Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.094
Filter
1.
Protein Eng Des Sel ; 372024 Jan 29.
Article in English | MEDLINE | ID: mdl-38696722

ABSTRACT

The yeast endoplasmic reticulum sequestration and screening (YESS) system is a broadly applicable platform to perform high-throughput biochemical studies of post-translational modification enzymes (PTM-enzymes). This system enables researchers to profile and engineer the activity and substrate specificity of PTM-enzymes and to discover inhibitor-resistant enzyme mutants. In this study, we expand the capabilities of YESS by transferring its functional components to integrative plasmids. The YESS integrative system yields uniform protein expression and protease activities in various configurations, allows one to integrate activity reporters at two independent loci and to split the system between integrative and centromeric plasmids. We characterize these integrative reporters with two viral proteases, Tobacco etch virus (TEVp) and 3-chymotrypsin like protease (3CLpro), in terms of coefficient of variance, signal-to-noise ratio and fold-activation. Overall, we provide a framework for chromosomal-based studies that is modular, enabling rigorous high-throughput assays of PTM-enzymes in yeast.


Subject(s)
Endoplasmic Reticulum , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/genetics , Protein Processing, Post-Translational , Genes, Reporter , Endopeptidases/genetics , Endopeptidases/metabolism , Plasmids/genetics , Plasmids/metabolism
2.
J Biosci ; 492024.
Article in English | MEDLINE | ID: mdl-38726820

ABSTRACT

We investigated the relationship between neutrophil apoptosis and endoplasmic reticulum stress (ERS) in sepsis and its mechanism. A prospective cohort study was conducted by recruiting a total of 58 patients with sepsis. Peripheral blood samples were collected on 1, 3, 5 and 7 days after admission to the ICU. The expressions of endoplasmic reticulum specific glucose regulatory protein 78 (GRP78), C/EBP homologous protein (CHOP), apoptosis signal-regulating kinase 1 (ASK1), Bcl-2-like 11 (BIM), death receptor 5 (DR5), c-Jun N-terminal kinases (JNK) and p38 were detected by Western blot and PCR. The subcellular location of CHOP and GRP78 was observed by immunofluorescence analysis. Spearman correlation was used to analyze the correlation between the expression of chop protein and the apoptosis rate of peripheral blood neutrophils. Healthy volunteers in the same period were selected as the healthy control group. The expression of GRP78 protein was significantly elevated on the first day of ICU admission and showed a decreasing trend on the third, fifth and seventh day, but was significantly higher than the corresponding healthy control group. The expression of CHOP protein reached the highest level on the third day. The expression of chop protein in each group was significantly higher than that in the corresponding healthy control group. Immunofluorescence staining clearly showed that the CHOP protein accumulated in the nucleus, with an elevation in the intensity of GRP78. The neutrophil apoptosis rate of sepsis patients on the 1st, 3rd, 5th and 7th day of ICU stay was significantly higher than that of the healthy control group, with the highest apoptosis rate on the 3rd day, and then decreased gradually. CHOP protein expression level was significantly positively correlated with neutrophil apoptosis rate in sepsis patients. Endoplasmic reticulum stress occurs in neutrophils during the development of sepsis. GRP78 protein and CHOP protein may be involved in the pathological process of neutrophil apoptosis in sepsis.


Subject(s)
Apoptosis , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress , Endoplasmic Reticulum , Heat-Shock Proteins , Neutrophils , Sepsis , Transcription Factor CHOP , Humans , Transcription Factor CHOP/metabolism , Transcription Factor CHOP/genetics , Neutrophils/metabolism , Neutrophils/pathology , Sepsis/pathology , Sepsis/metabolism , Sepsis/genetics , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Male , Female , Middle Aged , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/pathology , Endoplasmic Reticulum/genetics , Aged , Adult , Gene Expression Regulation , Prospective Studies
3.
J Biotechnol ; 387: 1-11, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38555020

ABSTRACT

The yeast Saccharomyces cerevisiae is a versatile cell factory used for manufacturing of a wide range of products, among them recombinant proteins. Protein folding is one of the rate-limiting processes and this shortcoming is often overcome by the expression of folding catalysts and chaperones in the endoplasmic reticulum (ER). In this work, we aimed to establish the impact of ER structure on cellular productivity. The reticulon proteins Rtn1p and Rtn2p, and Yop1p are membrane curvature inducing proteins that define the morphology of the ER and depletion of these proteins creates yeast cells with a higher ER sheet-to-tubule ratio. We created yeast strains with different combinations of deletions of Rtn1p, Rtn2p, and Yop1p coding genes in cells with a normal or expanded ER lumen. We identified strains that reached up to 2.2-fold higher antibody titres compared to the control strain. The expanded ER membrane reached by deletion of the lipid biosynthesis repressor OPI1 was essential for the increased productivity. The improved specific productivity was accompanied by an up to 2-fold enlarged ER surface area and a 1.5-fold increased cross-sectional cell area. Furthermore, the strains with enlarged ER displayed an attenuated unfolded protein response. These results underline the impact that ER structures have on productivity and support the notion that reprogramming subcellular structures belongs into the toolbox of synthetic biology.


Subject(s)
Endoplasmic Reticulum , Recombinant Proteins , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Unfolded Protein Response/genetics , Antibodies/metabolism , Antibodies/genetics
4.
Cell Death Dis ; 15(3): 203, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38467609

ABSTRACT

Organelles form membrane contact sites between each other, allowing for the transfer of molecules and signals. Mitochondria-endoplasmic reticulum (ER) contact sites (MERCS) are cellular subdomains characterized by close apposition of mitochondria and ER membranes. They have been implicated in many diseases, including neurodegenerative, metabolic, and cardiac diseases. Although MERCS have been extensively studied, much remains to be explored. To uncover novel regulators of MERCS, we conducted a genome-wide, flow cytometry-based screen using an engineered MERCS reporter cell line. We found 410 genes whose downregulation promotes MERCS and 230 genes whose downregulation decreases MERCS. From these, 29 genes were selected from each population for arrayed screening and 25 were validated from the high population and 13 from the low population. GET4 and BAG6 were highlighted as the top 2 genes that upon suppression increased MERCS from both the pooled and arrayed screens, and these were subjected to further investigation. Multiple microscopy analyses confirmed that loss of GET4 or BAG6 increased MERCS. GET4 and BAG6 were also observed to interact with the known MERCS proteins, inositol 1,4,5-trisphosphate receptors (IP3R) and glucose-regulated protein 75 (GRP75). In addition, we found that loss of GET4 increased mitochondrial calcium uptake upon ER-Ca2+ release and mitochondrial respiration. Finally, we show that loss of GET4 rescues motor ability, improves lifespan and prevents neurodegeneration in a Drosophila model of Alzheimer's disease (Aß42Arc). Together, these results suggest that GET4 is involved in decreasing MERCS and that its loss is neuroprotective.


Subject(s)
CRISPR-Cas Systems , Mitochondria Associated Membranes , CRISPR-Cas Systems/genetics , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Calcium/metabolism
5.
Mol Cell ; 84(7): 1321-1337.e11, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38513662

ABSTRACT

Intracellular Mg2+ (iMg2+) is bound with phosphometabolites, nucleic acids, and proteins in eukaryotes. Little is known about the intracellular compartmentalization and molecular details of Mg2+ transport into/from cellular organelles such as the endoplasmic reticulum (ER). We found that the ER is a major iMg2+ compartment refilled by a largely uncharacterized ER-localized protein, TMEM94. Conventional and AlphaFold2 predictions suggest that ERMA (TMEM94) is a multi-pass transmembrane protein with large cytosolic headpiece actuator, nucleotide, and phosphorylation domains, analogous to P-type ATPases. However, ERMA uniquely combines a P-type ATPase domain and a GMN motif for ERMg2+ uptake. Experiments reveal that a tyrosine residue is crucial for Mg2+ binding and activity in a mechanism conserved in both prokaryotic (mgtB and mgtA) and eukaryotic Mg2+ ATPases. Cardiac dysfunction by haploinsufficiency, abnormal Ca2+ cycling in mouse Erma+/- cardiomyocytes, and ERMA mRNA silencing in human iPSC-cardiomyocytes collectively define ERMA as an essential component of ERMg2+ uptake in eukaryotes.


Subject(s)
Adenosine Triphosphatases , P-type ATPases , Animals , Mice , Humans , Adenosine Triphosphatases/metabolism , Membrane Transport Proteins/metabolism , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Biological Transport , P-type ATPases/metabolism , Calcium/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases
6.
J Biol Chem ; 300(3): 105754, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38360270

ABSTRACT

KDELR (Erd2 [ER retention defective 2] in yeasts) is a receptor protein that retrieves endoplasmic reticulum (ER)-resident proteins from the Golgi apparatus. However, the role of the KDELR-mediated ER-retrieval system in regulating cellular homeostasis remains elusive. Here, we show that the absence of Erd2 triggers the unfolded protein response (UPR) and enhances mitochondrial respiration and reactive oxygen species in an UPR-dependent manner in the fission yeast Schizosaccharomyces pombe. Moreover, we perform transcriptomic analysis and find that the expression of genes related to mitochondrial respiration and the tricarboxylic acid cycle is upregulated in a UPR-dependent manner in cells lacking Erd2. The increased mitochondrial respiration and reactive oxygen species production is required for cell survival in the absence of Erd2. Therefore, our findings reveal a novel role of the KDELR-Erd2-mediated ER-retrieval system in modulating mitochondrial functions and highlight its importance for cellular homeostasis in the fission yeast.


Subject(s)
Endoplasmic Reticulum , Mitochondria , Schizosaccharomyces , Unfolded Protein Response , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress , Mitochondria/genetics , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism
7.
Proc Natl Acad Sci U S A ; 121(9): e2322582121, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38381787

ABSTRACT

Nascent proteins destined for the cell membrane and the secretory pathway are targeted to the endoplasmic reticulum (ER) either posttranslationally or cotranslationally. The signal-independent pathway, containing the protein TMEM208, is one of three pathways that facilitates the translocation of nascent proteins into the ER. The in vivo function of this protein is ill characterized in multicellular organisms. Here, we generated a CRISPR-induced null allele of the fruit fly ortholog CG8320/Tmem208 by replacing the gene with the Kozak-GAL4 sequence. We show that Tmem208 is broadly expressed in flies and that its loss causes lethality, although a few short-lived flies eclose. These animals exhibit wing and eye developmental defects consistent with impaired cell polarity and display mild ER stress. Tmem208 physically interacts with Frizzled (Fz), a planar cell polarity (PCP) receptor, and is required to maintain proper levels of Fz. Moreover, we identified a child with compound heterozygous variants in TMEM208 who presents with developmental delay, skeletal abnormalities, multiple hair whorls, cardiac, and neurological issues, symptoms that are associated with PCP defects in mice and humans. Additionally, fibroblasts of the proband display mild ER stress. Expression of the reference human TMEM208 in flies fully rescues the loss of Tmem208, and the two proband-specific variants fail to rescue, suggesting that they are loss-of-function alleles. In summary, our study uncovers a role of TMEM208 in development, shedding light on its significance in ER homeostasis and cell polarity.


Subject(s)
Drosophila Proteins , Humans , Child , Animals , Mice , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Cell Polarity/genetics , Drosophila/genetics , Signal Transduction/genetics , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism
8.
Nucleic Acids Res ; 52(8): 4276-4294, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38366760

ABSTRACT

The bZIP60, XBP1 and HAC1 mRNAs encode transcription factors that mediate the unfolded protein response (UPR) in plants, animals and yeasts, respectively. Upon UPR, these mRNAs undergo unconventional cytoplasmic splicing on the endoplasmic reticulum (ER) to produce active transcription factors. Although cytoplasmic splicing is conserved, the ER targeting mechanism differs between XBP1 and HAC1. The ER targeting of HAC1 mRNA occurs before translation, whereas that of XBP1 mRNA involves a ribosome-nascent chain complex that is stalled when a hydrophobic peptide emerges from the ribosome; the corresponding mechanism is unknown for bZIP60. Here, we analyzed ribosome stalling on bZIP60 orthologs of plants. Using a cell-free translation system, we detected nascent peptide-mediated ribosome stalling during the translation elongation of the mRNAs of Arabidopsis, rice and Physcomitrium (moss) orthologs, and the termination-step stalling in the Selaginella (lycopod) ortholog, all of which occurred ∼50 amino acids downstream of a hydrophobic region. Transfection experiments showed that ribosome stalling contributes to cytoplasmic splicing in bZIP60u orthologs of Arabidopsis and Selaginella. In contrast, ribosome stalling was undetectable for liverwort, Klebsormidium (basal land plant), and green algae orthologs. This study highlights the evolutionary diversity of ribosome stalling and its contribution to ER targeting in plants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Basic-Leucine Zipper Transcription Factors , Phylogeny , RNA, Messenger , Ribosomes , Unfolded Protein Response , Arabidopsis/genetics , Arabidopsis/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Ribosomes/metabolism , Ribosomes/genetics , Unfolded Protein Response/genetics , RNA, Messenger/metabolism , RNA, Messenger/genetics , Oryza/genetics , Oryza/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/genetics , RNA Splicing , Bryopsida/genetics , Bryopsida/metabolism , Protein Biosynthesis
9.
J Clin Invest ; 134(2)2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38226624

ABSTRACT

The suppressor of lin-12-like-HMG-CoA reductase degradation 1 (SEL1L-HRD1) complex of the endoplasmic reticulum-associated degradation (ERAD) machinery is a key cellular proteostasis pathway. Although previous studies have shown ERAD as promoting the development and maintenance of many cell types in mice, its importance to human physiology remained undetermined. In two articles in this issue of the JCI, Qi and colleagues describe four biallelic hypomorphic SEL1L and HRD1 variants that were associated with neurodevelopment disorders, locomotor dysfunction, impaired immunity, and premature death in patients. These pathogenic SEL1L-HRD1 variants shine a light on the critical importance of ERAD in humans and pave the way for future studies dissecting ERAD mechanisms in specific cell types.


Subject(s)
Endoplasmic Reticulum-Associated Degradation , Proteins , Ubiquitin-Protein Ligases , Animals , Humans , Mice , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Proteins/genetics , Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
10.
J Infect Dis ; 229(1): 237-244, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-37499184

ABSTRACT

The unfolded protein response (UPR) is an evolutionarily conserved pathway that senses and responds to the accumulation of misfolded proteins in the endoplasmic reticulum (ER) lumen during bacterial infection. The IRE-1/XBP-1 pathway is a major branch of the UPRER that has been conserved from yeast to human. Dioscin, a steroidal saponin exhibits a broad spectrum of properties. However, whether dioscin influences the immune response and the underlying molecular mechanisms remain obscure. We find that dioscin increases resistance to Gram-negative pathogen Pseudomonas aeruginosa. Furthermore, dioscin also inhibits the growth of pathogenic bacteria. Meanwhile, dioscin enhances the resistance to pathogens by reducing bacterial burden in the intestine. Through genetic screening, we find that dioscin activates the UPRER to promote innate immunity via IRE-1/XBP-1 pathway. Intriguingly, dioscin requires the neural XBP-1 for immune response. Our findings suggest that dioscin may be a viable candidate for the treatment of infectious diseases.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Diosgenin/analogs & derivatives , Animals , Humans , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Unfolded Protein Response , Immunity, Innate , Bacteria , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Carrier Proteins/metabolism
11.
Cells Dev ; 177: 203898, 2024 03.
Article in English | MEDLINE | ID: mdl-38103869

ABSTRACT

The basement membrane (BM) demarcating epithelial tissues undergoes rapid expansion to accommodate tissue growth and morphogenesis during embryonic development. To facilitate the secretion of bulky BM proteins, their mRNAs are polarized basally in the follicle epithelial cells of the Drosophila egg chamber to position their sites of production close to their deposition. In contrast, we observed the apical rather than basal polarization of all major BM mRNAs in the outer epithelial cells adjacent to the BM of mouse embryonic salivary glands using single-molecule RNA fluorescence in situ hybridization (smFISH). Moreover, electron microscopy and immunofluorescence revealed apical polarization of both the endoplasmic reticulum (ER) and Golgi apparatus, indicating that the site of BM component production was opposite to the site of deposition. At the apical side, BM mRNAs colocalized with ER, suggesting they may be co-translationally tethered. After microtubule inhibition, the BM mRNAs and ER became uniformly distributed rather than apically polarized, but they remained unchanged after inhibiting myosin II, ROCK, or F-actin, or after enzymatic disruption of the BM. Because Rab6 is generally required for Golgi-to-plasma membrane trafficking of BM components, we used lentivirus to express an mScarlet-tagged Rab6a in salivary gland epithelial cultures to visualize vesicle trafficking dynamics. We observed extensive bidirectional vesicle movements between Golgi at the apical side and the basal plasma membrane adjacent to the BM. Moreover, we showed that these vesicle movements depend on the microtubule motor kinesin-1 because very few vesicles remained motile after treatment with kinesore to compete for cargo-binding sites on kinesin-1. Overall, our work highlights the diverse strategies that different organisms use to secrete bulky matrix proteins: while Drosophila follicle epithelial cells strategically place their sites of BM protein production close to their deposition, mouse embryonic epithelial cells place their sites of production at the opposite end. Instead of spatial proximity, they use the microtubule cytoskeleton to mediate this organization as well as for the apical-to-basal transport of BM proteins.


Subject(s)
Kinesins , Microtubules , Animals , Mice , Basement Membrane/metabolism , Kinesins/genetics , Kinesins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , In Situ Hybridization, Fluorescence , Microtubules/genetics , Epithelial Cells/metabolism , Drosophila/genetics , Drosophila/metabolism , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism
12.
Mol Cell ; 84(1): 156-169, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38141606

ABSTRACT

Ubiquitin-fold modifier 1 (UFM1) is a ubiquitin-like protein covalently conjugated with intracellular proteins through UFMylation, a process similar to ubiquitylation. Growing lines of evidence regarding not only the structural basis of the components essential for UFMylation but also their biological properties shed light on crucial roles of the UFM1 system in the endoplasmic reticulum (ER), such as ER-phagy and ribosome-associated quality control at the ER, although there are some functions unrelated to the ER. Mouse genetics studies also revealed the indispensable roles of this system in hematopoiesis, liver development, neurogenesis, and chondrogenesis. Of critical importance, mutations of genes encoding core components of the UFM1 system in humans cause hereditary developmental epileptic encephalopathy and Schohat-type osteochondrodysplasia of the epiphysis. Here, we provide a multidisciplinary review of our current understanding of the mechanisms and cellular functions of the UFM1 system as well as its pathophysiological roles, and discuss issues that require resolution.


Subject(s)
Proteins , Ubiquitins , Humans , Animals , Mice , Proteins/metabolism , Ubiquitination , Ubiquitins/metabolism , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Cell Physiological Phenomena
13.
Mol Cell ; 83(24): 4509-4523.e11, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38134885

ABSTRACT

The cytoplasm is highly compartmentalized, but the extent and consequences of subcytoplasmic mRNA localization in non-polarized cells are largely unknown. We determined mRNA enrichment in TIS granules (TGs) and the rough endoplasmic reticulum (ER) through particle sorting and isolated cytosolic mRNAs by digitonin extraction. When focusing on genes that encode non-membrane proteins, we observed that 52% have transcripts enriched in specific compartments. Compartment enrichment correlates with a combinatorial code based on mRNA length, exon length, and 3' UTR-bound RNA-binding proteins. Compartment-biased mRNAs differ in the functional classes of their encoded proteins: TG-enriched mRNAs encode low-abundance proteins with strong enrichment of transcription factors, whereas ER-enriched mRNAs encode large and highly expressed proteins. Compartment localization is an important determinant of mRNA and protein abundance, which is supported by reporter experiments showing that redirecting cytosolic mRNAs to the ER increases their protein expression. In summary, the cytoplasm is functionally compartmentalized by local translation environments.


Subject(s)
Endoplasmic Reticulum , Proteins , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Proteins/metabolism , Cytosol/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Protein Transport , Protein Biosynthesis
14.
J Biol Chem ; 299(12): 105450, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37949225

ABSTRACT

Protein folding, quality control, maturation, and trafficking are essential processes for proper cellular homeostasis. Around one-third of the human proteome is targeted to the endoplasmic reticulum (ER), the organelle that serves as entrance into the secretory pathway. Successful protein trafficking is paramount for proper cellular function and to that end there are many ER resident proteins that ensure efficient secretion. Here, biochemical and cell biological analysis was used to determine that TTC17 is a large, soluble, ER-localized protein that plays an important role in secretory trafficking. Transcriptional analysis identified the predominantly expressed protein isoform of TTC17 in various cell lines. Further, TTC17 localizes to the ER and interacts with a wide variety of chaperones and cochaperones normally associated with ER protein folding, quality control, and maturation processes. TTC17 was found to be significantly upregulated by ER stress and through the creation and use of TTC17-/- cell lines, quantitative mass spectrometry identified secretory pathway wide trafficking defects in the absence of TTC17. Notably, trafficking of insulin-like growth factor type 1 receptor, glycoprotein nonmetastatic melanoma protein B, clusterin, and UDP-glucose:glycoprotein glucosyltransferase 1 were significantly altered in H4 neuroglioma cells. This study defines a novel ER trafficking factor and provides insight into the protein-protein assisted trafficking in the early secretory pathway.


Subject(s)
Endoplasmic Reticulum Stress , Protein Folding , Humans , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Glycoproteins/metabolism , Cell Line
15.
Hepatol Commun ; 7(11)2023 11 01.
Article in English | MEDLINE | ID: mdl-37820274

ABSTRACT

BACKGROUND: In all eukaryotic cell types, the unfolded protein response (UPR) upregulates factors that promote protein folding and misfolded protein clearance to help alleviate endoplasmic reticulum (ER) stress. Yet, ER stress in the liver is uniquely accompanied by the suppression of metabolic genes, the coordination and purpose of which are largely unknown. METHODS: Here, we combined in silico machine learning, in vivo liver-specific deletion of the master regulator of hepatocyte differentiation HNF4α, and in vitro manipulation of hepatocyte differentiation state to determine how the UPR regulates hepatocyte identity and toward what end. RESULTS: Machine learning identified a cluster of correlated genes that were profoundly suppressed by persistent ER stress in the liver. These genes, which encode diverse functions including metabolism, coagulation, drug detoxification, and bile synthesis, are likely targets of the master regulator of hepatocyte differentiation HNF4α. The response of these genes to ER stress was phenocopied by liver-specific deletion of HNF4α. Strikingly, while deletion of HNF4α exacerbated liver injury in response to an ER stress challenge, it also diminished UPR activation and partially preserved ER ultrastructure, suggesting attenuated ER stress. Conversely, pharmacological maintenance of hepatocyte identity in vitro enhanced sensitivity to stress. CONCLUSIONS: Together, our findings suggest that the UPR regulates hepatocyte identity through HNF4α to protect ER homeostasis even at the expense of liver function.


Subject(s)
Endoplasmic Reticulum , Gene Regulatory Networks , Gene Regulatory Networks/genetics , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress/genetics , Hepatocytes/metabolism , Liver/metabolism
16.
Sci Rep ; 13(1): 16079, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37752218

ABSTRACT

Using Col2.3GFP transgenic mice expressing GFP in maturing osteoblasts, we isolated Col2.3GFP+ enriched osteoblasts from 3 sources. We performed RNA-sequencing, identified 593 overlapping genes and confirmed these genes are highly enriched in osteoblast differentiation and bone mineralization annotation categories. The top 3 annotations are all associated with endoplasmic reticulum and Golgi vesicle transport. We selected 22 trafficking genes that have not been well characterized in bone for functional validation in MC3T3-E1 pre-osteoblasts. Transient siRNA knockdown of trafficking genes including Sec24d, Gosr2, Rab2a, Stx5a, Bet1, Preb, Arf4, Ramp1, Cog6 and Pacs1 significantly increased mineralized nodule formation and expression of osteoblast markers. Increased mineralized nodule formation was suppressed by concurrent knockdown of P4ha1 and/or P4ha2, encoding collagen prolyl 4-hydroxylase isoenzymes. MC3T3-E1 pre-osteoblasts with knockdown of Cog6, Gosr2, Pacs1 or Arf4 formed more and larger ectopic mineralized bone nodules in vivo, which was attenuated by concurrent knockdown P4ha2. Permanent knockdown of Cog6 and Pacs1 by CRISPR/Cas9 gene editing in MC3T3-E1 pre-osteoblasts recapitulated increased mineralized nodule formation and osteoblast differentiation. In summary, we have identified several vesicle trafficking genes with roles in osteoblast function. Our findings provide potential targets for regulating bone formation.


Subject(s)
Endoplasmic Reticulum , Osteogenesis , Animals , Mice , Osteogenesis/genetics , Endoplasmic Reticulum/genetics , Blister , Cell Differentiation/genetics , Mice, Transgenic , Osteoblasts , Vesicular Transport Proteins/genetics , rab GTP-Binding Proteins
17.
Fungal Genet Biol ; 169: 103840, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37730157

ABSTRACT

Neosynthesized plasma membrane (PM) proteins co-translationally translocate to the ER, concentrate at regions called ER-exit sites (ERes) and pack into COPII secretory vesicles which are sorted to the early-Golgi through membrane fusion. Following Golgi maturation, membrane cargoes reach the late-Golgi, from where they exit in clathrin-coated vesicles destined to the PM, directly or through endosomes. Post-Golgi membrane cargo trafficking also involves the cytoskeleton and the exocyst. The Golgi-dependent secretory pathway is thought to be responsible for the trafficking of all major membrane proteins. However, our recent findings in Aspergillus nidulans showed that several plasma membrane cargoes, such as transporters and receptors, follow a sorting route that seems to bypass Golgi functioning. To gain insight on membrane trafficking and specifically Golgi-bypass, here we used proximity dependent biotinylation (PDB) coupled with data-independent acquisition mass spectrometry (DIA-MS) for identifying transient interactors of the UapA transporter. Our assays, which included proteomes of wild-type and mutant strains affecting ER-exit or endocytosis, identified both expected and novel interactions that might be physiologically relevant to UapA trafficking. Among those, we validated, using reverse genetics and fluorescence microscopy, that COPI coatomer is essential for ER-exit and anterograde trafficking of UapA and other membrane cargoes. We also showed that ArfAArf1 GTPase activating protein (GAP) Glo3 contributes to UapA trafficking at increased temperature. This is the first report addressing the identification of transient interactions during membrane cargo biogenesis using PDB and proteomics coupled with fungal genetics. Our work provides a basis for dissecting dynamic membrane cargo trafficking via PDB assays.


Subject(s)
Endoplasmic Reticulum , Membrane Transport Proteins , Membrane Transport Proteins/metabolism , Protein Transport , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Golgi Apparatus/genetics , Carrier Proteins/metabolism , Membrane Proteins/metabolism
18.
RNA ; 29(11): 1703-1724, 2023 11.
Article in English | MEDLINE | ID: mdl-37643813

ABSTRACT

Signal recognition particle (SRP) pathway function in protein translocation across the endoplasmic reticulum (ER) is well established; its role in RNA localization to the ER remains, however, unclear. In current models, mRNAs undergo translation- and SRP-dependent trafficking to the ER, with ER localization mediated via interactions between SRP-bound translating ribosomes and the ER-resident SRP receptor (SR), a heterodimeric complex comprising SRA, the SRP-binding subunit, and SRB, an integral membrane ER protein. To study SRP pathway function in RNA localization, SR knockout (KO) mammalian cell lines were generated and the consequences of SR KO on steady-state and dynamic mRNA localization examined. CRISPR/Cas9-mediated SRPRB KO resulted in profound destabilization of SRA. Pairing siRNA silencing of SRPRA in SRPRB KO cells yielded viable SR KO cells. Steady-state mRNA compositions and ER-localization patterns in parental and SR KO cells were determined by cell fractionation and deep sequencing. Notably, steady-state cytosol and ER mRNA compositions and partitioning patterns were largely unaltered by loss of SR expression. To examine SRP pathway function in RNA localization dynamics, the subcellular trafficking itineraries of newly exported mRNAs were determined by 4-thiouridine (4SU) pulse-labeling/4SU-seq/cell fractionation. Newly exported mRNAs were distinguished by high ER enrichment, with ER localization being SR-independent. Intriguingly, under conditions of translation initiation inhibition, the ER was the default localization site for all newly exported mRNAs. These data demonstrate that mRNA localization to the ER can be uncoupled from the SRP pathway function and reopen questions regarding the mechanism of RNA localization to the ER.


Subject(s)
Endoplasmic Reticulum , Signal Recognition Particle , Animals , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Recognition Particle/genetics , Signal Recognition Particle/metabolism , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Ribosomes/genetics , Ribosomes/metabolism , Cytosol/metabolism , Membrane Proteins/genetics , Mammals/genetics
19.
PeerJ ; 11: e15897, 2023.
Article in English | MEDLINE | ID: mdl-37645016

ABSTRACT

Background: Candida albicans is the most prevalent human fungal pathogen. In immunocompromised individuals, C. albicans can cause serious systemic disease, and patients infected with drug-resistant isolates have few treatment options. The ubiquitin-proteasome system has not been thoroughly characterized in C. albicans. Research from other organisms has shown ubiquitination is important for protein quality control and regulated protein degradation at the endoplasmic reticulum (ER) via ER-associated protein degradation (ERAD). Methods: Here we perform the first characterization, to our knowledge, of ERAD in a human fungal pathogen. We generated functional knockouts of C. albicans genes encoding three proteins predicted to play roles in ERAD, the ubiquitin ligases Hrd1 and Doa10 and the ubiquitin-conjugating enzyme Ubc7. We assessed the fitness of each mutant in the presence of proteotoxic stress, and we used quantitative tandem mass tag mass spectrometry to characterize proteomic alterations in yeast lacking each gene. Results: Consistent with a role in protein quality control, yeast lacking proteins thought to contribute to ERAD displayed hypersensitivity to proteotoxic stress. Furthermore, each mutant displayed distinct proteomic profiles, revealing potential physiological ERAD substrates, co-factors, and compensatory stress response factors. Among candidate ERAD substrates are enzymes contributing to ergosterol synthesis, a known therapeutic vulnerability of C. albicans. Together, our results provide the first description of ERAD function in C. albicans, and, to our knowledge, any pathogenic fungus.


Subject(s)
Candida albicans , Endoplasmic Reticulum-Associated Degradation , Humans , Candida albicans/genetics , Proteomics , Fungal Proteins/genetics , Ubiquitin , Endoplasmic Reticulum/genetics
20.
Adv Exp Med Biol ; 1415: 353-358, 2023.
Article in English | MEDLINE | ID: mdl-37440056

ABSTRACT

The cone photoreceptor cyclic nucleotide-gated (CNG) channel plays a pivotal role in cone phototransduction. Mutations in genes encoding the channel subunits CNGA3 and CNGB3 account for about 80% of all cases of achromatopsia and are associated with progressive cone dystrophies. CNG channel deficiency leads to cellular/endoplasmic reticulum (ER) calcium dysregulation and ER stress-associated cone apoptosis. This work investigated the role of the ER calcium channel ryanodine receptor 1 (Ryr1) in ER stress and cone degeneration in CNG channel deficiency. The AAV-mediated CRISPR/SaCas9 genome editing was used to knock down Ryr1 specifically in cones. CNG channel-deficient mice displayed improved cone survival after subretinal injection of AAV2-SaCas9/gRNA-Ryr1, manifested as increased expression levels of cone proteins M-opsin, S-opsin, and cone arrestin. Knockdown of Ryr1 also led to reduced ER stress and increased expression levels of the ER-associated degradation proteins. This work demonstrates a role of Ryr1 in ER stress and cone degeneration in CNG channel deficiency, and supports strategies targeting ER calcium regulation for cone preservation.


Subject(s)
Cyclic Nucleotide-Gated Cation Channels , Ryanodine Receptor Calcium Release Channel , Animals , Mice , Cyclic Nucleotide-Gated Cation Channels/genetics , Cyclic Nucleotide-Gated Cation Channels/metabolism , Ryanodine Receptor Calcium Release Channel/genetics , Ryanodine Receptor Calcium Release Channel/metabolism , Calcium/metabolism , Proteolysis , Retinal Cone Photoreceptor Cells/metabolism , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Opsins/genetics , Nucleotides, Cyclic/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...