Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.979
Filter
1.
Methods Mol Biol ; 2807: 271-283, 2024.
Article in English | MEDLINE | ID: mdl-38743235

ABSTRACT

The blood-brain barrier (BBB) is one of several barriers between the brain and the peripheral blood system to maintain homeostasis. Understanding the interactions between infectious agents such as human immunodeficiency virus type 1 (HIV-1), which are capable of traversing the BBB and causing neuroinflammation requires modeling an authentic BBB in vitro. Such an in vitro BBB model also helps develop means of targeting viruses that reside in the brain via natural immune effectors such as antibodies. The BBB consists of human brain microvascular endothelial cells (HBMECs), astrocytes, and pericytes. Here we report in vitro methods to establish a dual-cell BBB model consisting of primary HBMECs and primary astrocytes to measure the integrity of the BBB and antibody penetration of the BBB, as well as a method to establish a single cell BBB model to study the impact of HIV-1 infected medium on the integrity of such a BBB.


Subject(s)
Astrocytes , Blood-Brain Barrier , Endothelial Cells , HIV Infections , HIV-1 , Blood-Brain Barrier/virology , Blood-Brain Barrier/metabolism , Humans , Astrocytes/virology , Astrocytes/metabolism , Astrocytes/immunology , Endothelial Cells/virology , Endothelial Cells/metabolism , Endothelial Cells/immunology , HIV-1/immunology , HIV-1/physiology , HIV Infections/virology , HIV Infections/immunology , Pericytes/virology , Pericytes/metabolism , Pericytes/immunology , Neuroinflammatory Diseases/virology , Neuroinflammatory Diseases/immunology , Coculture Techniques/methods , Cells, Cultured , Brain/virology , Brain/immunology , Brain/metabolism
2.
Life Sci Alliance ; 7(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38740432

ABSTRACT

Subclinical vascular impairment can be exacerbated in individuals who experience sustained inflammation after COVID-19 infection. Our study explores the prevalence and impact of autoantibodies on vascular dysfunction in healthy COVID-19 survivors, an area that remains inadequately investigated. Focusing on autoantibodies against the atypical chemokine receptor 1 (ACKR1), COVID-19 survivors demonstrated significantly elevated anti-ACKR1 autoantibodies, correlating with systemic cytokines, circulating damaged endothelial cells, and endothelial dysfunction. An independent cohort linked these autoantibodies to increased vascular disease outcomes during a median 6.7-yr follow-up. We analyzed a single-cell transcriptome atlas of endothelial cells from diverse mouse tissues, identifying enriched Ackr1 expressions in venous regions of the brain and soleus muscle vasculatures, which holds intriguing implications for tissue-specific venous thromboembolism manifestations reported in COVID-19. Functionally, purified immunoglobulin G (IgG) extracted from patient plasma did not trigger cell apoptosis or increase barrier permeability in human vein endothelial cells. Instead, plasma IgG enhanced antibody-dependent cellular cytotoxicity mediated by patient PBMCs, a phenomenon alleviated by blocking peptide or liposome ACKR1 recombinant protein. The blocking peptide uncovered that purified IgG from COVID-19 survivors possessed potential epitopes in the N-terminal extracellular domain of ACKR1, which effectively averted antibody-dependent cellular cytotoxicity. Our findings offer insights into therapeutic development to mitigate autoantibody reactivity in blood vessels in chronic inflammation.


Subject(s)
Autoantibodies , COVID-19 , SARS-CoV-2 , Humans , Autoantibodies/immunology , COVID-19/immunology , Animals , Mice , Female , Male , SARS-CoV-2/immunology , Inflammation/immunology , Middle Aged , Endothelium, Vascular/metabolism , Endothelium, Vascular/immunology , Immunoglobulin G/immunology , Immunoglobulin G/blood , Endothelial Cells/metabolism , Endothelial Cells/immunology , Adult , Aged
3.
Circ Res ; 134(10): 1276-1291, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38623763

ABSTRACT

BACKGROUND: Hypertension is characterized by CD8+ (cluster differentiation 8) T cell activation and infiltration into peripheral tissues. CD8+ T cell activation requires proteasomal processing of antigenic proteins. It has become clear that isoLG (isolevuglandin)-adduced peptides are antigenic in hypertension; however, IsoLGs inhibit the constitutive proteasome. We hypothesized that immunoproteasomal processing of isoLG-adducts is essential for CD8+ T cell activation and inflammation in hypertension. METHODS: IsoLG adduct processing was studied in murine dendritic cells (DCs), endothelial cells (ECs), and B8 fibroblasts. The role of the proteasome and the immunoproteasome in Ang II (angiotensin II)-induced hypertension was studied in C57BL/6 mice treated with bortezomib or the immunoproteasome inhibitor PR-957 and by studying mice lacking 3 critical immunoproteasome subunits (triple knockout mouse). We also examined hypertension in mice lacking the critical immunoproteasome subunit LMP7 (large multifunctional peptidase 7) specifically in either DCs or ECs. RESULTS: We found that oxidant stress increases the presence of isoLG adducts within MHC-I (class I major histocompatibility complex), and immunoproteasome overexpression augments this. Pharmacological or genetic inhibition of the immunoproteasome attenuated hypertension and tissue inflammation. Conditional deletion of LMP7 in either DCs or ECs attenuated hypertension and vascular inflammation. Finally, we defined the role of the innate immune receptors STING (stimulator of interferon genes) and TLR7/8 (toll-like receptor 7/8) as drivers of LMP7 expression in ECs. CONCLUSIONS: These studies define a previously unknown role of the immunoproteasome in DCs and ECs in CD8+ T cell activation. The immunoproteasome in DCs and ECs is critical for isoLG-adduct presentation to CD8+ T cells, and in the endothelium, this guides homing and infiltration of T cells to specific tissues.


Subject(s)
Bortezomib , CD8-Positive T-Lymphocytes , Dendritic Cells , Hypertension , Mice, Inbred C57BL , Mice, Knockout , Proteasome Endopeptidase Complex , Animals , Proteasome Endopeptidase Complex/metabolism , Hypertension/metabolism , Hypertension/immunology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Mice , CD8-Positive T-Lymphocytes/immunology , Bortezomib/pharmacology , Angiotensin II , Male , Oxidative Stress , Proteasome Inhibitors/pharmacology , Histocompatibility Antigens Class I/metabolism , Histocompatibility Antigens Class I/genetics , Lymphocyte Activation , Cells, Cultured , Fibroblasts/metabolism , Endothelial Cells/metabolism , Endothelial Cells/immunology , Oligopeptides
4.
J Virol ; 97(11): e0048023, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37877715

ABSTRACT

IMPORTANCE: Viruses are able to mimic the physiological or pathological mechanism of the host to favor their infection and replication. Virus-mock basement membrane (VMBM) is a Megalocytivirus-induced extracellular structure formed on the surface of infected cells and structurally and functionally mimics the basement membrane of the host. VMBM provides specific support for lymphatic endothelial cells (LECs) rather than blood endothelial cells to adhere to the surface of infected cells, which constitutes a unique phenomenon of Megalocytivirus infection. Here, the structure of VMBM and the interactions between VMBM components and LECs have been analyzed at the molecular level. The regulatory effect of VMBM components on the proliferation and migration of LECs has also been explored. This study helps to understand the mechanism of LEC-specific attachment to VMBM and to address the issue of where the LECs come from in the context of Megalocytivirus infection.


Subject(s)
Basement Membrane , Endothelial Cells , Iridoviridae , Lymphatic Vessels , Basement Membrane/metabolism , Basement Membrane/virology , Endothelial Cells/cytology , Endothelial Cells/immunology , Endothelial Cells/metabolism , Iridoviridae/physiology , Lymphatic Vessels/cytology , Cell Proliferation , Cell Movement , Blood Vessels/cytology , Host Microbial Interactions
5.
Nature ; 622(7982): 393-401, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37821590

ABSTRACT

Recent human decedent model studies1,2 and compassionate xenograft use3 have explored the promise of porcine organs for human transplantation. To proceed to human studies, a clinically ready porcine donor must be engineered and its xenograft successfully tested in nonhuman primates. Here we describe the design, creation and long-term life-supporting function of kidney grafts from a genetically engineered porcine donor transplanted into a cynomolgus monkey model. The porcine donor was engineered to carry 69 genomic edits, eliminating glycan antigens, overexpressing human transgenes and inactivating porcine endogenous retroviruses. In vitro functional analyses showed that the edited kidney endothelial cells modulated inflammation to an extent that was indistinguishable from that of human endothelial cells, suggesting that these edited cells acquired a high level of human immune compatibility. When transplanted into cynomolgus monkeys, the kidneys with three glycan antigen knockouts alone experienced poor graft survival, whereas those with glycan antigen knockouts and human transgene expression demonstrated significantly longer survival time, suggesting the benefit of human transgene expression in vivo. These results show that preclinical studies of renal xenotransplantation could be successfully conducted in nonhuman primates and bring us closer to clinical trials of genetically engineered porcine renal grafts.


Subject(s)
Graft Rejection , Kidney Transplantation , Macaca fascicularis , Swine , Transplantation, Heterologous , Animals , Humans , Animals, Genetically Modified , Endothelial Cells/immunology , Endothelial Cells/metabolism , Graft Rejection/immunology , Graft Rejection/prevention & control , Kidney Transplantation/methods , Polysaccharides/deficiency , Swine/genetics , Transplantation, Heterologous/methods , Transgenes/genetics
6.
Angiogenesis ; 26(2): 265-278, 2023 05.
Article in English | MEDLINE | ID: mdl-36403190

ABSTRACT

Overcoming vascular immunosuppression: lack of endothelial cell (EC) responsiveness to inflammatory stimuli in the proangiogenic environment of tumors, is essential for successful cancer immunotherapy. The mechanisms through which Vascular Endothelial Growth Factor A(VEGF-A) modulates tumor EC response to exclude T-cells are not well understood. Here, we demonstrate that EC-specific deletion of small GTPase Rap1B, previously implicated in normal angiogenesis, restricts tumor growth in endothelial-specific Rap1B-knockout (Rap1BiΔEC) mice. EC-specific Rap1B deletion inhibits angiogenesis, but also leads to an altered tumor microenvironment with increased recruitment of leukocytes and increased activity of tumor CD8+ T-cells. Depletion of CD8+ T-cells restored tumor growth in Rap1BiΔEC mice. Mechanistically, global transcriptome and functional analyses indicated upregulation of signaling by a tumor cytokine, TNF-α, and increased NF-κB transcription in Rap1B-deficient ECs. Rap1B-deficiency led to elevated proinflammatory chemokine and Cell Adhesion Molecules (CAMs) expression in TNF-α stimulated ECs. Importantly, CAM expression was elevated in tumor ECs from Rap1BiΔEC mice. Significantly, Rap1B deletion prevented VEGF-A-induced immunosuppressive downregulation of CAM expression, demonstrating that Rap1B is essential for VEGF-A-suppressive signaling. Thus, our studies identify a novel endothelial-endogenous mechanism underlying VEGF-A-dependent desensitization of EC to proinflammatory stimuli. Significantly, they identify EC Rap1B as a potential novel vascular target in cancer immunotherapy.


Subject(s)
CD8-Positive T-Lymphocytes , Endothelial Cells , Neoplasms , rap GTP-Binding Proteins , Animals , Mice , CD8-Positive T-Lymphocytes/immunology , Immunosuppression Therapy , Neoplasms/blood supply , Neoplasms/genetics , Neoplasms/immunology , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/immunology , Endothelial Cells/immunology , Endothelial Cells/physiology , NF-kappa B/genetics , NF-kappa B/immunology , rap GTP-Binding Proteins/genetics , rap GTP-Binding Proteins/immunology
7.
Angiogenesis ; 26(2): 279-293, 2023 05.
Article in English | MEDLINE | ID: mdl-36459240

ABSTRACT

PURPOSE: Ongoing angiogenesis renders the tumor endothelium unresponsive to inflammatory cytokines and interferes with adhesion of leukocytes, resulting in escape from immunity. This process is referred to as tumor endothelial cell anergy. We aimed to investigate whether anti-angiogenic agents can overcome endothelial cell anergy and provide pro-inflammatory conditions. EXPERIMENTAL DESIGN: Tissues of renal cell carcinoma (RCC) patients treated with VEGF pathway-targeted drugs and control tissues were subject to RNAseq and immunohistochemical profiling of the leukocyte infiltrate. Analysis of adhesion molecule regulation in cultured endothelial cells, in a preclinical model and in human tissues was performed and correlated to leukocyte infiltration. RESULTS: It is shown that treatment of RCC patients with the drugs sunitinib or bevacizumab overcomes tumor endothelial cell anergy. This treatment resulted in an augmented inflammatory state of the tumor, characterized by enhanced infiltration of all major leukocyte subsets, including T cells, regulatory T cells, macrophages of both M1- and M2-like phenotypes and activated dendritic cells. In vitro, exposure of angiogenic endothelial cells to anti-angiogenic drugs normalized ICAM-1 expression. In addition, a panel of tyrosine kinase inhibitors was shown to increase transendothelial migration of both non-adherent and monocytic leukocytes. In primary tumors of RCC patients, ICAM-1 expression was found to be significantly increased in both the sunitinib and bevacizumab-treated groups. Genomic analysis confirmed the correlation between increased immune cell infiltration and ICAM-1 expression upon VEGF-targeted treatment. CONCLUSION: The results support the emerging concept that anti-angiogenic therapy can boost immunity and show how immunotherapy approaches can benefit from combination with anti-angiogenic compounds.


Subject(s)
Angiogenesis Inhibitors , Carcinoma, Renal Cell , Endothelial Cells , Kidney Neoplasms , Neovascularization, Pathologic , Humans , Bevacizumab/immunology , Bevacizumab/pharmacology , Bevacizumab/therapeutic use , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/immunology , Carcinoma, Renal Cell/pathology , Endothelial Cells/drug effects , Endothelial Cells/immunology , Endothelial Cells/pathology , Endothelium/drug effects , Endothelium/immunology , Endothelium/pathology , Intercellular Adhesion Molecule-1/immunology , Kidney Neoplasms/drug therapy , Kidney Neoplasms/immunology , Kidney Neoplasms/pathology , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/immunology , Neovascularization, Pathologic/pathology , Sunitinib/immunology , Sunitinib/pharmacology , Sunitinib/therapeutic use , Vascular Endothelial Growth Factor A/immunology , Immune Tolerance/drug effects , Immune Tolerance/immunology , Neoplasm Invasiveness/immunology , Inflammation/drug therapy , Inflammation/immunology , Inflammation/pathology , Angiogenesis Inhibitors/immunology , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/therapeutic use
8.
Cells ; 11(18)2022 09 17.
Article in English | MEDLINE | ID: mdl-36139488

ABSTRACT

Airway epithelial cells represent the main target of SARS-CoV-2 replication but several pieces of evidence suggest that endothelial cells (ECs), lining pulmonary blood vessels, are key players in lung injury in COVID-19 patients. Although in vivo evidence of SARS-CoV-2 affecting the vascular endothelium exists, in vitro data are limited. In the present study, we set up an organotypic model to dissect the crosstalk between airway epithelium and pulmonary endothelial cells during SARS-CoV-2 infection. We showed that SARS-CoV-2 infected airway epithelium triggers the induction of endothelial adhesion molecules in ECs, suggesting a bystander effect of dangerous soluble signals from the infected epithelium. The endothelial activation was correlated with inflammatory cytokines (IL-1ß, IL-6, IL-8) and with the viral replication in the airway epithelium. Interestingly, SARS-CoV-2 infection determined a modulation of endothelial p21, which could be partially reversed by inhibiting IFN-ß production from ECs when co-cultured with HAE. Altogether, we demonstrated that SARS-CoV-2 infected epithelium triggers activation/senescence processes in ECs involving type I IFN-ß production, suggesting possible antiviral/damage mechanisms occurring in the endothelium.


Subject(s)
COVID-19 , Endothelial Cells , Interferon Type I , COVID-19/immunology , Cellular Senescence , Endothelial Cells/immunology , Epithelium , Humans , Interferon Type I/immunology , Interleukin-6 , Interleukin-8 , Lung , SARS-CoV-2
9.
Front Immunol ; 13: 911260, 2022.
Article in English | MEDLINE | ID: mdl-35967388

ABSTRACT

Medulloblastoma, a common pediatric malignant tumor, has been recognized to have four molecular subgroups [wingless (WNT), sonic hedgehog (SHH), group 3, group 4], which are defined by the characteristic gene transcriptomic and DNA methylomic profiles, and has distinct clinical features within each subgroup. The tumor immune microenvironment is integral in tumor initiation and progression and might be associated with therapeutic responses. However, to date, the immune infiltrative landscape of medulloblastoma has not yet been elucidated. Thus, we proposed MethylCIBERSORT to estimate the degree of immune cell infiltration and weighted correlation network analysis (WGCNA) to find modules of highly correlated genes. Synthesizing the hub genes in the protein-protein interaction (PPI) network and modules of the co-expression network, we identify three candidate biomarkers [GRB2-associated-binding protein 1 (GAB1), Abelson 1 (ABL1), and CXC motif chemokine receptor type 4 (CXCR4)] via the molecular profiles of medulloblastoma. Given this, we investigated the correlation between these three immune hub genes and immune checkpoint blockade response and the potential of drug prediction further. In addition, this study demonstrated a higher presence of endothelial cells and infiltrating immune cells in Group 3 tumor bulk. The above results will be conducive to better comprehending the immune-related pathogenesis and treatment of medulloblastoma.


Subject(s)
Adaptor Proteins, Signal Transducing , Cerebellar Neoplasms , Medulloblastoma , Proto-Oncogene Proteins c-abl , Receptors, CXCR4 , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/immunology , Biomarkers , Biomarkers, Tumor/genetics , Biomarkers, Tumor/immunology , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/immunology , Cerebellar Neoplasms/pathology , Child , Endothelial Cells/immunology , Hedgehog Proteins/immunology , Humans , Medulloblastoma/genetics , Medulloblastoma/immunology , Medulloblastoma/pathology , Proto-Oncogene Proteins c-abl/genetics , Proto-Oncogene Proteins c-abl/immunology , Receptors, CXCR4/genetics , Receptors, CXCR4/immunology , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology
10.
Proc Natl Acad Sci U S A ; 119(36): e2206327119, 2022 09 06.
Article in English | MEDLINE | ID: mdl-36037380

ABSTRACT

Cerebral malaria (CM) is a life-threatening form of Plasmodium falciparum infection caused by brain inflammation. Brain endothelium dysfunction is a hallmark of CM pathology, which is also associated with the activation of the type I interferon (IFN) inflammatory pathway. The molecular triggers and sensors eliciting brain type I IFN cellular responses during CM remain largely unknown. We herein identified the stimulator of interferon response cGAMP interactor 1 (STING1) as the key innate immune sensor that induces Ifnß1 transcription in the brain of mice infected with Plasmodium berghei ANKA (Pba). This STING1/IFNß-mediated response increases brain CXCL10 governing the extent of brain leukocyte infiltration and blood-brain barrier (BBB) breakdown, and determining CM lethality. The critical role of brain endothelial cells (BECs) in fueling type I IFN-driven brain inflammation was demonstrated in brain endothelial-specific IFNß-reporter and STING1-deficient Pba-infected mice, which were significantly protected from CM lethality. Moreover, extracellular particles (EPs) released from Pba-infected erythrocytes activated the STING1-dependent type I IFN response in BECs, a response requiring intracellular acidification. Fractionation of the EPs enabled us to identify a defined fraction carrying hemoglobin degradation remnants that activates STING1/IFNß in the brain endothelium, a process correlated with heme content. Notably, stimulation of STING1-deficient BECs with heme, docking experiments, and in vitro binding assays unveiled that heme is a putative STING1 ligand. This work shows that heme resultant from the parasite heterotrophic activity operates as an alarmin, triggering brain endothelial inflammatory responses via the STING1/IFNß/CXCL10 axis crucial to CM pathogenesis and lethality.


Subject(s)
Brain , Heme , Interferon-beta , Malaria, Cerebral , Membrane Proteins , Animals , Brain/parasitology , Endothelial Cells/immunology , Endothelial Cells/metabolism , Endothelial Cells/parasitology , Endothelium/immunology , Endothelium/parasitology , Heme/metabolism , Interferon-beta/immunology , Malaria, Cerebral/immunology , Malaria, Cerebral/parasitology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Plasmodium berghei/metabolism , Transcriptional Activation/immunology
11.
Proc Natl Acad Sci U S A ; 119(25): e2202327119, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35696583

ABSTRACT

Pediatric patients with constitutively active mutations in the cytosolic double-stranded-DNA-sensing adaptor STING develop an autoinflammatory syndrome known as STING-associated vasculopathy with onset in infancy (SAVI). SAVI patients have elevated interferon-stimulated gene expression and suffer from interstitial lung disease (ILD) with lymphocyte predominate bronchus-associated lymphoid tissue (BALT). Mice harboring SAVI mutations (STING V154M [VM]) that recapitulate human disease also develop lymphocyte-rich BALT. Ablation of either T or B lymphocytes prolongs the survival of SAVI mice, but lung immune aggregates persist, indicating that T cells and B cells can independently be recruited as BALT. VM T cells produced IFNγ, and IFNγR deficiency prolonged the survival of SAVI mice; however, T-cell-dependent recruitment of infiltrating myeloid cells to the lung was IFNγ independent. Lethally irradiated VM recipients fully reconstituted with wild type bone-marrow-derived cells still developed ILD, pointing to a critical role for VM-expressing radioresistant parenchymal and/or stromal cells in the recruitment and activation of pathogenic lymphocytes. We identified lung endothelial cells as radioresistant cells that express STING. Transcriptional analysis of VM endothelial cells revealed up-regulation of chemokines, proinflammatory cytokines, and genes associated with antigen presentation. Together, our data show that VM-expressing radioresistant cells play a key role in the initiation of lung disease in VM mice and provide insights for the treatment of SAVI patients, with implications for ILD associated with other connective tissue disorders.


Subject(s)
Endothelial Cells , Lung Diseases, Interstitial , Membrane Proteins , T-Lymphocytes , Vascular Diseases , Animals , Child , Endothelial Cells/immunology , Endothelial Cells/radiation effects , Gain of Function Mutation , Humans , Interferon-gamma/genetics , Interferon-gamma/metabolism , Lung Diseases, Interstitial/genetics , Lung Diseases, Interstitial/immunology , Lymphocyte Depletion , Lymphoid Tissue/immunology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Radiation Tolerance , T-Lymphocytes/immunology , Vascular Diseases/genetics , Vascular Diseases/immunology
12.
Ann Plast Surg ; 88(5 Suppl 5): S466-S472, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35502953

ABSTRACT

BACKGROUND: Acellular dermal matrix (ADM) supported implant-based reconstruction remains the most commonly performed mode of reconstruction after breast cancer. Acellular dermal matrix clinical usage has reported benefits but requires rapid and efficient vascular and cellular incorporation into the recipient to have the best outcomes. Orderly transition from M1 to M2 macrophage phenotypic profile, coordinated in part by interleukin 4 (IL-4), is an important component of vascular stabilization and remodeling. Using the ADM substrate as a delivery device for immunomodulation of macrophage phenotype holds the potential to improve integration. METHODS: Interleukin 4 was adsorbed onto ADM samples and drug elution curves were measured. Next, experimental groups of 8 C57BL/6 mice had 5-mm ADM discs surgically placed in a dorsal window chamber with a vascularized skin flap on one side and a plastic cover slip on the other in a model of implant-based breast reconstruction. Group 1 consisted of IL-4 (5 µg) adsorbed into the ADM preoperatively and group 2 consisted of an untreated ADM control. Serial gross examinations were performed with histology at day 21 for markers of vascularization, mesenchymal cell infiltration, and macrophage lineage. RESULTS: Drug elution curves showed sustained IL-4 release for 10 days after adsorption. Serial gross examination showed similar rates of superficial vascular investment of the ADM beginning at the periphery by day 14 and increasing through day 21. Interleukin-4 treatment led to significantly increased CD31 staining of vascular endothelial cells within the ADM over the control group (P < 0.05) at 21 days. Although vimentin staining did not indicate a significant increase in fibroblasts overall, IL-4 did result in a significant increase in expression of α-smooth muscle actin. The expression of macrophage phenotype markers Arginase1 and iNOS present within the ADM were not significantly affected by IL-4 treatment at the day 21 time point. CONCLUSIONS: Acellular dermal matrix has the potential to be used for immunomodulatory cytokine delivery during the timeframe of healing. Using implanted ADM as a delivery vehicle to drive IL-4 mediated angiogenesis and vascular remodeling significantly enhanced vascularity within the ADM substrate.


Subject(s)
Acellular Dermis , Interleukin-4 , Acellular Dermis/drug effects , Animals , Endothelial Cells/cytology , Endothelial Cells/drug effects , Endothelial Cells/immunology , Immunomodulation , Interleukin-4/immunology , Interleukin-4/pharmacokinetics , Interleukin-4/pharmacology , Macrophages/drug effects , Macrophages/immunology , Mice , Mice, Inbred C57BL , Vascular Remodeling
13.
Clin Exp Pharmacol Physiol ; 49(8): 805-812, 2022 08.
Article in English | MEDLINE | ID: mdl-35577580

ABSTRACT

Atherosclerosis is associated with a haemostatic imbalance characterized by excessive activation of pro-inflammatory and pro-coagulant pathways. Non-vitamin K antagonists oral anticoagulant (NOACs) may reduce the incidence of cardiovascular events, cerebral ischemia, thromboembolic events and atherosclerosis. Chronic inflammation, vascular proliferation and the development of atherosclerosis is also influenced by 25-hydroxycholesterol (25-OHC). The aim of the study was to assess the effect of rivaroxaban and dabigatran on the messenger RNA (mRNA) expression of anti-inflammatory cytokines transforming growth factor ß (TGF-ß), interleukin (IL)-37, IL-35 as well as of pro-inflammatory cytokines IL-18 and IL-23, in endothelial cells damaged by 25-OHC. Human umbilical vascular endothelial cells (HUVECs) were treated with 25-OHC (10 µg/mL), rivaroxaban (100, 500 ng/mL), dabigatran (100, 500 ng/mL), 25-OHC + rivaroxaban, and 25-OHC + dabigatran. The mRNA expression of TGF-ß, IL-37, IL-35 subunits EBI3 and p35, IL-18, and IL-23 was analysed using real-time polymerase chain reaction (PCR). The results showed that 25-OHC decreased TGF-ß and IL-37 mRNA expression and increased EBI3, p35, IL-18, IL-23 mRNA expression in endothelial cell as compared to an untreated control (P < .05). Messenger RNA expression of TGF-ß and IL-37 significantly increased following stimulation with rivaroxaban and dabigatran as compared to an untreated control (P < .01). In HUVECs pre-treated with oxysterol, rivaroxaban and dabigatran increased mRNA expression of TGF-ß, IL-37 and decreased mRNA expression of EBI3, p35, IL-23 and IL-18 as compared to 25-OHC (P < .01). Our finding suggests that both rivaroxaban and dabigatran inhibit the inflammatory activation caused by oxysterol in vitro.


Subject(s)
Atherosclerosis , Cytokines , Dabigatran , Human Umbilical Vein Endothelial Cells , Hydroxycholesterols , Rivaroxaban , Administration, Oral , Anticoagulants/pharmacology , Anticoagulants/therapeutic use , Atherosclerosis/drug therapy , Atherosclerosis/genetics , Atherosclerosis/immunology , Atrial Fibrillation/drug therapy , Cytokines/genetics , Cytokines/immunology , Dabigatran/pharmacology , Dabigatran/therapeutic use , Endothelial Cells/drug effects , Endothelial Cells/immunology , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/immunology , Humans , Hydroxycholesterols/administration & dosage , Hydroxycholesterols/adverse effects , Hydroxycholesterols/pharmacology , Interleukin-18/genetics , Interleukin-18/immunology , Interleukin-23/genetics , Interleukin-23/immunology , Oxysterols/administration & dosage , Oxysterols/adverse effects , Oxysterols/pharmacology , RNA, Messenger/genetics , RNA, Messenger/immunology , Rivaroxaban/pharmacology , Rivaroxaban/therapeutic use , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/immunology
14.
J Cell Mol Med ; 26(11): 3203-3212, 2022 06.
Article in English | MEDLINE | ID: mdl-35611804

ABSTRACT

Microvasculature consisting of endothelial cells and pericytes is the main site of injury during antibody-mediated rejection (ABMR) of renal grafts. Little is known about the mechanisms of activation of pericytes in this pathology. We have found recently that activation of Notch3, a mediator of vascular smooth muscle cell proliferation and dedifferentiation, promotes renal inflammation and fibrosis and aggravates progression of renal disease. Therefore, we studied the pericyte expression of Notch3 in 49 non-selected renal graft biopsies (32 for clinical cause, 17 for graft surveillance). We analysed its relationship with patients' clinical and morphological data, and compared with the expression of partial endothelial mesenchymal transition (pEndMT) markers, known to reflect endothelial activation during ABMR. Notch3 was de novo expressed in pericytes of grafts with ABMR, and was significantly correlated with the microcirculation inflammation scores of peritubular capillaritis and glomerulitis and with the expression of pEndMT markers. Notch3 expression was also associated with graft dysfunction and proteinuria at the time of biopsy and in the long term. Multivariate analysis confirmed pericyte expression of Notch3 as an independent risk factor predicting graft loss. These data suggest that Notch3 is activated in the pericytes of renal grafts with ABMR and is associated with poor graft outcome.


Subject(s)
Graft Rejection , Pericytes , Receptor, Notch3 , Antibodies , Biomarkers/analysis , Biopsy , Endothelial Cells/immunology , Endothelial Cells/pathology , Graft Rejection/immunology , Graft Rejection/pathology , Humans , Inflammation/immunology , Inflammation/pathology , Pericytes/immunology , Pericytes/pathology , Receptor, Notch3/biosynthesis , Receptor, Notch3/immunology
15.
Cell Mol Life Sci ; 79(3): 191, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35292881

ABSTRACT

Immune checkpoint blockade (ICB) therapies have achieved remarkable clinical responses in patients with many different types of cancer; however, most patients who receive ICB monotherapy fail to achieve long-term responses, and some tumors become immunotherapy-resistant and even hyperprogressive. Type I interferons (IFNs) have been demonstrated to inhibit tumor growth directly and indirectly by acting upon tumor and immune cells, respectively. Furthermore, accumulating evidence indicates that endo- and exogenously enhancing type I IFNs have a synergistic effect on anti-tumor immunity. Therefore, clinical trials studying new treatment strategies that combine type I IFN inducers with ICB are currently in progress. Here, we review the cellular sources of type I IFNs and their roles in the immune regulation of the tumor microenvironment. In addition, we highlight immunotherapies based on type I IFNs and combination therapy between type I IFN inducers and ICBs.


Subject(s)
Immunotherapy/methods , Interferon Type I/immunology , Neoplasms/immunology , Neoplasms/therapy , Animals , Cancer-Associated Fibroblasts/immunology , Combined Modality Therapy , Dendritic Cells/immunology , Endothelial Cells/immunology , Humans , Immune Checkpoint Inhibitors/therapeutic use , Interferon Type I/biosynthesis , Killer Cells, Natural/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Macrophages/immunology , Mice , Models, Immunological , Myeloid-Derived Suppressor Cells/immunology , Neutrophils/immunology , Oncolytic Virotherapy , Signal Transduction/immunology , T-Lymphocytes, Regulatory/immunology , Toll-Like Receptors/agonists , Tumor Microenvironment/immunology
16.
Signal Transduct Target Ther ; 7(1): 57, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35197452

ABSTRACT

The coronavirus disease 2019 (COVID-19) is a highly transmissible disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that poses a major threat to global public health. Although COVID-19 primarily affects the respiratory system, causing severe pneumonia and acute respiratory distress syndrome in severe cases, it can also result in multiple extrapulmonary complications. The pathogenesis of extrapulmonary damage in patients with COVID-19 is probably multifactorial, involving both the direct effects of SARS-CoV-2 and the indirect mechanisms associated with the host inflammatory response. Recognition of features and pathogenesis of extrapulmonary complications has clinical implications for identifying disease progression and designing therapeutic strategies. This review provides an overview of the extrapulmonary complications of COVID-19 from immunological and pathophysiologic perspectives and focuses on the pathogenesis and potential therapeutic targets for the management of COVID-19.


Subject(s)
Acute Kidney Injury/complications , COVID-19/complications , Cytokine Release Syndrome/complications , Disseminated Intravascular Coagulation/complications , Lymphopenia/complications , Myocarditis/complications , Pulmonary Embolism/complications , Acute Kidney Injury/drug therapy , Acute Kidney Injury/immunology , Acute Kidney Injury/virology , Anticoagulants/therapeutic use , Antiviral Agents/therapeutic use , COVID-19/immunology , COVID-19/virology , Clinical Trials as Topic , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/virology , Disseminated Intravascular Coagulation/drug therapy , Disseminated Intravascular Coagulation/immunology , Disseminated Intravascular Coagulation/virology , Endothelial Cells/drug effects , Endothelial Cells/immunology , Endothelial Cells/virology , Humans , Immunity, Innate/drug effects , Immunologic Factors/therapeutic use , Lymphopenia/drug therapy , Lymphopenia/immunology , Lymphopenia/virology , Myocarditis/drug therapy , Myocarditis/immunology , Myocarditis/virology , Pulmonary Embolism/drug therapy , Pulmonary Embolism/immunology , Pulmonary Embolism/virology , Renin-Angiotensin System/drug effects , Renin-Angiotensin System/immunology , SARS-CoV-2/drug effects , SARS-CoV-2/growth & development , SARS-CoV-2/pathogenicity , COVID-19 Drug Treatment
17.
Lab Chip ; 22(6): 1171-1186, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35142777

ABSTRACT

Coronavirus disease 2019 (COVID-19) was primarily identified as a novel disease causing acute respiratory syndrome. However, as the pandemic progressed various cases of secondary organ infection and damage by severe respiratory syndrome coronavirus 2 (SARS-CoV-2) have been reported, including a breakdown of the vascular barrier. As SARS-CoV-2 gains access to blood circulation through the lungs, the virus is first encountered by the layer of endothelial cells and immune cells that participate in host defense. Here, we developed an approach to study SARS-CoV-2 infection using vasculature-on-a-chip. We first modeled the interaction of virus alone with the endothelialized vasculature-on-a-chip, followed by the studies of the interaction of the virus exposed-endothelial cells with peripheral blood mononuclear cells (PBMCs). In an endothelial model grown on a permeable microfluidic bioscaffold under flow conditions, both human coronavirus (HCoV)-NL63 and SARS-CoV-2 presence diminished endothelial barrier function by disrupting VE-cadherin junctions and elevating the level of pro-inflammatory cytokines such as interleukin (IL)-6, IL-8, and angiopoietin-2. Inflammatory cytokine markers were markedly more elevated upon SARS-CoV-2 infection compared to HCoV-NL63 infection. Introduction of PBMCs with monocytes into the vasculature-on-a-chip upon SARS-CoV-2 infection further exacerbated cytokine-induced endothelial dysfunction, demonstrating the compounding effects of inter-cellular crosstalk between endothelial cells and monocytes in facilitating the hyperinflammatory state. Considering the harmful effects of SARS-CoV-2 on endothelial cells, even without active virus proliferation inside the cells, a potential therapeutic approach is critical. We identified angiopoietin-1 derived peptide, QHREDGS, as a potential therapeutic capable of profoundly attenuating the inflammatory state of the cells consistent with the levels in non-infected controls, thereby improving the barrier function and endothelial cell survival against SARS-CoV-2 infection in the presence of PBMC.


Subject(s)
Angiopoietin-1 , COVID-19 Drug Treatment , COVID-19 , Endothelium, Vascular , Inflammation , SARS-CoV-2 , COVID-19/virology , Endothelial Cells/immunology , Endothelial Cells/virology , Endothelium, Vascular/immunology , Endothelium, Vascular/virology , Humans , Immunity, Innate , Inflammation/drug therapy , Inflammation/virology , Lab-On-A-Chip Devices , Leukocytes, Mononuclear
18.
Int J Mol Sci ; 23(3)2022 Jan 23.
Article in English | MEDLINE | ID: mdl-35163192

ABSTRACT

Interleukin-10 (IL-10) is a vital regulatory cytokine, which plays a constructive role in maintaining immune tolerance during an alloimmune inflammation. Our previous study highlighted that IL-10 mediated immunosuppression established the immune tolerance phase and thereby modulated both microvascular and epithelial integrity, which affected inflammation-associated graft malfunctioning and sub-epithelial fibrosis in rejecting allografts. Here, we further investigated the reparative effects of IL-10 on microvasculature and epithelium in a mouse model of airway transplantation. To investigate the IL-10 mediated microvascular and epithelial repair, we depleted and reconstituted IL-10, and monitored graft microvasculature, airway epithelium, and associated repair proteins. Our data demonstrated that both untreated control allografts and IL-10 (-) allografts showed a significant early (d6) increase in microvascular leakiness, drop-in tissue oxygenation, blood perfusion, and denuded airway epithelium, which is associated with loss of adhesion protein Fascin-1 and ß-catenin on vascular endothelial cells at d10 post-transplantation. However, IL-10 (+) promotes early microvascular and airway epithelial repair, and a proportional increase in endothelial Fascin-1, and ß-catenin at d10 post-transplantation. Moreover, airway epithelial cells also express a significantly higher expression of FOXJ1 and ß-catenin in syngrafts and IL-10 (+) allografts as compared to IL-10 (-) and untreated controls at d10 post-transplantation. Collectively, these findings demonstrated that IL-10 mediated microvascular and epithelial changes are associated with the expression of FOXJ1, ß-catenin, and Fascin-1 proteins on the airway epithelial and vascular endothelial cells, respectively. These findings establish a potential reparative modulation of IL-10 associated microvascular and epithelial repair, which could provide a vital therapeutic strategy to facilitate graft repair in clinical settings.


Subject(s)
Allografts/metabolism , Graft Rejection/immunology , Interleukin-10/metabolism , Animals , Endothelial Cells/immunology , Epithelial Cells/immunology , Epithelium/immunology , Graft Survival/physiology , Immune Tolerance , Immunosuppression Therapy , Interleukin-10/physiology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Microvessels/immunology , Microvessels/physiology , T-Lymphocytes, Regulatory/immunology , Transplantation, Homologous/methods
19.
Viruses ; 14(2)2022 01 24.
Article in English | MEDLINE | ID: mdl-35215812

ABSTRACT

The role of non-parenchymal liver cells as part of the hepatic, innate immune system in the defense against hepatotropic viruses is not well understood. Here, primary human Kupffer cells, liver sinusoidal endothelial cells and hepatic stellate cells were isolated from liver tissue obtained after tumor resections or liver transplantations. Cells were stimulated with Toll-like receptor 1-9 ligands for 6-24 h. Non-parenchymal liver cells expressed and secreted inflammatory cytokines (IL6, TNF and IL10). Toll-like receptor- and cell type-specific downstream signals included the phosphorylation of NF-κB, AKT, JNK, p38 and ERK1/2. However, only supernatants of TLR3-activated Kupffer cells, liver sinusoidal endothelial cells and hepatic stellate cells contained type I and type III interferons and mediated an antiviral activity in the interferon-sensitive subgenomic hepatitis C virus replicon system. The antiviral effect could not be neutralized by antibodies against IFNA, IFNB nor IFNL, but could be abrogated using an interferon alpha receptor 2-specific neutralization. Interestingly, TLR3 responsiveness was enhanced in liver sinusoidal endothelial cells isolated from hepatitis C virus-positive donors, compared to uninfected controls. In conclusion, non-parenchymal liver cells are potent activators of the hepatic immune system by mediating inflammatory responses. Furthermore, liver sinusoidal endothelial cells were identified to be hyperresponsive to viral stimuli in chronic hepatitis C virus infection.


Subject(s)
Hepacivirus/physiology , Hepatitis C, Chronic/immunology , Toll-Like Receptor 3/immunology , Animals , Endothelial Cells/immunology , Endothelial Cells/virology , Hepacivirus/genetics , Hepacivirus/immunology , Hepatic Stellate Cells/immunology , Hepatic Stellate Cells/virology , Hepatitis C, Chronic/genetics , Hepatitis C, Chronic/virology , Humans , Interferons/genetics , Interferons/immunology , Interleukin-10/genetics , Interleukin-10/immunology , Interleukin-6/genetics , Interleukin-6/immunology , Kupffer Cells/immunology , Kupffer Cells/virology , Liver/immunology , Liver/virology , Male , Mice , Mice, Inbred C57BL , Toll-Like Receptor 3/genetics , Toll-Like Receptors/genetics , Toll-Like Receptors/immunology
20.
Viruses ; 14(1)2022 01 17.
Article in English | MEDLINE | ID: mdl-35062369

ABSTRACT

Highly pathogenic avian influenza viruses (HPAIVs) cause fatal systemic infections in chickens, which are associated with endotheliotropism. HPAIV infections in wild birds are generally milder and not endotheliotropic. Here, we aimed to elucidate the species-specific endotheliotropism of HPAIVs using primary chicken and duck aortic endothelial cells (chAEC and dAEC respectively). Viral replication kinetics and host responses were assessed in chAEC and dAEC upon inoculation with HPAIV H5N1 and compared to embryonic fibroblasts. Although dAEC were susceptible to HPAIV upon inoculation at high multiplicity of infection, HPAIV replicated to lower levels in dAEC than chAEC during multi-cycle replication. The susceptibility of duck embryonic endothelial cells to HPAIV was confirmed in embryos. Innate immune responses upon HPAIV inoculation differed between chAEC, dAEC, and embryonic fibroblasts. Expression of the pro-inflammatory cytokine IL8 increased in chicken cells but decreased in dAEC. Contrastingly, the induction of antiviral responses was stronger in dAEC than in chAEC, and chicken and duck fibroblasts. Taken together, these data demonstrate that although duck endothelial cells are permissive to HPAIV infection, they display markedly different innate immune responses than chAEC and embryonic fibroblasts. These differences may contribute to the species-dependent differences in endotheliotropism and consequently HPAIV pathogenesis.


Subject(s)
Endothelial Cells/immunology , Endothelial Cells/virology , Immunity, Innate , Influenza A Virus, H5N1 Subtype/immunology , Influenza A Virus, H5N1 Subtype/physiology , Viral Tropism , Virus Replication/immunology , Animals , Chickens/virology , Cytokines , Ducks/virology , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza in Birds/virology , Virus Replication/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...