Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27.594
Filter
1.
Microbiology (Reading) ; 170(5)2024 May.
Article in English | MEDLINE | ID: mdl-38739436

ABSTRACT

Endolysins are bacteriophage (or phage)-encoded enzymes that catalyse the peptidoglycan breakdown in the bacterial cell wall. The exogenous action of recombinant phage endolysins against Gram-positive organisms has been extensively studied. However, the outer membrane acts as a physical barrier when considering the use of recombinant endolysins to combat Gram-negative bacteria. This study aimed to evaluate the antimicrobial activity of the SAR-endolysin LysKpV475 against Gram-negative bacteria as single or combined therapies, using an outer membrane permeabilizer (polymyxin B) and a phage, free or immobilized in a pullulan matrix. In the first step, the endolysin LysKpV475 in solution, alone and combined with polymyxin B, was tested in vitro and in vivo against ten Gram-negative bacteria, including highly virulent strains and multidrug-resistant isolates. In the second step, the lyophilized LysKpV475 endolysin was combined with the phage phSE-5 and investigated, free or immobilized in a pullulan matrix, against Salmonella enterica subsp. enterica serovar Typhimurium ATCC 13311. The bacteriostatic action of purified LysKpV475 varied between 8.125 µg ml-1 against Pseudomonas aeruginosa ATCC 27853, 16.25 µg ml-1 against S. enterica Typhimurium ATCC 13311, and 32.50 µg ml-1 against Klebsiella pneumoniae ATCC BAA-2146 and Enterobacter cloacae P2224. LysKpV475 showed bactericidal activity only for P. aeruginosa ATCC 27853 (32.50 µg ml-1) and P. aeruginosa P2307 (65.00 µg ml-1) at the tested concentrations. The effect of the LysKpV475 combined with polymyxin B increased against K. pneumoniae ATCC BAA-2146 [fractional inhibitory concentration index (FICI) 0.34; a value lower than 1.0 indicates an additive/combined effect] and S. enterica Typhimurium ATCC 13311 (FICI 0.93). A synergistic effect against S. enterica Typhimurium was also observed when the lyophilized LysKpV475 at ⅔ MIC was combined with the phage phSE-5 (m.o.i. of 100). The lyophilized LysKpV475 immobilized in a pullulan matrix maintained a significant Salmonella reduction of 2 logs after 6 h of treatment. These results demonstrate the potential of SAR-endolysins, alone or in combination with other treatments, in the free form or immobilized in solid matrices, which paves the way for their application in different areas, such as in biocontrol at the food processing stage, biosanitation of food contact surfaces and biopreservation of processed food in active food packing.


Subject(s)
Anti-Bacterial Agents , Endopeptidases , Glucans , Polymyxin B , Salmonella Phages , Endopeptidases/pharmacology , Endopeptidases/chemistry , Endopeptidases/metabolism , Polymyxin B/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Salmonella Phages/genetics , Salmonella Phages/physiology , Salmonella Phages/chemistry , Glucans/chemistry , Glucans/pharmacology , Animals , Microbial Sensitivity Tests , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/virology , Mice , Salmonella typhimurium/virology , Salmonella typhimurium/drug effects , Bacteriophages/physiology , Bacteriophages/genetics , Viral Proteins/genetics , Viral Proteins/metabolism , Viral Proteins/pharmacology , Viral Proteins/chemistry
2.
Protein Eng Des Sel ; 372024 Jan 29.
Article in English | MEDLINE | ID: mdl-38696722

ABSTRACT

The yeast endoplasmic reticulum sequestration and screening (YESS) system is a broadly applicable platform to perform high-throughput biochemical studies of post-translational modification enzymes (PTM-enzymes). This system enables researchers to profile and engineer the activity and substrate specificity of PTM-enzymes and to discover inhibitor-resistant enzyme mutants. In this study, we expand the capabilities of YESS by transferring its functional components to integrative plasmids. The YESS integrative system yields uniform protein expression and protease activities in various configurations, allows one to integrate activity reporters at two independent loci and to split the system between integrative and centromeric plasmids. We characterize these integrative reporters with two viral proteases, Tobacco etch virus (TEVp) and 3-chymotrypsin like protease (3CLpro), in terms of coefficient of variance, signal-to-noise ratio and fold-activation. Overall, we provide a framework for chromosomal-based studies that is modular, enabling rigorous high-throughput assays of PTM-enzymes in yeast.


Subject(s)
Endoplasmic Reticulum , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/genetics , Protein Processing, Post-Translational , Genes, Reporter , Endopeptidases/genetics , Endopeptidases/metabolism , Plasmids/genetics , Plasmids/metabolism
3.
Acta Vet Scand ; 66(1): 20, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769566

ABSTRACT

Bacteriophage-encoded endolysins, peptidoglycan hydrolases breaking down the Gram-positive bacterial cell wall, represent a groundbreaking class of novel antimicrobials to revolutionize the veterinary medicine field. Wild-type endolysins exhibit a modular structure, consisting of enzymatically active and cell wall-binding domains, that enable genetic engineering strategies for the creation of chimeric fusion proteins or so-called 'engineered endolysins'. This biotechnological approach has yielded variants with modified lytic spectrums, introducing new possibilities in antimicrobial development. However, the discovery of highly similar endolysins by different groups has occasionally resulted in the assignment of different names that complicate a straightforward comparison. The aim of this review was to perform a homology-based comparison of the wild-type and engineered endolysins that have been characterized in the context of bovine mastitis-causing streptococci and staphylococci, grouping homologous endolysins with ≥ 95.0% protein sequence similarity. Literature is explored by homologous groups for the wild-type endolysins, followed by a chronological examination of engineered endolysins according to their year of publication. This review concludes that the wild-type endolysins encountered persistent challenges in raw milk and in vivo settings, causing a notable shift in the field towards the engineering of endolysins. Lead candidates that display robust lytic activity are nowadays selected from screening assays that are performed under these challenging conditions, often utilizing advanced high-throughput protein engineering methods. Overall, these recent advancements suggest that endolysins will integrate into the antibiotic arsenal over the next decade, thereby innovating antimicrobial treatment against bovine mastitis-causing streptococci and staphylococci.


Subject(s)
Bacteriophages , Endopeptidases , Mastitis, Bovine , Staphylococcus , Animals , Mastitis, Bovine/microbiology , Mastitis, Bovine/drug therapy , Cattle , Endopeptidases/pharmacology , Endopeptidases/metabolism , Endopeptidases/chemistry , Endopeptidases/genetics , Staphylococcus/drug effects , Staphylococcal Infections/veterinary , Staphylococcal Infections/drug therapy , Streptococcus/drug effects , Female , Streptococcal Infections/veterinary , Streptococcal Infections/drug therapy , Anti-Bacterial Agents/pharmacology
4.
Front Immunol ; 15: 1371564, 2024.
Article in English | MEDLINE | ID: mdl-38774872

ABSTRACT

OTULIN deficiency is a complex disease characterized by a wide range of clinical manifestations, including skin rash, joint welling, lipodystrophy to pulmonary abscess, and sepsis shock. This disease is mechanistically linked to mutations in the OTULIN gene, resulting in an immune disorder that compromises the body's ability to effectively combat pathogens and foreign stimuli. The OTULIN gene is responsible for encoding a deubiquitinating enzyme crucial for hydrolyzing Met1-poly Ub chains, and its dysfunction leads to dysregulated immune responses. Patients with OTULIN deficiency often exhibit an increase in monocytes, including neutrophils and macrophages, along with inflammatory clinical features. The onset of symptoms typically occurs at an early age. However, individuals with OTULIN haploinsufficiency are particularly susceptible to life-threatening staphylococcal infections. Currently, the most effective treatment for patients with OTULIN biallelic mutations involves the use of TNF-blocking agents, which target the dysregulated immune response. In conclusion, OTULIN deficiency presents a complex clinical picture with diverse manifestations, attributed to mutations in the OTULIN gene. Understanding the underlying mechanisms is crucial for developing targeted therapeutic interventions to address this challenging condition. Further research into the pathophysiology of OTULIN deficiency is essential for improving clinical management and outcomes for affected individuals.


Subject(s)
Immunity, Innate , Mutation , Humans , Immunity, Innate/genetics , Animals , Endopeptidases
5.
Life Sci ; 348: 122674, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38692507

ABSTRACT

AIMS: Ubiquitin specific peptidase 5 (USP5), a member of deubiquitinating enzymes, has garnered significant attention for its crucial role in cancer progression. This study aims to explore the role of USP5 and its potential molecular mechanisms in cholangiocarcinoma (CCA). MAIN METHODS: To explore the effect of USP5 on CCA, gain-of-function and loss-of-function assays were conducted in human CCA cell lines RBE and HCCC9810. The CCK8, colony-forming assay, EDU, flow cytometry, transwell assay and xenografts were used to assess cell proliferation, migration and tumorigenesis. Western blot and immunohistochemistry were performed to measure the expression of related proteins. Immunoprecipitation and immunofluorescence were applied to identify the interaction between USP5 and Y box-binding protein 1 (YBX1). Ubiquitination assays and cycloheximide chase assays were carried out to confirm the effect of USP5 on YBX1. KEY FINDINGS: We found USP5 is highly expressed in CCA tissues, and upregulated USP5 is required for the cancer progression. Knockdown of USP5 inhibited cell proliferation, migration and epithelial-mesenchymal transition (EMT) in vitro, along with suppressed xenograft tumor growth and metastasis in vivo. Mechanistically, USP5 could interact with YBX1 and stabilize YBX1 by deubiquitination in CCA cells. Additionally, silencing of USP5 hindered the phosphorylation of YBX1 at serine 102 and its subsequent translocation to the nucleus. Notably, the effect induced by USP5 overexpression in CCA cells was reversed by YBX1 silencing. SIGNIFICANCE: Our findings reveal that USP5 is required for cell proliferation, migration and EMT in CCA by stabilizing YBX1, suggesting USP5-YBX1 axis as a promising therapeutic target for CCA.


Subject(s)
Bile Duct Neoplasms , Cell Movement , Cell Proliferation , Cholangiocarcinoma , Disease Progression , Epithelial-Mesenchymal Transition , Mice, Nude , Y-Box-Binding Protein 1 , Humans , Cholangiocarcinoma/pathology , Cholangiocarcinoma/genetics , Cholangiocarcinoma/metabolism , Bile Duct Neoplasms/pathology , Bile Duct Neoplasms/metabolism , Bile Duct Neoplasms/genetics , Animals , Mice , Cell Line, Tumor , Y-Box-Binding Protein 1/metabolism , Y-Box-Binding Protein 1/genetics , Ubiquitination , Mice, Inbred BALB C , Male , Endopeptidases/metabolism , Endopeptidases/genetics , Gene Expression Regulation, Neoplastic , Female
6.
Food Funct ; 15(10): 5539-5553, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38712538

ABSTRACT

A novel processing method combining short-time ozone pretreatment with hydrolysis has been developed to reduce whey protein allergenicity. The results showed that ozone treatment altered the whey protein spatial structure, initially increasing the surface hydrophobicity index, and then decreasing due to polymer formation as the time increased. Under the optimized conditions of alkaline protease-mediated hydrolysis, a 10-second pre-exposure to ozone significantly promoted the reduction in the IgE binding capacity of whey protein without compromising the hydrolysis efficiency. Compared with whey protein, the degranulation of KU812 cells stimulated by this hydrolysate decreased by 20.54%, 17.99%, and 22.80% for IL-6, ß-hexosaminidase, and histamine, respectively. In vitro simulated gastrointestinal digestion confirmed increased digestibility and reduced allergenicity. Peptidomics identification revealed that short-time ozonation exposed allergen epitopes, allowing alkaline protease to target these epitopes more effectively, particularly those associated with α-lactalbumin. These findings suggest the promising application of this processing method in mitigating the allergenicity of whey protein.


Subject(s)
Allergens , Epitopes , Ozone , Whey Proteins , Whey Proteins/chemistry , Whey Proteins/pharmacology , Ozone/chemistry , Ozone/pharmacology , Allergens/chemistry , Allergens/immunology , Humans , Epitopes/chemistry , Epitopes/immunology , Immunoglobulin E/immunology , Hydrolysis , Endopeptidases/metabolism , B-Lymphocytes/drug effects , B-Lymphocytes/immunology
7.
Cancer J ; 30(3): 210-217, 2024.
Article in English | MEDLINE | ID: mdl-38753756

ABSTRACT

ABSTRACT: Fibroblast activation protein inhibitor positron emission tomography (PET) has gained interest for its ability to demonstrate uptake in a diverse range of tumors. Its molecular target, fibroblast activation protein, is expressed in cancer-associated fibroblasts, a major cell type in tumor microenvironment that surrounds various types of cancers. Although existing literature on FAPI PET is largely from single-center studies and case reports, initial findings show promise for some cancer types demonstrating improved imaging when compared with the widely used 18F-fludeoxyglucose PET for oncologic imaging. As we expand our knowledge of the utility of FAPI PET, accurate understanding of noncancerous uptake seen on FAPI PET is crucial for accurate evaluation. In this review, we summarize potential diagnostic and therapeutic applications of radiolabeled FAP inhibitors in oncological and nononcological disease processes.


Subject(s)
Neoplasms , Humans , Neoplasms/drug therapy , Neoplasms/diagnosis , Neoplasms/metabolism , Positron-Emission Tomography/methods , Endopeptidases , Gelatinases/antagonists & inhibitors , Gelatinases/metabolism , Tumor Microenvironment/drug effects , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/metabolism , Radiopharmaceuticals , Serine Endopeptidases/metabolism , Animals , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/drug effects
8.
Ceska Gynekol ; 89(2): 95-101, 2024.
Article in English | MEDLINE | ID: mdl-38704220

ABSTRACT

OBJECTIVE: To compare cervical stroma in advanced cervical cancer with the control group; to compare, in the pre-treatment period, hemogram parameters in patients with advanced cervical cancer with the same parameters as the control group; and to verify if there is an association of stromal markers with prognostic factors in cervical cancer. MATERIALS AND METHODS: We prospectively evaluated 16 patients diagnosed with advanced invasive cervical cancer. A control group of 22 patients was used (uterine leiomyoma). Immunohistochemistry was performed to verify the stromal immunostaining of alpha-smooth muscle actin (SMA) and fibroblast activation protein alpha (FAP). Immunostainings and hemogram parameters were compared using Fisher's exact and Mann-Whitney Test, respectively. RESULTS: Strong FAP immunostaining was more frequent in patients with cervical cancer when compared with patients with leiomyoma (P = 0.0002). Regarding SMA, strong immunostaining was also found more in the group of cancer patients compared to the control group (P < 0.00001). The neutrophil-lymphocyte ratio (NLR) values were higher in the cancer patient group compared to the control group (P = 0.0019). There was no association of the parameters studied with prognostic factors. CONCLUSIONS: Strong FAP and SMA immunostaining was found more in patients with cervical cancer when compared to the control group. NLR values were also higher in cervical cancer.


Subject(s)
Uterine Cervical Neoplasms , Humans , Female , Uterine Cervical Neoplasms/pathology , Middle Aged , Adult , Endopeptidases , Actins/analysis , Actins/metabolism , Membrane Proteins/analysis , Membrane Proteins/metabolism , Gelatinases/analysis , Gelatinases/metabolism , Serine Endopeptidases/analysis , Serine Endopeptidases/metabolism , Leiomyoma/pathology
9.
J Nucl Med ; 65(Suppl 1): 4S-11S, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38719234

ABSTRACT

Quinoline-based fibroblast activation protein (FAP) inhibitors (FAPIs) have recently emerged as a focal point in global nuclear medicine, underscored by their promising applications in cancer theranostics and the diagnosis of various nononcological conditions. This review offers an in-depth summary of the existing literature on the evolution and use of FAPI tracers in China, tracing their journey from preclinical to clinical research. Moreover, this review also assesses the diagnostic accuracy of FAPI PET for the most common cancers in China, analyzes its impact on oncologic management paradigms, and investigates the potential of FAP-targeted radionuclide therapy in patients with advanced or metastatic cancer. This review also summarizes studies using FAPI PET for nononcologic disorders in China. Thus, this qualitative overview presents a snapshot of China's engagement with FAPI tracers, aiming to guide future research endeavors.


Subject(s)
Endopeptidases , Gelatinases , Membrane Proteins , Serine Endopeptidases , Translational Research, Biomedical , Humans , China , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/metabolism , Gelatinases/antagonists & inhibitors , Gelatinases/metabolism , Serine Endopeptidases/metabolism , Radioactive Tracers , Animals , Neoplasms/diagnostic imaging , Neoplasms/radiotherapy , Positron-Emission Tomography
10.
Arch Microbiol ; 206(6): 272, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38772980

ABSTRACT

Phage-encoded endolysins have emerged as a potential substitute to conventional antibiotics due to their exceptional benefits including host specificity, rapid host killing, least risk of resistance. In addition to their antibacterial potency and biofilm eradication properties, endolysins are reported to exhibit synergism with other antimicrobial agents. In this study, the synergistic potency of endolysins was dissected with antimicrobial peptides to enhance their therapeutic effectiveness. Recombinantly expressed and purified bacteriophage endolysin [T7 endolysin (T7L); and T4 endolysin (T4L)] proteins have been used to evaluate the broad-spectrum antibacterial efficacy using different bacterial strains. Antibacterial/biofilm eradication studies were performed in combination with different antimicrobial peptides (AMPs) such as colistin, nisin, and polymyxin B (PMB) to assess the endolysin's antimicrobial efficacy and their synergy with AMPs. In combination with T7L, polymyxin B and colistin effectively eradicated the biofilm of Pseudomonas aeruginosa and exhibited a synergistic effect. Further, a combination of T4L and nisin displayed a synergistic effect against Staphylococcus aureus biofilms. In summary, the obtained results endorse the theme of combinational therapy consisting of endolysins and AMPs as an effective remedy against the drug-resistant bacterial biofilms that are a serious concern in healthcare settings.


Subject(s)
Anti-Bacterial Agents , Antimicrobial Peptides , Biofilms , Drug Synergism , Endopeptidases , Microbial Sensitivity Tests , Pseudomonas aeruginosa , Staphylococcus aureus , Biofilms/drug effects , Endopeptidases/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Pseudomonas aeruginosa/drug effects , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Nisin/pharmacology , Nisin/chemistry , Polymyxin B/pharmacology , Bacteriophages , Colistin/pharmacology , Bacteriophage T4/drug effects , Bacteriophage T4/physiology , Bacteriophage T7/drug effects , Bacteriophage T7/genetics
11.
Am J Physiol Cell Physiol ; 326(4): C1193-C1202, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38581669

ABSTRACT

Satellite cells (SCs) and fibroadipogenic progenitors (FAPs) are progenitor populations found in muscle that form new myofibers postinjury. Muscle development, regeneration, and tissue-engineering experiments require robust progenitor populations, yet their isolation and expansion are difficult given their scarcity in muscle, limited muscle biopsy sizes in humans, and lack of methodological detail in the literature. Here, we investigated whether a dispase and collagenase type 1 and 2 cocktail could allow dual isolation of SCs and FAPs, enabling significantly increased yield from human skeletal muscle. Postdissociation, we found that single cells could be sorted into CD56 + CD31-CD45- (SC) and CD56-CD31-CD45- (FAP) cell populations, expanded in culture, and characterized for lineage-specific marker expression and differentiation capacity; we obtained ∼10% SCs and ∼40% FAPs, with yields twofold better than what is reported in current literature. SCs were PAX7+ and retained CD56 expression and myogenic fusion potential after multiple passages, expanding up to 1012 cells. Conversely, FAPs expressed CD140a and differentiated into either fibroblasts or adipocytes upon induction. This study demonstrates robust isolation of both SCs and FAPs from the same muscle sample with SC recovery more than two times higher than previously reported, which could enable translational studies for muscle injuries.NEW & NOTEWORTHY We demonstrated that a dispase/collagenase cocktail allows for simultaneous isolation of SCs and FAPs with 2× higher SC yield compared with other studies. We provide a thorough characterization of SC and FAP in vitro expansion that other studies have not reported. Following our dissociation, SCs and FAPs were able to expand by up to 1012 cells before reaching senescence and maintained differentiation capacity in vitro demonstrating their efficacy for clinical translation for muscle injury.


Subject(s)
Endopeptidases , Muscle, Skeletal , Satellite Cells, Skeletal Muscle , Humans , Muscle, Skeletal/metabolism , Cell Differentiation/physiology , Satellite Cells, Skeletal Muscle/metabolism , Fibroblasts/metabolism
12.
Methods Mol Biol ; 2794: 341-351, 2024.
Article in English | MEDLINE | ID: mdl-38630243

ABSTRACT

Single-cell RNA sequencing (scRNA-seq) has been widely applied in neuroscience research, enabling the investigation of cellular heterogeneity at the transcriptional level, the characterization of rare cell types, and the detailed analysis of the stochastic nature of gene expression. Isolation of single nerve cells in good health, especially from the adult rodent brain, is the most difficult and critical process for scRNA-seq. Here, we describe methods to optimize protease digestion of brain slices, which enable yield of millions of cells in good health from the adult brain.


Subject(s)
Astrocytes , Neurons , Animals , Mice , RNA-Seq , Brain , Endopeptidases , Suspensions
13.
Molecules ; 29(7)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38611874

ABSTRACT

Oral cancer is a common malignancy with a high mortality rate. Although surgery is the best treatment option for patients with cancer, this approach is ineffective for advanced metastases. Molecular agents are irreplaceable in preventing and treating distant metastases. This review aims to summarise the molecular agents used for the treatment of oral cancer in the last decade and describe their sources and curative effects. These agents are classified into phenols, isothiocyanates, anthraquinones, statins, flavonoids, terpenoids, and steroids. The mechanisms of action of these agents include regulating the expression of cell signalling pathways and related proteases to affect the proliferation, autophagy, migration, apoptosis, and other biological aspects of oral cancer cells. This paper may serve as a reference for subsequent studies on the treatment of oral cancer.


Subject(s)
Mouth Neoplasms , Humans , Mouth Neoplasms/drug therapy , Anthraquinones , Apoptosis , Autophagy , Endopeptidases
14.
Elife ; 122024 Apr 15.
Article in English | MEDLINE | ID: mdl-38619391

ABSTRACT

Rapid recovery of proteasome activity may contribute to intrinsic and acquired resistance to FDA-approved proteasome inhibitors. Previous studies have demonstrated that the expression of proteasome genes in cells treated with sub-lethal concentrations of proteasome inhibitors is upregulated by the transcription factor Nrf1 (NFE2L1), which is activated by a DDI2 protease. Here, we demonstrate that the recovery of proteasome activity is DDI2-independent and occurs before transcription of proteasomal genes is upregulated but requires protein translation. Thus, mammalian cells possess an additional DDI2 and transcription-independent pathway for the rapid recovery of proteasome activity after proteasome inhibition.


Subject(s)
Proteasome Endopeptidase Complex , Proteasome Inhibitors , Animals , Endopeptidases , Mammals , Proteasome Inhibitors/pharmacology
15.
J Biomed Sci ; 31(1): 36, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622637

ABSTRACT

BACKGROUND: This study addresses the urgent need for infection control agents driven by the rise of drug-resistant pathogens such as Acinetobacter baumannii. Our primary aim was to develop and assess a novel endolysin, Tha-PA90, designed to combat these challenges. METHODS: Tha-PA90 incorporates an antimicrobial peptide (AMP) called thanatin at its N-terminus, enhancing bacterial outer membrane permeability and reducing host immune responses. PA90 was selected as the endolysin component. The antibacterial activity of the purified Tha-PA90 was evaluated using an in vitro colony-forming unit (CFU) reduction assay and a membrane permeability test. A549 cells were utilized to measure the penetration into the cytosol and the cytotoxicity of Tha-PA90. Finally, infection control was monitored in A. baumannii infected mice following the intraperitoneal administration of Tha-PA90. RESULTS: Tha-PA90 demonstrated remarkable in vitro efficacy, completely eradicating A. baumannii strains, even drug-resistant variants, at a low concentration of 0.5 µM. Notably, it outperformed thanatin, achieving only a < 3-log reduction at 4 µM. Tha-PA90 exhibited 2-3 times higher membrane permeability than a PA90 and thanatin mixture or PA90 alone. Tha-PA90 was found within A549 cells' cytosol with no discernible cytotoxic effects. Furthermore, Tha-PA90 administration extended the lifespan of A. baumannii-infected mice, reducing bacterial loads in major organs by up to 3 logs. Additionally, it decreased proinflammatory cytokine levels (TNF-α and IL-6), reducing the risk of sepsis from rapid bacterial lysis. Our findings indicate that Tha-PA90 is a promising solution for combating drug-resistant A. baumannii. Its enhanced efficacy, low cytotoxicity, and reduction of proinflammatory responses render it a potential candidate for infection control. CONCLUSIONS: This study underscores the significance of engineered endolysins in addressing the pressing challenge of drug-resistant pathogens and offers insights into improved infection management strategies.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Endopeptidases , Animals , Mice , Antimicrobial Peptides , Antimicrobial Cationic Peptides , Anti-Bacterial Agents/pharmacology , Acinetobacter Infections/drug therapy , Microbial Sensitivity Tests
16.
Microb Biotechnol ; 17(4): e14465, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38593316

ABSTRACT

Bacteriophage endolysin is a novel antibacterial agent that has attracted much attention in the prevention and control of drug-resistant bacteria due to its unique mechanism of hydrolysing peptidoglycans. Although endolysin exhibits excellent bactericidal effects on Gram-positive bacteria, the presence of the outer membrane of Gram-negative bacteria makes it difficult to lyse them extracellularly, thus limiting their application field. To enhance the extracellular activity of endolysin and facilitate its crossing through the outer membrane of Gram-negative bacteria, researchers have adopted physical, chemical, and molecular methods. This review summarizes the characterization of endolysin targeting Gram-negative bacteria, strategies for endolysin modification, and the challenges and future of engineering endolysin against Gram-negative bacteria in clinical applications, to promote the application of endolysin in the prevention and control of Gram-negative bacteria.


Subject(s)
Anti-Bacterial Agents , Bacteriophages , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Endopeptidases/genetics , Endopeptidases/pharmacology , Bacteriophages/genetics , Gram-Negative Bacteria
17.
Comput Biol Med ; 174: 108397, 2024 May.
Article in English | MEDLINE | ID: mdl-38603896

ABSTRACT

The equilibrium of cellular protein levels is pivotal for maintaining normal physiological functions. USP5 belongs to the deubiquitination enzyme (DUBs) family, controlling protein degradation and preserving cellular protein homeostasis. Aberrant expression of USP5 is implicated in a variety of diseases, including cancer, neurodegenerative diseases, and inflammatory diseases. In this paper, a multi-level virtual screening (VS) approach was employed to target the zinc finger ubiquitin-binding domain (ZnF-UBD) of USP5, leading to the identification of a highly promising candidate compound 0456-0049. Molecular dynamics (MD) simulations were then employed to assess the stability of complex binding and predict hotspot residues in interactions. The results indicated that the candidate stably binds to the ZnF-UBD of USP5 through crucial interactions with residues ARG221, TRP209, GLY220, ASN207, TYR261, TYR259, and MET266. Binding free energy calculations, along with umbrella sampling (US) simulations, underscored a superior binding affinity of the candidate relative to known inhibitors. Moreover, US simulations revealed conformational changes of USP5 during ligand dissociation. These insights provide a valuable foundation for the development of novel inhibitors targeting USP5.


Subject(s)
Endopeptidases , Zinc Fingers , Humans , Endopeptidases/chemistry , Endopeptidases/metabolism , Molecular Dynamics Simulation , Protein Binding , Protein Domains
18.
Appl Radiat Isot ; 209: 111330, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38657372

ABSTRACT

Boron neutron capture therapy (BNCT) has received extensive attention as an advanced binary radiotherapy method. However, BNCT still faces poor selectivity of boron agent and is insufficient boron content in tumor tissues. To improve the tumor-targeted ability and boron content, this research aims to design, synthesize and preliminary evaluate a new borane agent Carborane-FAPI, which coupling the o-carborane to the compound skeleton of a mature fibroblast activating protein (FAP) inhibitor (FAPI). FAP is a tumor-associated antigen. FAP expressed lowly in normal organs and highly expressed in tumors, so it is a potential target for diagnosis and treatment. Boronophenylalanine (BPA) is the most widely investigated BNCT drug in present. Compared with BPA, the boron content of a single molecule is increased and drug targeting is enhanced. The results show that Carboaren-FAPI has low toxicity to normal cells, and selective enrichment in tumor tissues. It is a promising boron drug that has the potential to be used in BNCT.


Subject(s)
Boranes , Boron Neutron Capture Therapy , Boron , Boron Neutron Capture Therapy/methods , Humans , Animals , Mice , Membrane Proteins/metabolism , Endopeptidases , Serine Endopeptidases/metabolism , Gelatinases/metabolism , Boron Compounds/therapeutic use , Boron Compounds/pharmacokinetics , Cell Line, Tumor
19.
Biochem Biophys Res Commun ; 715: 149957, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38688057

ABSTRACT

Clostridioides difficile endolysin (Ecd09610) consists of an unknown domain at its N terminus, followed by two catalytic domains, a glucosaminidase domain and endopeptidase domain. X-ray structure and mutagenesis analyses of the Ecd09610 catalytic domain with glucosaminidase activity (Ecd09610CD53) were performed. Ecd09610CD53 was found to possess an α-bundle-like structure with nine helices, which is well conserved among GH73 family enzymes. The mutagenesis analysis based on X-ray structures showed that Glu405 and Asn470 were essential for enzymatic activity. Ecd09610CD53 may adopt a neighboring-group mechanism for a catalytic reaction in which Glu405 acted as an acid/base catalyst and Asn470 helped to stabilize the oxazolinium ion intermediate. Structural comparisons with the newly identified Clostridium perfringens autolysin catalytic domain (AcpCD) in the P1 form and a zymography analysis demonstrated that AcpCD was 15-fold more active than Ecd09610CD53. The strength of the glucosaminidase activity of the GH73 family appears to be dependent on the depth of the substrate-binding groove.


Subject(s)
Catalytic Domain , Clostridioides difficile , Endopeptidases , Clostridioides difficile/enzymology , Clostridioides difficile/genetics , Crystallography, X-Ray , Endopeptidases/chemistry , Endopeptidases/metabolism , Endopeptidases/genetics , Models, Molecular , Hexosaminidases/chemistry , Hexosaminidases/genetics , Hexosaminidases/metabolism , Mutagenesis , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Mutagenesis, Site-Directed , Protein Domains
20.
CNS Neurosci Ther ; 30(4): e14711, 2024 04.
Article in English | MEDLINE | ID: mdl-38644551

ABSTRACT

OBJECTIVE: To elucidate the relationship between USP19 and O(6)-methylguanine-DNA methyltransferase (MGMT) after temozolomide treatment in glioblastoma (GBM) patients with chemotherapy resistance. METHODS: Screening the deubiquitinase pannel and identifying the deubiquitinase directly interacts with and deubiquitination MGMT. Deubiquitination assay to confirm USP19 deubiquitinates MGMT. The colony formation and tumor growth study in xenograft assess USP19 affects the GBM sensitive to TMZ was performed by T98G, LN18, U251, and U87 cell lines. Immunohistochemistry staining and survival analysis were performed to explore how USP19 is correlated to MGMT in GBM clinical management. RESULTS: USP19 removes the ubiquitination of MGMT to facilitate the DNA methylation damage repair. Depletion of USP19 results in the glioblastoma cell sensitivity to temozolomide, which can be rescued by overexpressing MGMT. USP19 is overexpressed in glioblastoma patient samples, which positively correlates with the level of MGMT protein and poor prognosis in these patients. CONCLUSION: The regulation of MGMT ubiquitination by USP19 plays a critical role in DNA methylation damage repair and GBM patients' temozolomide chemotherapy response.


Subject(s)
Antineoplastic Agents, Alkylating , DNA Methylation , DNA Modification Methylases , DNA Repair Enzymes , Drug Resistance, Neoplasm , Temozolomide , Tumor Suppressor Proteins , Humans , Temozolomide/pharmacology , Temozolomide/therapeutic use , DNA Repair Enzymes/metabolism , DNA Repair Enzymes/genetics , DNA Modification Methylases/metabolism , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use , Animals , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , DNA Methylation/drug effects , Mice, Nude , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/metabolism , Mice , Male , Female , Dacarbazine/analogs & derivatives , Dacarbazine/pharmacology , Dacarbazine/therapeutic use , DNA Repair/drug effects , Endopeptidases/metabolism , Endopeptidases/genetics , Xenograft Model Antitumor Assays , Ubiquitination/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...