , Glycoproteins/biosynthesis , Olfactory Mucosa/metabolism , Animals , Endocrine Glands/cytology , Histocytochemistry , Lectins/metabolism , Microscopy, Electron, Transmission , Olfactory Mucosa/anatomy & histology , Staining and Labeling
14.
Endocr Pathol ; 24(1): 1-10, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23435637

ABSTRACT

Cancer stem-like cells are a subpopulation of self-renewing cells that are more resistant to chemotherapy and radiation therapy than the other surrounding cancer cells. The cancer stem cell model predicts that only a subset of cancer cells possess the ability to self-renew and produce progenitor cells that can reconstitute and sustain tumor growth. Evidence supporting the existence of cancer stem-like cells in the thyroid, pituitary, and in other endocrine tissues is rapidly accumulating. These cells have been studied using specific biomarkers including: CD133, CD44, Nestin, Nanog, and aldehyde dehydrogenase enzyme. Putative cancer stem-like cells can be studied in vitro using serum-free media supplemented with basic fibroblast growth factor and epidermal growth factor grown in low attachment plates or in extracellular matrix leading to sphere formation in vitro. Cancer stem-like cells can also be separated by fluorescent cell sorting and used for in vitro or in vivo studies. Injection of enriched populations of cancer stem-like cells (also referred to as tumor initiating cells) into immunodeficient mice results in growth of xenografts which express cancer stem-like biomarkers. Human cancer stem-like cells have been identified in thyroid cancer cell lines, in primary thyroid cancers, in normal pituitary, and in pituitary tumors. Other recent studies suggest the existence of stem cells and cancer stem-like cells in endocrine tumors of the gastrointestinal tract, pancreas, lungs, adrenal, parathyroid, and skin. New discoveries in this field may lead to more effective therapies for highly aggressive and lethal endocrine cancers.


Subject(s)
Endocrine Glands/cytology , Neoplastic Stem Cells/physiology , Stem Cells/physiology , Animals , Gastrointestinal Tract/cytology , Humans , Neuroendocrine Cells/physiology , Pancreas/cytology , Pituitary Gland/cytology , Thyroid Gland/cytology
15.
Biopreserv Biobank ; 11(6): 366-70, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24475321

ABSTRACT

BACKGROUND: Today, no consensus exists regarding how human tissues are best preserved for long-term storage. Very low temperature storage in liquid nitrogen is often advocated as the superlative method for extended periods, but storage in -80 degrees Celsius (-80°C) freezers, while sometimes debated, is a possible alternative. RNA is the most easily degradable component of a biological sample in a molecular biology context and the quality can reliably be measured. AIM: To investigate to what extent long-term storage of tissues in -80°C affects the RNA quality and overall histomorphology. The tissue storage period represents nearly three decades (1986-2013). METHODS: RNA extraction from 153 tissue samples with different storage periods was performed with the mirVana kit (Invitrogen). RNA integrity was assessed using an Agilent bioanalyzer to obtain RNA integrity numbers (RIN). Further, tissue representative testing using light microscopy was performed by two pathologists to assess tissue composition and morphology. RESULTS: RIN values were measured in all samples, showing a variability that did not correlate with the storage time of the tissues. Microscopically, all samples displayed acceptable tissue morphology regardless of storage time. CONCLUSION: Long-term storage in -80°C does not adversely affect the quality of the RNA extracted from the stored tissues, and the tissue morphology is maintained to a good standard.


Subject(s)
Cryopreservation/methods , Endocrine Glands/cytology , Endocrine Glands/ultrastructure , RNA/analysis , Cell Survival , Endocrine Glands/pathology , Humans , Microscopy , Quality Control , RNA Stability , Specimen Handling/methods , Time Factors , Tissue Banks
16.
Histochem Cell Biol ; 138(4): 605-16, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22673841

ABSTRACT

Zinc is abundant in most endocrine cell types, and plays a pivotal role in the synthesis and secretion of many hormones. Recent studies have demonstrated the expression of numerous zinc transporter (ZnT) family members in the pancreas, thyroid, and adrenal glands, suggesting a role for ZnTs in regulating cellular zinc homeostasis in endocrine cells. However, the cellular distribution of ZnTs in the endocrine organs has not been well established. In the present study, the mRNA expression level, cellular distribution of ZnTs as well as liable zinc ions were examined in the mouse pituitary, adrenal glands, thyroid, and pancreas. In general, ZnT1-10 mRNA was expressed to various degrees in the detected endocrine organs, with no detectable ZnT10 mRNA in the pancreas. In the anterior pituitary, both the acidophilic and basophilic cells were immunopositive to ZnT1-5, 7, 8, except for ZnT10. In the adrenal cortex, the immunoreactivity of all the tested ZnTs, including ZnT1-5, 7, 8, 10, was observed in the zona fasciculata, and some ZnTs were detected in the zona glomerulosa, zona reticularis, and the adrenal medulla. Both the follicle epithelial cells and parafollicular cells in the thyroid gland were immunostained with ZnT1-5, 7, 8, but not ZnT10. In the endocrine pancreas, the immunoreactivity of tested ZnTs was observed to various degrees except for ZnT10 in the cytoplasm of islet cells. Furthermore, autometallographic staining showed that liable zinc was observed in the endocrine cells, such as the adrenal cortical cells, thyroid follicle epithelial cells, and the pancreatic islet cells. All together, the wide distribution of liable zinc and the phenomenon that numerous ZnT family members are partially overlapped in a subset of endocrine cells suggest an important role for the ZnT family in controlling cellular zinc levels and subsequently regulating the synthesis and secretion of hormones in the endocrine system.


Subject(s)
Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Endocrine Glands/cytology , Gene Expression Regulation , Animals , Endocrine Glands/chemistry , Endocrine Glands/metabolism , Female , Gene Expression Profiling , Immunohistochemistry , Male , Mice , Polymerase Chain Reaction
17.
Article in English | MEDLINE | ID: mdl-22683690

ABSTRACT

Secretion of ecdysteroid molting hormones by crustacean Y-organs is suppressed by molt-inhibiting hormone (MIH). The suppressive effect of MIH on ecdysteroidogenesis is mediated by one or more cyclic nucleotide second messengers. In addition, existing data indicate that ecdysteroidogenesis is positively regulated (stimulated) by intracellular Ca(++). Despite the apparent critical role of calcium in regulating ecdysteroidogenesis, the level of Ca(++) in Y-organ cells has not been previously measured during a natural molting cycle for any crustacean species. In studies reported here, a fluorescent calcium indicator (Fluo-4) was used to measure Ca(++) levels in Y-organs during a molting cycle of the blue crab, Callinectes sapidus. Mean calcium fluorescence increased 5.8-fold between intermolt (C4) and stage D3 of premolt, and then dropped abruptly, reaching a level in postmolt (A) that was not significantly different from that in intermolt (P>0.05). The level of ecdysteroids in hemolymph of Y-organ donor crabs (measured by radioimmunoassay) showed an overall pattern similar to that observed for calcium fluorescence, rising from 2.9 ng/mL in intermolt to 357.1 ng/mL in D3 (P<0.05), and then dropping to 55.3 ng/mL in D4 (P<0.05). The combined results are consistent with the hypothesis that ecdysteroidogenesis is stimulated by an increase in intracellular Ca(++).


Subject(s)
Brachyura/anatomy & histology , Brachyura/metabolism , Calcium/metabolism , Ecdysteroids/metabolism , Endocrine Glands/metabolism , Molting , Animals , Endocrine Glands/cytology
18.
Liver Int ; 32(4): 554-9, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22171992

ABSTRACT

BACKGROUND & AIMS: Although regeneration of intrahepatic bile ducts has been extensively studied and intrahepatic progenitor cells have been identified, few studies have focussed on the extrahepatic bile duct (EHBD). We hypothesized that local progenitor cells are present within the EHBD of humans. Human EHBD specimens (n = 17) were included in this study. METHODS: Specimens of normal EHBD tissue were obtained from healthy donor livers (n = 6), mildly injured EHBD from patients with cholangitis (n = 6) and severely injured EHBD from patients with ischaemic type biliary lesions (n = 5). Double immunostaining for K19 and the proliferation marker Ki-67 was performed to identify and localize proliferating cells. In addition, immunofluorescent doublestaining using antibodies against K19 and c-Kit was performed to identify and localize cholangiocytes co-expressing putative progenitor cell markers. RESULTS: In normal EHBD, few Ki-67(+) cells were detected, whereas large numbers of Ki-67(+) were found in the diseased EHBD. In EHBD affected by cholangitis, Ki-67(+) cells were mainly located in the basal layer of the lumen. EHBD specimens from patients with ischaemic type biliary lesions displayed histological signs of epithelial cell loss and large numbers of Ki-67(+) cells were observed in the peribiliary glands. C-Kit expression was localized throughout the EHBD wall and immunofluorescent doublestaining identified a few K19(+) /c-Kit(+) cells in the luminal epithelium of the EHBD as well as in the peribiliary glands. CONCLUSIONS: These findings support the hypothesis that progenitor cells exist in the EHBD and that the peribiliary glands can be considered a local progenitor cell niche in the human EHBD.


Subject(s)
Bile Ducts, Extrahepatic/cytology , Endocrine Glands/cytology , Epithelium/physiology , Regeneration/physiology , Stem Cells/cytology , Bile Ducts, Extrahepatic/pathology , Fluorescent Antibody Technique , Humans , Immunohistochemistry , Keratin-7 , Ki-67 Antigen , Proto-Oncogene Proteins c-kit/metabolism
19.
J Biol Chem ; 286(15): 12983-90, 2011 Apr 15.
Article in English | MEDLINE | ID: mdl-21317437

ABSTRACT

FGF21 is a novel metabolic regulator involved in the control of glucose homeostasis, insulin sensitivity, and ketogenesis. The liver has been considered the main site of production and release of FGF21 into the blood. Here, we show that, after thermogenic activation, brown adipose tissue becomes a source of systemic FGF21. This is due to a powerful cAMP-mediated pathway of regulation of FGF21 gene transcription. Norepinephrine, acting via ß-adrenergic, cAMP-mediated, mechanisms and subsequent activation of protein kinase A and p38 MAPK, induces FGF21 gene transcription and also FGF21 release in brown adipocytes. ATF2 binding to the FGF21 gene promoter mediates cAMP-dependent induction of FGF21 gene transcription. FGF21 release by brown fat in vivo was assessed directly by analyzing arteriovenous differences in FGF21 concentration across interscapular brown fat, in combination with blood flow to brown adipose tissue and assessment of FGF21 half-life. This analysis demonstrates that exposure of rats to cold induced a marked release of FGF21 by brown fat in vivo, in association with a reduction in systemic FGF21 half-life. The present findings lead to the recognition of a novel pathway of regulation the FGF21 gene and an endocrine role of brown fat, as a source of FGF21 that may be especially relevant in conditions of activation of thermogenic activity.


Subject(s)
Adipose Tissue, Brown/metabolism , Endocrine Glands/metabolism , Fibroblast Growth Factors/biosynthesis , Gene Expression Regulation/physiology , Thermogenesis/physiology , Adipose Tissue, Brown/cytology , Animals , Cells, Cultured , Cold Temperature , Cyclic AMP/genetics , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/genetics , Cyclic AMP-Dependent Protein Kinases/metabolism , Endocrine Glands/cytology , Enzyme Activation/physiology , Fibroblast Growth Factors/genetics , Male , Mice , Mice, Mutant Strains , Rats , Rats, Wistar , Transcription, Genetic/physiology , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
20.
Tissue Cell ; 42(5): 293-300, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20817240

ABSTRACT

The androgenic glands (AG) of male decapod crustaceans produce insulin-like androgenic gland (IAG) hormone that controls male sex differentiation, growth and behavior. Functions of the AG are inhibited by gonad-inhibiting hormone originating from X-organ-sinus gland complex in the eyestalk. The AG, and its interaction with the eyestalk, had not been studied in the blue swimmer crab, Portunus pelagicus, so we investigated the AG structure, and then changes of the AG and IAG-producing cells following eyestalk ablation. The AG of P. pelagicus is a small endrocrine organ ensheathed in a connective tissue and attached to the distal part of spermatic duct and ejaculatory bulb. The gland is composed of several lobules, each containing two major cell types. Type I cells are located near the periphery of each lobule, and distinguished as small globular cells of 5-7 µm in diameter, with nuclei containing mostly heterochromatin. Type II cells are 13-15 µm in diameter, with nuclei containing mostly euchromatin and prominent nucleoli. Both cell types were immunoreactive with anti-IAG. Following bilateral eyestalk ablation, the AG underwent hypertrophy, and at day 8 had increased approximately 3-fold in size. The percentage of type I cells had increased more than twice compared with controls, while type II cells showed a corresponding decrease.


Subject(s)
Endocrine Glands/pathology , Gonadal Hormones/biosynthesis , Amino Acid Sequence , Androgens/metabolism , Animals , Brachyura , Endocrine Glands/cytology , Eye , Gonadal Hormones/immunology , Gonads/cytology , Gonads/pathology , Hypertrophy , Male , Molecular Sequence Data , Sequence Alignment , Sex Differentiation
SELECTION OF CITATIONS
SEARCH DETAIL