Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21.374
Filter
1.
Arch. Soc. Esp. Oftalmol ; 99(4): 152-157, abr. 2024. ilus
Article in Spanish | IBECS | ID: ibc-232135

ABSTRACT

Introducción: Las queratoplastias lamelares han supuesto un gran impacto en el manejo del edema corneal por disfunción endotelial. Las técnicas de trasplante mínimamente invasivo como la Descemet Membrane Endothelial Keratoplasty (DMEK) han permitido reducir la morbilidad que suponía la realización de una queratoplastia penetrante en este tipo de pacientes. Aun así, se trata de técnicas complejas que no están exentas de complicaciones, y que requieren una larga línea de aprendizaje quirúrgico y una aún más exigente experiencia en el manejo postoperatorio.Caso clínicoUna mujer de 89 años afecta de distrofia endotelial de Fuchs e intervenida de cirugía combinada de catarata y DMEK, presentó a las 24h de la intervención un edema estromal de predominio inferior y un despegamiento sectorial del injerto. Tras un re-bubbling en consultas y 4 días más tarde, se observó el injerto enrollado y libre en cámara anterior.Se intervino de re-DMEK con preservación del injerto original tras 24h, con desepitelización para optimizar la visualización. Se tiñó el injerto con azul tripán y se protegió el estroma posterior con aire. Se reimplantó el injerto bajo maniobras intraoculares y con burbuja de aire.A las 24h de la cirugía se observó el injerto adherido, con una gran disminución del edema estromal. Un mes después, la paciente presentaba una córnea transparente, una persistente adhesión completa del injerto y una agudeza visual de 0,9.ConclusiónEl hallazgo del free roll en cámara anterior tras cirugía de DMEK constituye la forma más compleja de despegamiento del injerto. El edema corneal, así como la disposición de las diferentes estructuras intraoculares son condicionantes a tener en cuenta para la resolución quirúrgica de esta complicación. En muchos casos el reposicionamiento quirúrgico del injerto es factible, hecho que implica ahorrar costes sin necesidad de utilizar nuevos tejidos corneales donantes. (AU)


Introduction: Lamellar keratoplasties have had a great impact in the management of corneal edema due to endothelial dysfunction. Minimally invasive transplant techniques such as descemet membrane endothelial keratoplasty (DMEK) have helped to reduce the morbidity involved in performing penetrating keratoplasty in this type of patient. Even so, these are complex techniques that are not free of complications and require a long line of surgical learning and an even more demanding experience in postoperative management.Clinical caseAn 89-year-old woman suffering from Fuchs endothelial dystrophy and undergoing combined cataract and DMEK surgery presented stromal edema predominantly inferior and sectoral detachment of the graft 24h after the intervention. After re-bubbling in consultations and 4 days later, the graft was observed rolled and free in the anterior chamber.She underwent re-DMEK with preservation of the original graft after 24h, with de-epithelialization to optimize visualization. The graft was stained with trypan blue and the posterior stroma was protected with air. The graft was reimplanted under intraocular maneuvers and with an air bubble.Twenty four hours after surgery, the adhered graft was observed, with a great decrease in stromal edema. One month later, the patient had a clear cornea, persistent complete graft adhesion, and visual acuity of 0.9.ConclusionThe discovery of free roll in the anterior chamber after DMEK surgery constitutes the most complex form of graft detachment. Corneal edema as well as the arrangement of the different intraocular structures are conditions to be considered for the surgical resolution of this complication. In many cases, surgical repositioning of the graft is feasible, which means saving costs without the need to use new donor corneal tissues. (AU)


Subject(s)
Humans , Female , Aged, 80 and over , Transplantation , Endothelium , Ophthalmology , Corneal Transplantation , Morbidity
2.
Cells ; 13(7)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38607058

ABSTRACT

During pregnancy, uterine vasculature undergoes significant circumferential growth to increase uterine blood flow, vital for the growing feto-placental unit. However, this process is often compromised in conditions like maternal high blood pressure, particularly in preeclampsia (PE), leading to fetal growth impairment. Currently, there is no cure for PE, partly due to the adverse effects of anti-hypertensive drugs on maternal and fetal health. This study aimed to investigate the vasodilator effect of extra virgin olive oil (EVOO) phenols on the reproductive vasculature, potentially benefiting both mother and fetus. Isolated uterine arteries (UAs) from pregnant rats were tested with EVOO phenols in a pressurized myograph. To elucidate the underlying mechanisms, additional experiments were conducted with specific inhibitors: L-NAME/L-NNA (10-4 M) for nitric oxide synthases, ODQ (10-5 M) for guanylate cyclase, Verapamil (10-5 M) for the L-type calcium channel, Ryanodine (10-5 M) + 2-APB (3 × 10-5 M) for ryanodine and the inositol triphosphate receptors, respectively, and Paxilline (10-5 M) for the large-conductance calcium-activated potassium channel. The results indicated that EVOO-phenols activate Ca2+ signaling pathways, generating nitric oxide, inducing vasodilation via cGMP and BKCa2+ signals in smooth muscle cells. This study suggests the potential use of EVOO phenols to prevent utero-placental blood flow restriction, offering a promising avenue for managing PE.


Subject(s)
Calcium , Uterine Artery , Rats , Pregnancy , Female , Animals , Uterine Artery/metabolism , Calcium/metabolism , Olive Oil/pharmacology , Nitric Oxide/metabolism , Placenta/metabolism , Ryanodine , Phenols/pharmacology , Dilatation , Large-Conductance Calcium-Activated Potassium Channels/metabolism , Endothelium/metabolism
3.
Int J Nanomedicine ; 19: 3123-3142, 2024.
Article in English | MEDLINE | ID: mdl-38585474

ABSTRACT

Purpose: To study whether the absence of laminar shear stress (LSS) enables the uptake of very small superparamagnetic iron oxide nanoparticles (VSOP) in endothelial cells by altering the composition, size, and barrier function of the endothelial surface layer (ESL). Methods and Results: A quantitative particle exclusion assay with living human umbilical endothelial cells using spinning disc confocal microscopy revealed that the dimension of the ESL was reduced in cells cultivated in the absence of LSS. By combining gene expression analysis, flow cytometry, high pressure freezing/freeze substitution immuno-transmission electron microscopy, and confocal laser scanning microscopy, we investigated changes in ESL composition. We found that increased expression of the hyaluronan receptor CD44 by absence of shear stress did not affect the uptake rate of VSOPs. We identified collagen as a previously neglected component of ESL that contributes to its barrier function. Experiments with inhibitor halofuginone and small interfering RNA (siRNA) demonstrated that suppression of collagen expression facilitates VSOP uptake in endothelial cells grown under LSS. Conclusion: The absence of laminar shear stress disturbs the barrier function of the ESL, facilitating membrane accessibility and endocytic uptake of VSOP. Collagen, a previously neglected component of ESL, contributes to its barrier function.


Subject(s)
Endothelial Cells , Magnetic Iron Oxide Nanoparticles , Humans , Endothelial Cells/metabolism , Endothelium , Gene Expression Profiling , Collagen/metabolism , Stress, Mechanical , Cells, Cultured
4.
Cardiovasc Diabetol ; 23(1): 122, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38580969

ABSTRACT

BACKGROUND: Histone modifications play a critical role in chromatin remodelling and regulate gene expression in health and disease. Histone methyltransferases EZH1, EZH2, and demethylases UTX, JMJD3, and UTY catalyse trimethylation of lysine 27 on histone H3 (H3K27me3). This study was designed to investigate whether H3K27me3 triggers hyperglycemia-induced oxidative and inflammatory transcriptional programs in the endothelium. METHODS: We studied human aortic endothelial cells exposed to high glucose (HAEC) or isolated from individuals with diabetes (D-HAEC). RT-qPCR, immunoblotting, chromatin immunoprecipitation (ChIP-qPCR), and confocal microscopy were performed to investigate the role of H3K27me3. We determined superoxide anion (O2-) production by ESR spectroscopy, NF-κB binding activity, and monocyte adhesion. Silencing/overexpression and pharmacological inhibition of chromatin modifying enzymes were used to modulate H3K27me3 levels. Furthermore, isometric tension studies and immunohistochemistry were performed in aorta from wild-type and db/db mice. RESULTS: Incubation of HAEC to high glucose showed that upregulation of EZH2 coupled to reduced demethylase UTX and JMJD3 was responsible for the increased H3K27me3. ChIP-qPCR revealed that repressive H3K27me3 binding to superoxide dismutase and transcription factor JunD promoters is involved in glucose-induced O2- generation. Indeed, loss of JunD transcriptional inhibition favours NOX4 expression. Furthermore, H3K27me3-driven oxidative stress increased NF-κB p65 activity and downstream inflammatory genes. Interestingly, EZH2 inhibitor GSK126 rescued these endothelial derangements by reducing H3K27me3. We also found that H3K27me3 epigenetic signature alters transcriptional programs in D-HAEC and aortas from db/db mice. CONCLUSIONS: EZH2-mediated H3K27me3 represents a key epigenetic driver of hyperglycemia-induced endothelial dysfunction. Targeting EZH2 may attenuate oxidative stress and inflammation and, hence, prevent vascular disease in diabetes.


Subject(s)
Diabetes Mellitus , Hyperglycemia , Mice , Animals , Humans , Histones , NF-kappa B/metabolism , Endothelial Cells/metabolism , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Methylation , Diabetes Mellitus/metabolism , Hyperglycemia/genetics , Hyperglycemia/metabolism , Endothelium , Glucose/toxicity , Glucose/metabolism
5.
BMC Cardiovasc Disord ; 24(1): 209, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627625

ABSTRACT

AIMS: Regular transient limb ischemia (RTLI) can prevent atherosclerosis (AS) progression in hypercholesterolemic rabbits. This study aimed to investigate the minimum effective intensity and possible mechanisms of RTLI for preventing atherosclerosis. METHODS: Eighty rabbits were divided into eight groups: normal (N), high cholesterol (H), three RTLI [three RTLI cycles every other day (R3qod), three RTLI cycles daily (R3qd), and six RTLI cycles daily (R6qd), each cycle of RTLI included 5 min of limb ischemia followed by 5 min limb reperfusion], and three correlated sham RTLI [sham ischemia for 30 min once every other day (S3qod), sham ischemia for 30 min once daily (S3qd), and sham ischemia for 60 min once daily (S6qd)]. Rabbits in group N were kept normally, while the others were fed 1% cholesterol diet for 12 weeks. The RTLI and sham RTLI groups were received RTLI or sham RTLI procedure, respectively. The plaque area in the thoracic aorta was determined by oil red O staining, and quantifying the ratio of plaque area to intimal area (PA/IA). Endothelium-dependent and -independent relaxation were also determined. Endothelial cell were isolated from abdominal aorta of rabbits, and the apoptosis ratio was detected using flow cytometry. RESULTS: The PA/IA and early apoptotic cell ratio was significantly lower as well as the endothelium-dependent relaxation response was higher in group R6qd than those in groups H and S6qd, while those in the R3qod group was not significantly different from those in groups H and S3qod, as well as those in the R3qd group showed no significant difference compared to those in groups H and S3qd. CONCLUSIONS: Six cycles of RTLI daily was the optimal effective intensity to prevent AS progression in rabbits. Endothelial function improvement and apoptosis inhibition might contribute to the anti-AS effects.


Subject(s)
Atherosclerosis , Animals , Rabbits , Atherosclerosis/prevention & control , Atherosclerosis/metabolism , Cholesterol/metabolism , Apoptosis , Ischemia/prevention & control , Endothelial Cells , Endothelium , Endothelium, Vascular/metabolism
6.
Respir Res ; 25(1): 172, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637760

ABSTRACT

The success of lung transplantation is limited by the high rate of primary graft dysfunction due to ischemia-reperfusion injury (IRI). Lung IRI is characterized by a robust inflammatory response, lung dysfunction, endothelial barrier disruption, oxidative stress, vascular permeability, edema, and neutrophil infiltration. These events are dependent on the health of the endothelium, which is a primary target of IRI that results in pulmonary endothelial barrier dysfunction. Over the past 10 years, research has focused more on the endothelium, which is beginning to unravel the multi-factorial pathogenesis and immunologic mechanisms underlying IRI. Many important proteins, receptors, and signaling pathways that are involved in the pathogenesis of endothelial dysfunction after IR are starting to be identified and targeted as prospective therapies for lung IRI. In this review, we highlight the more significant mediators of IRI-induced endothelial dysfunction discovered over the past decade including the extracellular glycocalyx, endothelial ion channels, purinergic receptors, kinases, and integrins. While there are no definitive clinical therapies currently available to prevent lung IRI, we will discuss potential clinical strategies for targeting the endothelium for the treatment or prevention of IRI. The accruing evidence on the essential role the endothelium plays in lung IRI suggests that promising endothelial-directed treatments may be approaching the clinic soon. The application of therapies targeting the pulmonary endothelium may help to halt this rapid and potentially fatal injury.


Subject(s)
Lung Injury , Lung Transplantation , Reperfusion Injury , Humans , Lung/metabolism , Reperfusion Injury/pathology , Endothelium/metabolism , Endothelium/pathology , Lung Injury/metabolism
7.
Acta Neuropathol ; 147(1): 77, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38687393

ABSTRACT

Influenza-associated encephalopathy (IAE) is extremely acute in onset, with high lethality and morbidity within a few days, while the direct pathogenesis by influenza virus in this acute phase in the brain is largely unknown. Here we show that influenza virus enters into the cerebral endothelium and thereby induces IAE. Three-weeks-old young mice were inoculated with influenza A virus (IAV). Physical and neurological scores were recorded and temporal-spatial analyses of histopathology and viral studies were performed up to 72 h post inoculation. Histopathological examinations were also performed using IAE human autopsy brains. Viral infection, proliferation and pathogenesis were analyzed in cell lines of endothelium and astrocyte. The effects of anti-influenza viral drugs were tested in the cell lines and animal models. Upon intravenous inoculation of IAV in mice, the mice developed encephalopathy with brain edema and pathological lesions represented by micro bleeding and injured astrocytic process (clasmatodendrosis) within 72 h. Histologically, massive deposits of viral nucleoprotein were observed as early as 24 h post infection in the brain endothelial cells of mouse models and the IAE patients. IAV inoculated endothelial cell lines showed deposition of viral proteins and provoked cell death, while IAV scarcely amplified. Inhibition of viral transcription and translation suppressed the endothelial cell death and the lethality of mouse models. These data suggest that the onset of encephalopathy should be induced by cerebral endothelial infection with IAV. Thus, IAV entry into the endothelium, and transcription and/or translation of viral RNA, but not viral proliferation, should be the key pathogenesis of IAE.


Subject(s)
Brain , Orthomyxoviridae Infections , Animals , Humans , Mice , Brain/pathology , Brain/virology , Orthomyxoviridae Infections/pathology , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/complications , Virus Internalization , Influenza A virus/pathogenicity , Endothelial Cells/virology , Endothelial Cells/pathology , Influenza, Human/pathology , Influenza, Human/complications , Brain Diseases/virology , Brain Diseases/pathology , Male , Disease Models, Animal , Female , Endothelium/pathology , Endothelium/virology , Mice, Inbred C57BL
8.
Molecules ; 29(5)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38474581

ABSTRACT

Endothelial pro-inflammatory activation is pivotal in cardiac ischemia-reperfusion (I/R) injury pathophysiology. The dried flower bud of Edgeworthia gardneri (Wall.) Meisn. (EG) is a commonly utilized traditional Tibetan medicine. However, its role in regulating endothelium activation and cardiac I/R injury has not been investigated. Herein, we showed that the administration of EG ethanolic extract exhibited a potent therapeutic efficacy in ameliorating cardiac endothelial inflammation (p < 0.05) and thereby protecting against myocardial I/R injury in rats (p < 0.001). In line with the in vivo findings, the EG extract suppressed endothelial pro-inflammatory activation in vitro by downregulating the expression of pro-inflammatory mediators (p < 0.05) and diminishing monocytes' firm adhesion to endothelial cells (ECs) (p < 0.01). Mechanistically, we showed that EG extract inhibited the nuclear factor kappa-B (NF-κB), c-Jun N-terminal kinase (JNK), extracellular regulated protein kinase (ERK), and p38 mitogen-activated protein kinase (MAPK) signaling pathways to attenuate EC-mediated inflammation (p < 0.05). Collectively, for the first time, this study demonstrated the therapeutic potential of EG ethanolic extract in alleviating I/R-induced inflammation and the resulting cardiac injury through its inhibitory role in regulating endothelium activation.


Subject(s)
Myocardial Reperfusion Injury , Thymelaeaceae , Rats , Animals , Endothelial Cells/metabolism , NF-kappa B/metabolism , Inflammation/drug therapy , Plant Extracts/pharmacology , Myocardial Reperfusion Injury/drug therapy , Endothelium/metabolism , Thymelaeaceae/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
9.
Nutrients ; 16(5)2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38474873

ABSTRACT

Endocardial endothelium (EE) is a layer of cells covering the cardiac cavities and modulates cardiomyocyte function. This cell type releases several cardioactive factors, including Angiotensin II (Ang II). This octopeptide is known to induce cardiac hypertrophy. However, whether this circulating factor also induces EE hypertrophy is not known. Taurine is known to prevent cardiac hypertrophy. Whether this endogenous antioxidant prevents the effect of Ang II on human EE (hEE) will be verified. Using quantitative fluorescent probe imaging for calcium and reactive oxygen species (ROS), our results show that Ang II induces (10-7 M, 48 h treatment) an increase in hEE cell (hEEC) volume and its nucleus. Pretreatment with 20 mM of taurine prevents morphological remodeling and increases intracellular calcium and ROS. These results suggest that the reported Ang II induces cardiac hypertrophy is associated with hEEC hypertrophy. This later effect is prevented by taurine by reducing intracellular calcium and ROS overloads. Thus, taurine could be an excellent tool for preventing Ang II-induced remodeling of hEECs.


Subject(s)
Angiotensin II , Calcium , Humans , Reactive Oxygen Species/metabolism , Angiotensin II/metabolism , Calcium/metabolism , Taurine/pharmacology , Cardiomegaly/metabolism , Myocytes, Cardiac , Endothelium/metabolism
10.
Part Fibre Toxicol ; 21(1): 15, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38468337

ABSTRACT

BACKGROUND: Particulate matter 2.5 (PM2.5) deposition in the lung's alveolar capillary region (ACR) is significantly associated with respiratory disease development, yet the molecular mechanisms are not completely understood. Adverse responses that promote respiratory disease development involve orchestrated, intercellular signaling between multiple cell types within the ACR. We investigated the molecular mechanisms elicited in response to PM2.5 deposition in the ACR, in an in vitro model that enables intercellular communication between multiple resident cell types of the ACR. METHODS: An in vitro, tri-culture model of the ACR, incorporating alveolar-like epithelial cells (NCI-H441), pulmonary fibroblasts (IMR90), and pulmonary microvascular endothelial cells (HULEC) was developed to investigate cell type-specific molecular responses to a PM2.5 exposure in an in-vivo-like model. This tri-culture in vitro model was termed the alveolar capillary region exposure (ACRE) model. Alveolar epithelial cells in the ACRE model were exposed to a suspension of diesel exhaust particulates (DEP) (20 µg/cm2) with an average diameter of 2.5 µm. Alveolar epithelial barrier formation, and transcriptional and protein expression alterations in the directly exposed alveolar epithelial and the underlying endothelial cells were investigated over a 24 h DEP exposure. RESULTS: Alveolar epithelial barrier formation was not perturbed by the 24 h DEP exposure. Despite no alteration in barrier formation, we demonstrate that alveolar epithelial DEP exposure induces transcriptional and protein changes in both the alveolar epithelial cells and the underlying microvascular endothelial cells. Specifically, we show that the underlying microvascular endothelial cells develop redox dysfunction and increase proinflammatory cytokine secretion. Furthermore, we demonstrate that alveolar epithelial MAPK signaling modulates the activation of NRF2 and IL-8 secretion in the underlying microvascular endothelial cells. CONCLUSIONS: Endothelial redox dysfunction and increased proinflammatory cytokine secretion are two common events in respiratory disease development. These findings highlight new, cell-type specific roles of the alveolar epithelium and microvascular endothelium in the ACR in respiratory disease development following PM2.5 exposure. Ultimately, these data expand our current understanding of respiratory disease development following particle exposures and illustrate the utility of multicellular in vitro systems for investigating respiratory tract health.


Subject(s)
Endothelial Cells , Vehicle Emissions , Vehicle Emissions/toxicity , Endothelial Cells/metabolism , NF-E2-Related Factor 2/metabolism , Interleukin-8/metabolism , Endothelium , Particulate Matter/toxicity
11.
Cells ; 13(5)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38474396

ABSTRACT

The pathologic consequences of Coronavirus Disease-2019 (COVID-19) include elevated inflammation and dysregulated vascular functions associated with thrombosis. In general, disruption of vascular homeostasis and ensuing prothrombotic events are driven by activated platelets, monocytes, and macrophages, which form aggregates (thrombi) attached to the endothelium lining of vessel walls. However, molecular pathways underpinning the pathological interactions between myeloid cells and endothelium during COVID-19 remain undefined. Here, we tested the hypothesis that modulations in the expression of cellular receptors angiotensin-converting enzyme 2 (ACE2), CD147, and glucose-regulated protein 78 (GRP78), which are involved in homeostasis and endothelial performance, are the hallmark responses induced by SARS-CoV-2 infection. Cultured macrophages and lungs of hamster model systems were used to test this hypothesis. The results indicate that while macrophages and endothelial cells are less likely to support SARS-CoV-2 proliferation, these cells may readily respond to inflammatory stimuli generated by the infected lung epithelium. SARS-CoV-2 induced modulations of tested cellular receptors correlated with corresponding changes in the mRNA expression of coagulation cascade regulators and endothelial integrity components in infected hamster lungs. Among these markers, tissue factor (TF) had the best correlation for prothrombotic events during SARS-CoV-2 infection. Furthermore, the single-molecule fluorescence in situ hybridization (smFISH) method alone was sufficient to determine the peak and resolution phases of SARS-CoV-2 infection and enabled screening for cellular markers co-expressed with the virus. These findings suggest possible molecular pathways for exploration of novel drugs capable of blocking the prothrombotic shift events that exacerbate COVID-19 pathophysiology and control the disease.


Subject(s)
COVID-19 , Thrombosis , Humans , COVID-19/pathology , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2 , Endoplasmic Reticulum Chaperone BiP , Endothelial Cells/metabolism , In Situ Hybridization, Fluorescence , Peptidyl-Dipeptidase A/metabolism , Lung/metabolism , Thrombosis/pathology , Endothelium/metabolism , Homeostasis
12.
Front Immunol ; 15: 1281263, 2024.
Article in English | MEDLINE | ID: mdl-38487535

ABSTRACT

Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Due to its high infectivity, the pandemic has rapidly spread and become a global health crisis. Emerging evidence indicates that endothelial dysfunction may play a central role in the multiorgan injuries associated with COVID-19. Therefore, there is an urgent need to discover and validate novel therapeutic strategies targeting endothelial cells. PIEZO1, a mechanosensitive (MS) ion channel highly expressed in the blood vessels of various tissues, has garnered increasing attention for its potential involvement in the regulation of inflammation, thrombosis, and endothelial integrity. This review aims to provide a novel perspective on the potential role of PIEZO1 as a promising target for mitigating COVID-19-associated endothelial dysfunction.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Endothelial Cells , Inflammation , Endothelium , Ion Channels
13.
Acta Biomater ; 178: 181-195, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38447808

ABSTRACT

Valvular endothelial cells (VECs) derived from human induced pluripotent stem cells (hiPSCs) provide an unlimited cell source for tissue engineering heart valves (TEHVs); however, they are limited by their low differentiation efficiency and immature function. In our study, we applied unidirectional shear stress to promote hiPSCs differentiation into valvular endothelial-like cells (VELs). Compared to the static group, shear stress efficiently promoted the differentiation and functional maturation of hiPSC-VELs, as demonstrated by the efficiency of endothelial differentiation reaching 98.3% in the high shear stress group (45 dyn/cm2). Furthermore, we found that Piezo1 served as a crucial mechanosensor for the differentiation and maturation of VELs. Mechanistically, the activation of Piezo1 by shear stress resulted in the influx of calcium ions, which in turn initiated the Akt signaling pathway and promoted the differentiation of hiPSCs into mature VELs. Moreover, VELs cultured on decellularized heart valves (DHVs) exhibited a notable propensity for proliferation, robust adhesion properties, and antithrombotic characteristics, which were dependent on the activation of the Piezo1 channel. Overall, our study demonstrated that proper shear stress activated the Piezo1 channel to facilitate the differentiation and maturation of hiPSC-VELs via the Akt pathway, providing a potential cell source for regenerative medicine, drug screening, pathogenesis, and disease modeling. STATEMENT OF SIGNIFICANCE: This is the first research that systematically analyzes the effect of shear stress on valvular endothelial-like cells (VELs) derived from human induced pluripotent stem cells (hiPSCs). Mechanistically, unidirectional shear stress activates Piezo1, resulting in an elevation of calcium levels, which triggers the Akt signaling pathway and then facilitates the differentiation of functional maturation VELs. After exposure to shear stress, the VELs exhibited enhanced proliferation, robust adhesion capabilities, and antithrombotic characteristics while being cultured on decellularized heart valves. Thus, it is of interest to develop hiPSCs-VELs using shear stress and the Piezo1 channel provides insights into the functional maturation of valvular endothelial cells, thereby serving as a catalyst for potential applications in the development of therapeutic and tissue-engineered heart valves in the future.


Subject(s)
Induced Pluripotent Stem Cells , Humans , Endothelial Cells , Calcium/metabolism , Fibrinolytic Agents , Proto-Oncogene Proteins c-akt/metabolism , Cell Differentiation/physiology , Endothelium
14.
Cell Commun Signal ; 22(1): 191, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38528533

ABSTRACT

BACKGROUND: The incidence of diabetic kidney disease (DKD) continues to rapidly increase, with limited available treatment options. One of the hallmarks of DKD is persistent inflammation, but the underlying molecular mechanisms of early diabetic kidney injury remain poorly understood. C-X-C chemokine receptor 2 (CXCR2), plays an important role in the progression of inflammation-related vascular diseases and may bridge between glomerular endothelium and persistent inflammation in DKD. METHODS: Multiple methods were employed to assess the expression levels of CXCR2 and its ligands, as well as renal inflammatory response and endothelial glycocalyx shedding in patients with DKD. The effects of CXCR2 on glycocalyx shedding, and persistent renal inflammation was examined in a type 2 diabetic mouse model with Cxcr2 knockout specifically in endothelial cells (DKD-Cxcr2 eCKO mice), as well as in glomerular endothelial cells (GECs), cultured in high glucose conditions. RESULTS: CXCR2 was associated with early renal decline in DKD patients, and endothelial-specific knockout of CXCR2 significantly improved renal function in DKD mice, reduced inflammatory cell infiltration, and simultaneously decreased the expression of proinflammatory factors and chemokines in renal tissue. In DKD conditions, glycocalyx shedding was suppressed in endothelial Cxcr2 knockout mice compared to Cxcr2 L/L mice. Modulating CXCR2 expression also affected high glucose-induced inflammation and glycocalyx shedding in GECs. Mechanistically, CXCR2 deficiency inhibited the activation of NF-κB signaling, thereby regulating inflammation, restoring the endothelial glycocalyx, and alleviating DKD. CONCLUSIONS: Taken together, under DKD conditions, activation of CXCR2 exacerbates inflammation through regulation of the NF-κB pathway, leading to endothelial glycocalyx shedding and deteriorating renal function. Endothelial CXCR2 deficiency has a protective role in inflammation and glycocalyx dysfunction, suggesting its potential as a promising therapeutic target for DKD treatment.


Subject(s)
Diabetic Nephropathies , NF-kappa B , Receptors, Interleukin-8B , Animals , Humans , Mice , Diabetic Nephropathies/genetics , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Endothelial Cells/metabolism , Endothelium/metabolism , Glucose , Glycocalyx/metabolism , Inflammation/metabolism , Mice, Knockout , NF-kappa B/metabolism , Receptors, Chemokine/therapeutic use , Receptors, Interleukin-8B/genetics , Receptors, Interleukin-8B/metabolism , Diabetes Complications/genetics , Diabetes Complications/metabolism
15.
Crit Care ; 28(1): 97, 2024 03 23.
Article in English | MEDLINE | ID: mdl-38521954

ABSTRACT

Sepsis is a life-threatening condition characterised by endothelial barrier dysfunction and impairment of normal microcirculatory function, resulting in a state of hypoperfusion and tissue oedema. No specific pharmacological therapies are currently used to attenuate microvascular injury. Given the prominent role of endothelial breakdown and microcirculatory dysfunction in sepsis, there is a need for effective strategies to protect the endothelium. In this review we will discuss key mechanisms and putative therapeutic agents relevant to endothelial barrier function.


Subject(s)
Sepsis , Humans , Microcirculation , Sepsis/drug therapy , Endothelium , Endothelium, Vascular/metabolism
16.
Free Radic Biol Med ; 216: 106-117, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38461872

ABSTRACT

Oxidized low density lipoprotein (oxLDL)-induced endothelial oxidative damage promotes the development of atherosclerosis. Caveolae play an essential role in maintaining the survival and function of vascular endothelial cell (VEC). It is reported that the long coiled-coil protein NECC2 is localized in caveolae and is associated with neural cell differentiation and adipocyte formation, but its role in VECs needs to be clarified. Our results showed NECC2 expression increased in the endothelium of plaque-loaded aortas and oxLDL-treated HUVECs. Down-regulation of NECC2 by NECC2 siRNA or compound YF-307 significantly inhibited oxLDL-induced VEC apoptosis and the adhesion factors expression. Remarkably, inhibition of NECC2 expression in the endothelium of apoE-/- mice by adeno-associated virus (AAV)-carrying NECC2 shRNA or compound YF-307 alleviated endothelium injury and restricted atherosclerosis development. The immunoprecipitation results confirmed that NECC2 interacted with Tyk2 and caveolin-1(Cav-1) in VECs, and NECC2 further promoted the phosphorylation of Cav-1 at Tyr14 b y activating Tyk2 phosphorylation. On the other hand, inhibiting NECC2 levels suppressed oxLDL-induced phosphorylation of Cav-1, uptake of oxLDL by VECs, accumulation of intracellular reactive oxygen species and activation of NF-κB. Our findings suggest that NECC2 may contribute to oxLDL-induced VEC injury and atherosclerosis via modulating Cav-1 phosphorylation through Tyk2. This work provides a new concept and drug target for treating atherosclerosis.


Subject(s)
Atherosclerosis , Animals , Mice , Apolipoproteins/adverse effects , Apolipoproteins/metabolism , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Atherosclerosis/metabolism , Endothelium/metabolism , Lipoproteins, LDL/metabolism , Oxidative Stress
17.
Eur J Pharmacol ; 970: 176475, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38438061

ABSTRACT

Sodium valproate (VPA), a histone deacetylase (HDAC) inhibitor, could be a promising candidate to treat acute myocardial infarction (AMI). In this study, AMI was induced in New Zealand White rabbits by occluding the left circumflex coronary artery for 1 h, followed by reperfusion. The animals were distributed into three experimental groups: the sham-operated group (SHAM), the AMI group and the AMI + VPA group (AMI treated with VPA 500 mg/kg/day). After 5 weeks, abdominal aorta was removed and used for isometric recording of tension in organ baths or protein expression by Western blot, and plasma for the determination of nitrate/nitrite (NOx) levels by colorimetric assay. Our results indicated that AMI induced a reduction of the endothelium-dependent response to acetylcholine without modifying the endothelium-independent response to sodium nitroprusside, leading to endothelial dysfunction. VPA treatment reversed AMI-induced endothelial dysfunction and even increased NO sensitivity in vascular smooth muscle. This response was consistent with an antioxidant effect of VPA, as it was able to reverse the superoxide dismutase 1 (SOD 1) down-regulation induced by AMI. Our experiments also ruled out that the VPA mechanism was related to eNOS, iNOS, sGC and arginase expression or changes in NOx plasma levels. Therefore, we conclude that VPA improves vasodilation by increasing NO bioavailability, likely due to its antioxidant effect. Since endothelial dysfunction was closely related to AMI, VPA treatment could increase aortic blood flow, making it a potential agent in reperfusion therapy that can prevent the vascular damage.


Subject(s)
Myocardial Infarction , Valproic Acid , Rabbits , Animals , Valproic Acid/pharmacology , Valproic Acid/therapeutic use , Antioxidants , Myocardial Infarction/metabolism , Aorta/metabolism , Endothelium/metabolism , Endothelium, Vascular/metabolism
18.
Commun Biol ; 7(1): 338, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38499610

ABSTRACT

Whether organ-specific regeneration is induced by organ-specific endothelial cells (ECs) remains unelucidated. The formation of white matter lesions due to chronic cerebral hypoperfusion causes cognitive decline, depression, motor dysfunction, and even acute ischemic stroke. Vascular ECs are an important target for treating chronic cerebral hypoperfusion. Brain-derived ECs transplanted into a mouse chronic cerebral hypoperfusion model showed excellent angiogenic potential. They were also associated with reducing both white matter lesions and brain dysfunction possibly due to the high expression of neuroprotective humoral factors. The in vitro coculture of brain cells with ECs from several diverse organs suggested the function of brain-derived endothelium is affected within a brain environment due to netrin-1 and Unc 5B systems. We found brain CD157-positive ECs were more proliferative and beneficial in a mouse model of chronic cerebral hypoperfusion than CD157-negative ECs upon inoculation. We propose novel methods to improve the symptoms of chronic cerebral hypoperfusion using CD157-positive ECs.


Subject(s)
Brain Ischemia , Ischemic Stroke , Mice , Animals , Endothelial Cells/metabolism , Ischemic Stroke/metabolism , Brain/metabolism , Brain Ischemia/metabolism , Disease Models, Animal , Endothelium/metabolism
19.
Proc Natl Acad Sci U S A ; 121(11): e2400272121, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38437534

ABSTRACT

The endothelial lining of cerebral microvessels is damaged relatively early after cerebral ischemia/reperfusion (I/R) injury and mediates blood-brain barrier (BBB) disruption, neurovascular injury, and long-term neurological deficits. I/R induces BBB leakage within 1 h due to subtle structural alterations in endothelial cells (ECs), including reorganization of the actin cytoskeleton and subcellular redistribution of junctional proteins. Herein, we show that the protein peroxiredoxin-4 (Prx4) is an endogenous protectant against endothelial dysfunction and BBB damage in a murine I/R model. We observed a transient upregulation of Prx4 in brain ECs 6 h after I/R in wild-type (WT) mice, whereas tamoxifen-induced, selective knockout of Prx4 from endothelial cells (eKO) mice dramatically raised vulnerability to I/R. Specifically, eKO mice displayed more BBB damage than WT mice within 1 to 24 h after I/R and worse long-term neurological deficits and focal brain atrophy by 35 d. Conversely, endothelium-targeted transgenic (eTG) mice overexpressing Prx4 were resistant to I/R-induced early BBB damage and had better long-term functional outcomes. As demonstrated in cultures of human brain endothelial cells and in animal models of I/R, Prx4 suppresses actin polymerization and stress fiber formation in brain ECs, at least in part by inhibiting phosphorylation/activation of myosin light chain. The latter cascade prevents redistribution of junctional proteins and BBB leakage under conditions of Prx4 repletion. Prx4 also tempers microvascular inflammation and infiltration of destructive neutrophils and proinflammatory macrophages into the brain parenchyma after I/R. Thus, the evidence supports an indispensable role for endothelial Prx4 in safeguarding the BBB and promoting functional recovery after I/R brain injury.


Subject(s)
Blood-Brain Barrier , Ischemic Stroke , Animals , Humans , Mice , Atrophy , Endothelial Cells , Endothelium , Peroxiredoxins
20.
ACS Nano ; 18(11): 8107-8124, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38442075

ABSTRACT

Acute myocardial infarction (MI) and ischemic heart disease are the leading causes of heart failure and mortality. Currently, research on MI treatment is focused on angiogenic and anti-inflammatory therapies. Although endothelial cells (ECs) are critical for triggering inflammation and angiogenesis, no approach has targeted them for the treatment of MI. In this study, we proposed a nonviral combined nucleic acid delivery system consisting of an EC-specific polycation (CRPPR-grafted ethanolamine-modified poly(glycidyl methacrylate), CPC) that can efficiently codeliver siR-ICAM1 and pCXCL12 for the treatment of MI. Animals treated with the combination therapy exhibited better cardiac function than those treated with each nucleic acid alone. In particular, the combination therapy of CPC/siR-ICAM1 and CPC/pCXCL12 significantly improved cardiac systolic function, anti-inflammatory responses, and angiogenesis compared to the control group. In conclusion, CPC-based combined gene delivery systems show impressive performance in the treatment of MI and provide a programmed strategy for the development of codelivery systems for various EC-related diseases.


Subject(s)
Heart Failure , Myocardial Infarction , Animals , Endothelial Cells , Myocardial Infarction/drug therapy , Endothelium , Anti-Inflammatory Agents/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...