Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.533
Filter
1.
Cells ; 13(7)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38607058

ABSTRACT

During pregnancy, uterine vasculature undergoes significant circumferential growth to increase uterine blood flow, vital for the growing feto-placental unit. However, this process is often compromised in conditions like maternal high blood pressure, particularly in preeclampsia (PE), leading to fetal growth impairment. Currently, there is no cure for PE, partly due to the adverse effects of anti-hypertensive drugs on maternal and fetal health. This study aimed to investigate the vasodilator effect of extra virgin olive oil (EVOO) phenols on the reproductive vasculature, potentially benefiting both mother and fetus. Isolated uterine arteries (UAs) from pregnant rats were tested with EVOO phenols in a pressurized myograph. To elucidate the underlying mechanisms, additional experiments were conducted with specific inhibitors: L-NAME/L-NNA (10-4 M) for nitric oxide synthases, ODQ (10-5 M) for guanylate cyclase, Verapamil (10-5 M) for the L-type calcium channel, Ryanodine (10-5 M) + 2-APB (3 × 10-5 M) for ryanodine and the inositol triphosphate receptors, respectively, and Paxilline (10-5 M) for the large-conductance calcium-activated potassium channel. The results indicated that EVOO-phenols activate Ca2+ signaling pathways, generating nitric oxide, inducing vasodilation via cGMP and BKCa2+ signals in smooth muscle cells. This study suggests the potential use of EVOO phenols to prevent utero-placental blood flow restriction, offering a promising avenue for managing PE.


Subject(s)
Calcium , Uterine Artery , Rats , Pregnancy , Female , Animals , Uterine Artery/metabolism , Calcium/metabolism , Olive Oil/pharmacology , Nitric Oxide/metabolism , Placenta/metabolism , Ryanodine , Phenols/pharmacology , Dilatation , Large-Conductance Calcium-Activated Potassium Channels/metabolism , Endothelium/metabolism
2.
Respir Res ; 25(1): 172, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637760

ABSTRACT

The success of lung transplantation is limited by the high rate of primary graft dysfunction due to ischemia-reperfusion injury (IRI). Lung IRI is characterized by a robust inflammatory response, lung dysfunction, endothelial barrier disruption, oxidative stress, vascular permeability, edema, and neutrophil infiltration. These events are dependent on the health of the endothelium, which is a primary target of IRI that results in pulmonary endothelial barrier dysfunction. Over the past 10 years, research has focused more on the endothelium, which is beginning to unravel the multi-factorial pathogenesis and immunologic mechanisms underlying IRI. Many important proteins, receptors, and signaling pathways that are involved in the pathogenesis of endothelial dysfunction after IR are starting to be identified and targeted as prospective therapies for lung IRI. In this review, we highlight the more significant mediators of IRI-induced endothelial dysfunction discovered over the past decade including the extracellular glycocalyx, endothelial ion channels, purinergic receptors, kinases, and integrins. While there are no definitive clinical therapies currently available to prevent lung IRI, we will discuss potential clinical strategies for targeting the endothelium for the treatment or prevention of IRI. The accruing evidence on the essential role the endothelium plays in lung IRI suggests that promising endothelial-directed treatments may be approaching the clinic soon. The application of therapies targeting the pulmonary endothelium may help to halt this rapid and potentially fatal injury.


Subject(s)
Lung Injury , Lung Transplantation , Reperfusion Injury , Humans , Lung/metabolism , Reperfusion Injury/pathology , Endothelium/metabolism , Endothelium/pathology , Lung Injury/metabolism
3.
Cells ; 13(5)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38474396

ABSTRACT

The pathologic consequences of Coronavirus Disease-2019 (COVID-19) include elevated inflammation and dysregulated vascular functions associated with thrombosis. In general, disruption of vascular homeostasis and ensuing prothrombotic events are driven by activated platelets, monocytes, and macrophages, which form aggregates (thrombi) attached to the endothelium lining of vessel walls. However, molecular pathways underpinning the pathological interactions between myeloid cells and endothelium during COVID-19 remain undefined. Here, we tested the hypothesis that modulations in the expression of cellular receptors angiotensin-converting enzyme 2 (ACE2), CD147, and glucose-regulated protein 78 (GRP78), which are involved in homeostasis and endothelial performance, are the hallmark responses induced by SARS-CoV-2 infection. Cultured macrophages and lungs of hamster model systems were used to test this hypothesis. The results indicate that while macrophages and endothelial cells are less likely to support SARS-CoV-2 proliferation, these cells may readily respond to inflammatory stimuli generated by the infected lung epithelium. SARS-CoV-2 induced modulations of tested cellular receptors correlated with corresponding changes in the mRNA expression of coagulation cascade regulators and endothelial integrity components in infected hamster lungs. Among these markers, tissue factor (TF) had the best correlation for prothrombotic events during SARS-CoV-2 infection. Furthermore, the single-molecule fluorescence in situ hybridization (smFISH) method alone was sufficient to determine the peak and resolution phases of SARS-CoV-2 infection and enabled screening for cellular markers co-expressed with the virus. These findings suggest possible molecular pathways for exploration of novel drugs capable of blocking the prothrombotic shift events that exacerbate COVID-19 pathophysiology and control the disease.


Subject(s)
COVID-19 , Thrombosis , Humans , COVID-19/pathology , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2 , Endoplasmic Reticulum Chaperone BiP , Endothelial Cells/metabolism , In Situ Hybridization, Fluorescence , Peptidyl-Dipeptidase A/metabolism , Lung/metabolism , Thrombosis/pathology , Endothelium/metabolism , Homeostasis
4.
Nat Aging ; 4(4): 595-612, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38519806

ABSTRACT

Age-related decline in brain endothelial cell (BEC) function contributes critically to neurological disease. Comprehensive atlases of the BEC transcriptome have become available, but results from proteomic profiling are lacking. To gain insights into endothelial pathways affected by aging, we developed a magnetic-activated cell sorting-based mouse BEC enrichment protocol compatible with proteomics and resolved the profiles of protein abundance changes during aging. Unsupervised cluster analysis revealed a segregation of age-related protein dynamics with biological functions, including a downregulation of vesicle-mediated transport. We found a dysregulation of key regulators of endocytosis and receptor recycling (most prominently Arf6), macropinocytosis and lysosomal degradation. In gene deletion and overexpression experiments, Arf6 affected endocytosis pathways in endothelial cells. Our approach uncovered changes not picked up by transcriptomic studies, such as accumulation of vesicle cargo and receptor ligands, including Apoe. Proteomic analysis of BECs from Apoe-deficient mice revealed a signature of accelerated aging. Our findings provide a resource for analysing BEC function during aging.


Subject(s)
Endothelial Cells , Proteomics , Mice , Animals , Endothelial Cells/metabolism , Proteomics/methods , Brain/metabolism , Endothelium/metabolism , Apolipoproteins E/metabolism
5.
Circ Res ; 134(8): 990-1005, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38456287

ABSTRACT

BACKGROUND: Growing evidence correlated changes in bioactive sphingolipids, particularly S1P (sphingosine-1-phosphate) and ceramides, with coronary artery diseases. Furthermore, specific plasma ceramide species can predict major cardiovascular events. Dysfunction of the endothelium lining lesion-prone areas plays a pivotal role in atherosclerosis. Yet, how sphingolipid metabolism and signaling change and contribute to endothelial dysfunction and atherosclerosis remain poorly understood. METHODS: We used an established model of coronary atherosclerosis in mice, combined with sphingolipidomics, RNA-sequencing, flow cytometry, and immunostaining to investigate the contribution of sphingolipid metabolism and signaling to endothelial cell (EC) activation and dysfunction. RESULTS: We demonstrated that hemodynamic stress induced an early metabolic rewiring towards endothelial sphingolipid de novo biosynthesis, favoring S1P signaling over ceramides as a protective response. This finding is a paradigm shift from the current belief that ceramide accrual contributes to endothelial dysfunction. The enzyme SPT (serine palmitoyltransferase) commences de novo biosynthesis of sphingolipids and is inhibited by NOGO-B (reticulon-4B), an ER membrane protein. Here, we showed that NOGO-B is upregulated by hemodynamic stress in myocardial EC of ApoE-/- mice and is expressed in the endothelium lining coronary lesions in mice and humans. We demonstrated that mice lacking NOGO-B specifically in EC (Nogo-A/BECKOApoE-/-) were resistant to coronary atherosclerosis development and progression, and mortality. Fibrous cap thickness was significantly increased in Nogo-A/BECKOApoE-/- mice and correlated with reduced necrotic core and macrophage infiltration. Mechanistically, the deletion of NOGO-B in EC sustained the rewiring of sphingolipid metabolism towards S1P, imparting an atheroprotective endothelial transcriptional signature. CONCLUSIONS: These data demonstrated that hemodynamic stress induced a protective rewiring of sphingolipid metabolism, favoring S1P over ceramide. NOGO-B deletion sustained the rewiring of sphingolipid metabolism toward S1P protecting EC from activation under hemodynamic stress and refraining coronary atherosclerosis. These findings also set forth the foundation for sphingolipid-based therapeutics to limit atheroprogression.


Subject(s)
Atherosclerosis , Coronary Artery Disease , Humans , Animals , Mice , Ceramides/metabolism , Coronary Artery Disease/genetics , Coronary Artery Disease/prevention & control , Nogo Proteins , Sphingolipids/metabolism , Sphingosine/metabolism , Lysophospholipids/metabolism , Endothelium/metabolism , Atherosclerosis/genetics , Atherosclerosis/prevention & control , Apolipoproteins E
6.
Commun Biol ; 7(1): 338, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38499610

ABSTRACT

Whether organ-specific regeneration is induced by organ-specific endothelial cells (ECs) remains unelucidated. The formation of white matter lesions due to chronic cerebral hypoperfusion causes cognitive decline, depression, motor dysfunction, and even acute ischemic stroke. Vascular ECs are an important target for treating chronic cerebral hypoperfusion. Brain-derived ECs transplanted into a mouse chronic cerebral hypoperfusion model showed excellent angiogenic potential. They were also associated with reducing both white matter lesions and brain dysfunction possibly due to the high expression of neuroprotective humoral factors. The in vitro coculture of brain cells with ECs from several diverse organs suggested the function of brain-derived endothelium is affected within a brain environment due to netrin-1 and Unc 5B systems. We found brain CD157-positive ECs were more proliferative and beneficial in a mouse model of chronic cerebral hypoperfusion than CD157-negative ECs upon inoculation. We propose novel methods to improve the symptoms of chronic cerebral hypoperfusion using CD157-positive ECs.


Subject(s)
Brain Ischemia , Ischemic Stroke , Mice , Animals , Endothelial Cells/metabolism , Ischemic Stroke/metabolism , Brain/metabolism , Brain Ischemia/metabolism , Disease Models, Animal , Endothelium/metabolism
7.
Cell Commun Signal ; 22(1): 191, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38528533

ABSTRACT

BACKGROUND: The incidence of diabetic kidney disease (DKD) continues to rapidly increase, with limited available treatment options. One of the hallmarks of DKD is persistent inflammation, but the underlying molecular mechanisms of early diabetic kidney injury remain poorly understood. C-X-C chemokine receptor 2 (CXCR2), plays an important role in the progression of inflammation-related vascular diseases and may bridge between glomerular endothelium and persistent inflammation in DKD. METHODS: Multiple methods were employed to assess the expression levels of CXCR2 and its ligands, as well as renal inflammatory response and endothelial glycocalyx shedding in patients with DKD. The effects of CXCR2 on glycocalyx shedding, and persistent renal inflammation was examined in a type 2 diabetic mouse model with Cxcr2 knockout specifically in endothelial cells (DKD-Cxcr2 eCKO mice), as well as in glomerular endothelial cells (GECs), cultured in high glucose conditions. RESULTS: CXCR2 was associated with early renal decline in DKD patients, and endothelial-specific knockout of CXCR2 significantly improved renal function in DKD mice, reduced inflammatory cell infiltration, and simultaneously decreased the expression of proinflammatory factors and chemokines in renal tissue. In DKD conditions, glycocalyx shedding was suppressed in endothelial Cxcr2 knockout mice compared to Cxcr2 L/L mice. Modulating CXCR2 expression also affected high glucose-induced inflammation and glycocalyx shedding in GECs. Mechanistically, CXCR2 deficiency inhibited the activation of NF-κB signaling, thereby regulating inflammation, restoring the endothelial glycocalyx, and alleviating DKD. CONCLUSIONS: Taken together, under DKD conditions, activation of CXCR2 exacerbates inflammation through regulation of the NF-κB pathway, leading to endothelial glycocalyx shedding and deteriorating renal function. Endothelial CXCR2 deficiency has a protective role in inflammation and glycocalyx dysfunction, suggesting its potential as a promising therapeutic target for DKD treatment.


Subject(s)
Diabetic Nephropathies , NF-kappa B , Receptors, Interleukin-8B , Animals , Humans , Mice , Diabetic Nephropathies/genetics , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Endothelial Cells/metabolism , Endothelium/metabolism , Glucose , Glycocalyx/metabolism , Inflammation/metabolism , Mice, Knockout , NF-kappa B/metabolism , Receptors, Chemokine/therapeutic use , Receptors, Interleukin-8B/genetics , Receptors, Interleukin-8B/metabolism , Diabetes Complications/genetics , Diabetes Complications/metabolism
8.
Eur J Pharmacol ; 970: 176475, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38438061

ABSTRACT

Sodium valproate (VPA), a histone deacetylase (HDAC) inhibitor, could be a promising candidate to treat acute myocardial infarction (AMI). In this study, AMI was induced in New Zealand White rabbits by occluding the left circumflex coronary artery for 1 h, followed by reperfusion. The animals were distributed into three experimental groups: the sham-operated group (SHAM), the AMI group and the AMI + VPA group (AMI treated with VPA 500 mg/kg/day). After 5 weeks, abdominal aorta was removed and used for isometric recording of tension in organ baths or protein expression by Western blot, and plasma for the determination of nitrate/nitrite (NOx) levels by colorimetric assay. Our results indicated that AMI induced a reduction of the endothelium-dependent response to acetylcholine without modifying the endothelium-independent response to sodium nitroprusside, leading to endothelial dysfunction. VPA treatment reversed AMI-induced endothelial dysfunction and even increased NO sensitivity in vascular smooth muscle. This response was consistent with an antioxidant effect of VPA, as it was able to reverse the superoxide dismutase 1 (SOD 1) down-regulation induced by AMI. Our experiments also ruled out that the VPA mechanism was related to eNOS, iNOS, sGC and arginase expression or changes in NOx plasma levels. Therefore, we conclude that VPA improves vasodilation by increasing NO bioavailability, likely due to its antioxidant effect. Since endothelial dysfunction was closely related to AMI, VPA treatment could increase aortic blood flow, making it a potential agent in reperfusion therapy that can prevent the vascular damage.


Subject(s)
Myocardial Infarction , Valproic Acid , Rabbits , Animals , Valproic Acid/pharmacology , Valproic Acid/therapeutic use , Antioxidants , Myocardial Infarction/metabolism , Aorta/metabolism , Endothelium/metabolism , Endothelium, Vascular/metabolism
9.
Molecules ; 29(5)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38474581

ABSTRACT

Endothelial pro-inflammatory activation is pivotal in cardiac ischemia-reperfusion (I/R) injury pathophysiology. The dried flower bud of Edgeworthia gardneri (Wall.) Meisn. (EG) is a commonly utilized traditional Tibetan medicine. However, its role in regulating endothelium activation and cardiac I/R injury has not been investigated. Herein, we showed that the administration of EG ethanolic extract exhibited a potent therapeutic efficacy in ameliorating cardiac endothelial inflammation (p < 0.05) and thereby protecting against myocardial I/R injury in rats (p < 0.001). In line with the in vivo findings, the EG extract suppressed endothelial pro-inflammatory activation in vitro by downregulating the expression of pro-inflammatory mediators (p < 0.05) and diminishing monocytes' firm adhesion to endothelial cells (ECs) (p < 0.01). Mechanistically, we showed that EG extract inhibited the nuclear factor kappa-B (NF-κB), c-Jun N-terminal kinase (JNK), extracellular regulated protein kinase (ERK), and p38 mitogen-activated protein kinase (MAPK) signaling pathways to attenuate EC-mediated inflammation (p < 0.05). Collectively, for the first time, this study demonstrated the therapeutic potential of EG ethanolic extract in alleviating I/R-induced inflammation and the resulting cardiac injury through its inhibitory role in regulating endothelium activation.


Subject(s)
Myocardial Reperfusion Injury , Thymelaeaceae , Rats , Animals , Endothelial Cells/metabolism , NF-kappa B/metabolism , Inflammation/drug therapy , Plant Extracts/pharmacology , Myocardial Reperfusion Injury/drug therapy , Endothelium/metabolism , Thymelaeaceae/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
10.
Nutrients ; 16(5)2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38474873

ABSTRACT

Endocardial endothelium (EE) is a layer of cells covering the cardiac cavities and modulates cardiomyocyte function. This cell type releases several cardioactive factors, including Angiotensin II (Ang II). This octopeptide is known to induce cardiac hypertrophy. However, whether this circulating factor also induces EE hypertrophy is not known. Taurine is known to prevent cardiac hypertrophy. Whether this endogenous antioxidant prevents the effect of Ang II on human EE (hEE) will be verified. Using quantitative fluorescent probe imaging for calcium and reactive oxygen species (ROS), our results show that Ang II induces (10-7 M, 48 h treatment) an increase in hEE cell (hEEC) volume and its nucleus. Pretreatment with 20 mM of taurine prevents morphological remodeling and increases intracellular calcium and ROS. These results suggest that the reported Ang II induces cardiac hypertrophy is associated with hEEC hypertrophy. This later effect is prevented by taurine by reducing intracellular calcium and ROS overloads. Thus, taurine could be an excellent tool for preventing Ang II-induced remodeling of hEECs.


Subject(s)
Angiotensin II , Calcium , Humans , Reactive Oxygen Species/metabolism , Angiotensin II/metabolism , Calcium/metabolism , Taurine/pharmacology , Cardiomegaly/metabolism , Myocytes, Cardiac , Endothelium/metabolism
11.
Free Radic Biol Med ; 216: 106-117, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38461872

ABSTRACT

Oxidized low density lipoprotein (oxLDL)-induced endothelial oxidative damage promotes the development of atherosclerosis. Caveolae play an essential role in maintaining the survival and function of vascular endothelial cell (VEC). It is reported that the long coiled-coil protein NECC2 is localized in caveolae and is associated with neural cell differentiation and adipocyte formation, but its role in VECs needs to be clarified. Our results showed NECC2 expression increased in the endothelium of plaque-loaded aortas and oxLDL-treated HUVECs. Down-regulation of NECC2 by NECC2 siRNA or compound YF-307 significantly inhibited oxLDL-induced VEC apoptosis and the adhesion factors expression. Remarkably, inhibition of NECC2 expression in the endothelium of apoE-/- mice by adeno-associated virus (AAV)-carrying NECC2 shRNA or compound YF-307 alleviated endothelium injury and restricted atherosclerosis development. The immunoprecipitation results confirmed that NECC2 interacted with Tyk2 and caveolin-1(Cav-1) in VECs, and NECC2 further promoted the phosphorylation of Cav-1 at Tyr14 b y activating Tyk2 phosphorylation. On the other hand, inhibiting NECC2 levels suppressed oxLDL-induced phosphorylation of Cav-1, uptake of oxLDL by VECs, accumulation of intracellular reactive oxygen species and activation of NF-κB. Our findings suggest that NECC2 may contribute to oxLDL-induced VEC injury and atherosclerosis via modulating Cav-1 phosphorylation through Tyk2. This work provides a new concept and drug target for treating atherosclerosis.


Subject(s)
Atherosclerosis , Animals , Mice , Apolipoproteins/adverse effects , Apolipoproteins/metabolism , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Atherosclerosis/metabolism , Endothelium/metabolism , Lipoproteins, LDL/metabolism , Oxidative Stress
12.
Arterioscler Thromb Vasc Biol ; 44(5): 1101-1113, 2024 May.
Article in English | MEDLINE | ID: mdl-38545783

ABSTRACT

BACKGROUND: Much of what we know about insulin resistance is based on studies from metabolically active tissues such as the liver, adipose tissue, and skeletal muscle. Emerging evidence suggests that the vascular endothelium plays a crucial role in systemic insulin resistance; however, the underlying mechanisms remain incompletely understood. Arf6 (ADP ribosylation factor 6) is a small GTPase that plays a critical role in endothelial cell function. Here, we tested the hypothesis that the deletion of endothelial Arf6 will result in systemic insulin resistance. METHODS: We used mouse models of constitutive endothelial cell-specific Arf6 deletion (Arf6f/- Tie2Cre+) and tamoxifen-inducible Arf6 knockout (Arf6f/f Cdh5CreER+). Endothelium-dependent vasodilation was assessed using pressure myography. Metabolic function was assessed using a battery of metabolic assessments including glucose and insulin tolerance tests and hyperinsulinemic-euglycemic clamps. We used a fluorescence microsphere-based technique to measure tissue blood flow. Skeletal muscle capillary density was assessed using intravital microscopy. RESULTS: Endothelial Arf6 deletion impaired insulin-stimulated vasodilation in white adipose tissue and skeletal muscle feed arteries. The impairment in vasodilation was primarily due to attenuated insulin-stimulated nitric oxide bioavailability but independent of altered acetylcholine-mediated or sodium nitroprusside-mediated vasodilation. Endothelial cell-specific deletion of Arf6 also resulted in systematic insulin resistance in normal chow-fed mice and glucose intolerance in high-fat diet-fed obese mice. The underlying mechanisms of glucose intolerance were reductions in insulin-stimulated blood flow and glucose uptake in the skeletal muscle and were independent of changes in capillary density or vascular permeability. CONCLUSIONS: Results from this study support the conclusion that endothelial Arf6 signaling is essential for maintaining insulin sensitivity. Reduced expression of endothelial Arf6 impairs insulin-mediated vasodilation and results in systemic insulin resistance. These results have therapeutic implications for diseases that are associated with endothelial cell dysfunction and insulin resistance such as diabetes.


Subject(s)
ADP-Ribosylation Factor 6 , Endothelium , Insulin Resistance , Muscle, Skeletal , Mice , ADP-Ribosylation Factor 6/genetics , ADP-Ribosylation Factor 6/metabolism , Endothelium/metabolism , Mice, Inbred C57BL , Glucose Intolerance , Tamoxifen , Mice, Knockout , Adipose Tissue, White/metabolism , Adipose Tissue, White/pathology , Muscle, Skeletal/blood supply , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Obesity/metabolism , Obesity/pathology , Glucose/metabolism , Diet, High-Fat , Mice, Obese , Vasodilation
13.
Int Immunopharmacol ; 129: 111618, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38354508

ABSTRACT

BACKGROUND: Acute hepatitis is a progressive inflammatory disorder that can lead to liver failure. Endothelial permeability is the vital pathophysiological change involved in infiltrating inflammatory factors. DDX24 has been implicated in immune signaling. However, the precise role of DDX24 in immune-mediated hepatitis remains unclear. Here, we investigate the phenotype of endothelium-targeted Ddx24 conditional knockout mice with Concanavalin A (ConA)-induced hepatitis. METHODS: Mice with homozygous endothelium-targeted Ddx24 conditional knockout (Ddx24flox/flox; Cdh5-Cre+) were established using the CRISPR/Cas9 mediated Cre-loxP system. We investigated the biological functions of endothelial cells derived from transgenic mice and explored the effects of Ddx24 in mice with ConA-induced hepatitis in vivo. The mass spectrometry was performed to identify the differentially expressed proteins in liver tissues of transgenic mice. RESULT: We successfully established mice with endothelium-targeted Ddx24 conditional knockout. The results showed migration and tube formation potentials of murine aortic endothelial cells with DDX24 silencing were significantly promoted. No differences were observed between Ddx24flox/flox; Cdh5-Cre+ and control regarding body weight and length, pathological tissue change and embryogenesis. We demonstrated Ddx24flox/flox; Cdh5-Cre+ exhibited exacerbation of ConA-induced hepatitis by up-regulating TNF-α and IFN-γ. Furthermore, endothelium-targeted Ddx24 conditional knockout caused vascular hyper-permeability in ConA-injected mice by down-regulating vascular integrity-associated proteins. Mechanistically, we identified Ddx24 might regulate immune-mediated hepatitis by inflammation-related permeable barrier pathways. CONCLUSION: These findings prove that endothelium-targeted Ddx24 conditional knockout exacerbates ConA-induced hepatitis in mice because of vascular hyper-permeability. The findings indicate a crucial role of DDX24 in regulating immune-mediated hepatitis, suggesting DDX24 as a potential therapeutic target in the disorder.


Subject(s)
Endothelial Cells , Hepatitis , Animals , Mice , Concanavalin A/toxicity , Endothelial Cells/metabolism , Endothelium/metabolism , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic
14.
J Transl Med ; 22(1): 161, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38365674

ABSTRACT

BACKGROUND: The autophagy adapter SQSTM1/p62 is crucial for maintaining homeostasis in various organs and cells due to its protein-protein interaction domains and involvement in diverse physiological and pathological processes. Vascular endothelium cells play a unique role in vascular biology and contribute to vascular health. METHODS: Using the Cre-loxP system, we generated mice with endothelium cell-specific knockout of p62 mediated by Tek (Tek receptor tyrosine kinase)-cre to investigate the essential role of p62 in the endothelium. In vitro, we employed protein mass spectrometry and IPA to identify differentially expressed proteins upon knockdown of p62. Immunoprecipitation assays were conducted to demonstrate the interaction between p62 and FN1 or LAMC2 in human umbilical vein endothelium cells (HUVECs). Additionally, we identified the degradation pathway of FN1 and LAMC2 using the autophagy inhibitor 3-methyladenine (3-MA) or proteasome inhibitor MG132. Finally, the results of immunoprecipitation demonstrated that the interaction between p62 and LAMC2 was abolished in the PB1 truncation group of p62, while the interaction between p62 and FN1 was abolished in the UBA truncation group of p62. RESULTS: Our findings revealed that p62 Endo mice exhibited heart, lung, and kidney fibrosis compared to littermate controls, accompanied by severe cardiac dysfunction. Immunoprecipitation assays provided evidence of p62 acting as an autophagy adapter in the autophagy-lysosome pathway for FN1 and LAMC2 degradation respectively through PB1 and UBA domain with these proteins rather than proteasome system. CONCLUSIONS: Our study demonstrates that defects in p62 within endothelium cells induce multi-organ fibrosis and cardiac dysfunction in mice. Our findings indicate that FN1 and LAMC2, as markers of (EndoMT), have detrimental effects on HUVECs and elucidate the autophagy-lysosome degradation mechanism of FN1 and LAMC2.


Subject(s)
Heart Diseases , Sequestosome-1 Protein , Animals , Humans , Mice , Adaptor Proteins, Signal Transducing/metabolism , Autophagy , Endothelium/metabolism , Heart Diseases/genetics , Heart Diseases/metabolism , Proteasome Endopeptidase Complex/metabolism , Proteasome Endopeptidase Complex/pharmacology , Sequestosome-1 Protein/genetics , Sequestosome-1 Protein/metabolism , Fibrosis/genetics , Fibrosis/metabolism
15.
Fluids Barriers CNS ; 21(1): 18, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38383451

ABSTRACT

BACKGROUND: Laminin-α5, a major component of the basal lamina, is predominantly synthesized by endothelial and mural cells (pericytes and vascular smooth muscle cells) in the CNS. Loss of laminin-α5 in either population fails to induce any abnormalities due to functional redundancy. Thus, the functional significance of laminin-α5 in neurovascular integrity remains unknown. Here, we hypothesize that ablation of laminin-α5 in both endothelial and mural cells increases neurovascular permeability. METHODS: The compound knockout mice were generated by crossing laminin-α5 floxed mice with Tie2-Cre and PDGFRß-Cre, which target endothelial cells and mural cells, respectively. Neurovascular permeability in these mutants was determined with both exogenous and endogenous tracers. Endothelial paracellular and transcellular permeability was assessed by examining the expression of tight junction proteins and transcytosis-associated proteins. In addition, transmission electron microscopy (TEM) was used to visualize tight junction ultrastructure and endothelial caveolae vesicles. Defects in pericytes and astrocytes were investigated by examining pericyte coverage/contact and astrocyte polarity. RESULTS: Elevated neurovascular permeability was observed in the mutants. Subsequent studies found increased Caveolin-1 and decreased major facilitator superfamily domain-containing protein 2a (MFSD2A) expression, but unaltered Claudin-5 or zonula occludens-1 (ZO-1) expression. Consistent with these results, mutant mice exhibited increased endothelial caveolae vesicle number with intact tight junction structure under TEM. Additionally, pericyte coverage and contact were also decreased in the mutant mice, while astrocyte polarity was unaffected. CONCLUSIONS: These results strongly indicate that endothelial and mural cell-derived laminin-α5 actively maintains neurovascular integrity via the transcellular rather than paracellular mechanism.


Subject(s)
Blood-Brain Barrier , Endothelial Cells , Animals , Mice , Astrocytes/metabolism , Blood-Brain Barrier/metabolism , Endothelial Cells/metabolism , Endothelium/metabolism , Laminin/metabolism , Mice, Knockout
16.
JCI Insight ; 9(4)2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38385749

ABSTRACT

RNA-binding proteins (RBPs) interact with RNA and ubiquitously regulate RNA transcripts during their life cycle, playing a fundamental role in the progression of angiogenesis-related diseases. In the skeletal system, endothelium-dependent angiogenesis is indispensable for bone formation. However, the role of RBPs in endothelium-dependent bone formation is unclear. Here, we show that RBP-Y-box-binding protein 1 (YBX1) was strongly reduced in the bone vasculature of ovariectomy (OVX) mice. Endothelial cell-specific deletion of Ybx1 impaired CD31-high, endomucin-high (CD31hiEMCNhi) endothelium morphology and resulted in low bone mass whereas Ybx1 overexpression promoted angiogenesis-dependent osteogenesis and ameliorated bone loss. Mechanistically, YBX1 deletion disrupted CD31, EMCN, and bone morphogenetic protein 4 (BMP4) stability in an m5C-dependent manner and blocked endothelium-derived BMP4 release, thereby inhibiting osteogenic differentiation of bone mesenchymal stromal cells. Administration of recombinant BMP4 protein restored impaired bone formation in Ybx1 deletion mice. Tail vein injection of CD31-modified polyethylene glycol-poly (lactic-co-glycolic acid) carrying sciadopitysin, a natural YBX1 agonist, pharmacologically partially reversed CD31hiEMCNhi vessels' decline and improved bone mass in both OVX and aging animals. These findings demonstrated the role of RBP-YBX1 in angiogenesis-dependent bone formation and provided a therapeutic approach for ameliorating osteoporosis.


Subject(s)
Osteogenesis , Osteoporosis , Transcription Factors , Animals , Female , Mice , Bone and Bones/metabolism , Endothelium/metabolism , Osteogenesis/physiology , Osteoporosis/genetics , RNA , Transcription Factors/genetics
17.
Circ Res ; 134(4): 351-370, 2024 02 16.
Article in English | MEDLINE | ID: mdl-38299369

ABSTRACT

BACKGROUND: Pulmonary hypertension (PH) is a progressive disorder characterized by remodeling of the pulmonary vasculature and elevated mean pulmonary arterial pressure, resulting in right heart failure. METHODS: Here, we show that direct targeting of the endothelium to uncouple eNOS (endothelial nitric oxide synthase) with DAHP (2,4-diamino 6-hydroxypyrimidine; an inhibitor of GTP cyclohydrolase 1, the rate-limiting synthetic enzyme for the critical eNOS cofactor tetrahydrobiopterin) induces human-like, time-dependent progression of PH phenotypes in mice. RESULTS: Critical phenotypic features include progressive elevation in mean pulmonary arterial pressure, right ventricular systolic blood pressure, and right ventricle (RV)/left ventricle plus septum (LV+S) weight ratio; extensive vascular remodeling of pulmonary arterioles with increased medial thickness/perivascular collagen deposition and increased expression of PCNA (proliferative cell nuclear antigen) and alpha-actin; markedly increased total and mitochondrial superoxide production, substantially reduced tetrahydrobiopterin and nitric oxide bioavailabilities; and formation of an array of human-like vascular lesions. Intriguingly, novel in-house generated endothelial-specific dihydrofolate reductase (DHFR) transgenic mice (tg-EC-DHFR) were completely protected from the pathophysiological and molecular features of PH upon DAHP treatment or hypoxia exposure. Furthermore, DHFR overexpression with a pCMV-DHFR plasmid transfection in mice after initiation of DAHP treatment completely reversed PH phenotypes. DHFR knockout mice spontaneously developed PH at baseline and had no additional deterioration in response to hypoxia, indicating an intrinsic role of DHFR deficiency in causing PH. RNA-sequencing experiments indicated great similarity in gene regulation profiles between the DAHP model and human patients with PH. CONCLUSIONS: Taken together, these results establish a novel human-like murine model of PH that has long been lacking in the field, which can be broadly used for future mechanistic and translational studies. These data also indicate that targeting endothelial DHFR deficiency represents a novel and robust therapeutic strategy for the treatment of PH.


Subject(s)
Hypertension, Pulmonary , Tetrahydrofolate Dehydrogenase , Animals , Humans , Mice , Endothelium/metabolism , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/genetics , Hypoxia , Mice, Knockout , Mice, Transgenic , Nitric Oxide Synthase Type III/genetics , Nitric Oxide Synthase Type III/metabolism , Tetrahydrofolate Dehydrogenase/genetics , Tetrahydrofolate Dehydrogenase/metabolism , Tetrahydrofolate Dehydrogenase/deficiency , Hypoxanthines , Disease Models, Animal
18.
J Clin Invest ; 134(4)2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38357921

ABSTRACT

The physiology of lipid droplets (LDs) has been most extensively characterized in adipocytes, but LDs also accumulate in endothelial cells lining blood vessels in response to changing levels of triglycerides. In recent issues of the JCI, two independent papers highlight a direct role of endothelial LDs in the genesis of hypertension and atherosclerosis in rodent models. Kim et al. demonstrated that accumulation of LDs in the endothelium leads to hypertension, impairs endothelial function, and accelerates atherosclerosis. Boutagy, Gamez-Mendez, et al. knocked out Atgl in the endothelium and confirmed triglyceride accumulation in endothelial cells that was associated with reduced NO synthesis and impaired endothelial-dependent vasodilation. These data suggest that enhancing triglyceride breakdown in the endothelium could provide a treatment target for patients with metabolic syndrome.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Hypertension , Metabolic Syndrome , Humans , Endothelial Cells/metabolism , Cardiovascular Diseases/metabolism , Lipid Droplets/metabolism , Metabolic Syndrome/metabolism , Triglycerides/metabolism , Endothelium/metabolism , Hypertension/metabolism , Atherosclerosis/metabolism
19.
FASEB J ; 38(4): e23468, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38334433

ABSTRACT

The endothelial regulation of platelet activity is incompletely understood. Here we describe novel approaches to find molecular pathways implicated on the platelet-endothelium interaction. Using high-shear whole-blood microfluidics, employing coagulant or non-coagulant conditions at physiological temperature, we observed that the presence of human umbilical vein endothelial cells (HUVEC) strongly suppressed platelet adhesion and activation, via the collagen receptor glycoprotein VI (GPVI) and the PAR receptors for thrombin. Real-time monitoring of the cytosolic Ca2+ rises in the platelets indicated no major improvement of inhibition by prostacyclin or nitric oxide. Similarly under stasis, exposure of isolated platelets to HUVEC reduced the Ca2+ responses by collagen-related peptide (CRP-XL, GPVI agonist) and thrombin (PAR agonist). We then analyzed the label-free phosphoproteome of platelets (three donors), exposed to HUVEC, CRP-XL, and/or thrombin. High-resolution mass spectrometry gave 5463 phosphopeptides, corresponding to 1472 proteins, with good correlation between biological and technical replicates (R > .86). Stringent filtering steps revealed 26 regulatory pathways (Reactome) and 143 regulated kinase substrates (PhosphoSitePlus), giving a set of protein phosphorylation sites that was differentially (44) or similarly (110) regulated by HUVEC or agonist exposure. The differential regulation was confirmed by stable-isotope analysis of platelets from two additional donors. Substrate analysis indicated major roles of poorly studied protein kinase classes (MAPK, CDK, DYRK, STK, PKC members). Collectively, these results reveal a resetting of the protein phosphorylation profile in platelets exposed to endothelium or to conventional agonists and to endothelium-promoted activity of a multi-kinase network, beyond classical prostacyclin and nitric oxide actors, that may contribute to platelet inhibition.


Subject(s)
Platelet Membrane Glycoproteins , Thrombin , Humans , Platelet Membrane Glycoproteins/metabolism , Thrombin/metabolism , Protein Kinases/metabolism , Nitric Oxide/metabolism , Endothelial Cells/metabolism , Platelet Activation/physiology , Blood Platelets/metabolism , Endothelium/metabolism , Prostaglandins I
20.
Theranostics ; 14(1): 249-264, 2024.
Article in English | MEDLINE | ID: mdl-38164151

ABSTRACT

Rationale: 17ß-estradiol (E2) can directly promote the growth of ERα-negative cancer cells through activation of endothelial ERα in the tumor microenvironment, thereby increasing a normalized tumor angiogenesis. ERα acts as a transcription factor through its nuclear transcriptional AF-1 and AF-2 transactivation functions, but membrane ERα plays also an important role in endothelium. The present study aims to decipher the respective roles of these two pathways in ERα-negative tumor growth. Moreover, we delineate the actions of tamoxifen, a Selective Estrogen Receptor Modulator (SERM) in ERα-negative tumors growth and angiogenesis, since we recently demonstrated that tamoxifen impacts vasculature functions through complex modulation of ERα activity. Methods: ERα-negative B16K1 cancer cells were grafted into immunocompetent mice mutated for ERα-subfunctions and tumor growths were analyzed in these different models in response to E2 and/or tamoxifen treatment. Furthermore, RNA sequencings were analyzed in endothelial cells in response to these different treatments and validated by RT-qPCR and western blot. Results: We demonstrate that both nuclear and membrane ERα actions are required for the pro-tumoral effects of E2, while tamoxifen totally abrogates the E2-induced in vivo tumor growth, through inhibition of angiogenesis but promotion of vessel normalization. RNA sequencing indicates that tamoxifen inhibits the E2-induced genes, but also initiates a specific transcriptional program that especially regulates angiogenic genes and differentially regulates glycolysis, oxidative phosphorylation and inflammatory responses in endothelial cells. Conclusion: These findings provide evidence that tamoxifen specifically inhibits angiogenesis through a reprogramming of endothelial gene expression via regulation of some transcription factors, that could open new promising strategies to manage cancer therapies affecting the tumor microenvironment of ERα-negative tumors.


Subject(s)
Neoplasms , Tamoxifen , Mice , Animals , Tamoxifen/pharmacology , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Endothelial Cells/metabolism , Angiogenesis , Gene Expression , Endothelium/metabolism , Cell Line, Tumor , Tumor Microenvironment/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...