Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 936
Filter
1.
Cytokine ; 179: 156637, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38723454

ABSTRACT

Sepsis is understood as the result of initiating systemic inflammation derived from an inadequate host response against pathogens. In its acute phase, sepsis is marked by an exacerbated reaction to infection, tissue damage, organ failure, and metabolic dysfunction. Among these, hypoglycemia, characterized by disorders of the gluconeogenesis pathway, is related to one of the leading causes of mortality in septic patients. Recent research has investigated the involvement of sympathetic efferent neuroimmune pathways during systemic inflammation. These pathways can be stimulated by several centrally administered drugs, including Angiotensin-(1-7) (Ang-(1-7)). Therefore, the present study aims to evaluate the effects of central treatment with Ang-(1-7) on hypoglycemia during endotoxemia. For this, male Wistar Hannover rats underwent stereotaxic surgery for intracerebroventricular (i.c.v.) administration of Ang-(1-7) and cannulation of the jugular vein for lipopolysaccharide (LPS) injection. Our results demonstrate that LPS was capable of inducing hypoglycemia and that prior central treatment with Ang-(1-7) attenuated this effect. Our data also show that Ang-(1-7) reduced plasma concentrations of TNF-α, IL-1ß, IL-6, and nitric oxide, in addition to the decrease and increase of hepatic IL-6 and IL-10 respectively, in animals subjected to systemic inflammation by LPS, resulting in the reduction of systemic and hepatic inflammation, thus attenuating the deleterious effects of LPS on phosphoenolpyruvate carboxykinase protein content. In summary, the data suggest that central treatment with Ang-(1-7) attenuates hypoglycemia induced by endotoxemia, probably through anti-inflammatory action, leading to reestablishing hepatic gluconeogenesis.


Subject(s)
Angiotensin I , Hypoglycemia , Lipopolysaccharides , Peptide Fragments , Rats, Wistar , Sepsis , Animals , Angiotensin I/pharmacology , Male , Sepsis/drug therapy , Sepsis/metabolism , Sepsis/complications , Peptide Fragments/pharmacology , Hypoglycemia/drug therapy , Hypoglycemia/metabolism , Rats , Inflammation/drug therapy , Inflammation/metabolism , Liver/metabolism , Liver/drug effects , Nitric Oxide/metabolism , Hepatitis/drug therapy , Hepatitis/metabolism , Endotoxemia/drug therapy , Cytokines/metabolism , Gluconeogenesis/drug effects , Blood Glucose/metabolism , Tumor Necrosis Factor-alpha/metabolism
2.
Drug Des Devel Ther ; 18: 1349-1368, 2024.
Article in English | MEDLINE | ID: mdl-38681208

ABSTRACT

Background: Sepsis is recognized as a multiorgan and systemic damage caused by dysregulated host response to infection. Its acute systemic inflammatory response highly resembles that of lipopolysaccharide (LPS)-induced endotoxemia. Propofol and dexmedetomidine are two commonly used sedatives for mechanical ventilation in critically ill patients and have been reported to alleviate cognitive impairment in many diseases. In this study, we aimed to explore and compare the effects of propofol and dexmedetomidine on the encephalopathy induced by endotoxemia and to investigate whether ferroptosis is involved, finally providing experimental evidence for multi-drug combination in septic sedation. Methods: A total of 218 C57BL/6J male mice (20-25 g, 6-8 weeks) were used. Morris water maze (MWM) tests were performed to evaluate whether propofol and dexmedetomidine attenuated LPS-induced cognitive deficits. Brain injury was evaluated using Nissl and Fluoro-Jade C (FJC) staining. Neuroinflammation was assessed by dihydroethidium (DHE) and DCFH-DA staining and by measuring the levels of three cytokines. The number of Iba1+ and GFAP+ cells was used to detect the activation of microglia and astrocytes. To explore the involvement of ferroptosis, the levels of ptgs2 and chac1; the content of iron, malondialdehyde (MDA), and glutathione (GSH); and the expression of ferroptosis-related proteins were investigated. Conclusion: The single use of propofol and dexmedetomidine mitigated LPS-induced cognitive impairment, while the combination showed poor performance. In alleviating endotoxemic neural loss and degeneration, the united sedative group exhibited the most potent capability. Both propofol and dexmedetomidine inhibited neuroinflammation, while propofol's effect was slightly weaker. All sedative groups reduced the neural apoptosis, inhibited the activation of microglia and astrocytes, and relieved neurologic ferroptosis. The combined group was most prominent in combating genetic and biochemical alterations of ferroptosis. Fpn1 may be at the core of endotoxemia-related ferroptosis activation.


Subject(s)
Dexmedetomidine , Endotoxemia , Ferroptosis , Lipopolysaccharides , Mice, Inbred C57BL , Propofol , Dexmedetomidine/pharmacology , Animals , Propofol/pharmacology , Ferroptosis/drug effects , Mice , Male , Endotoxemia/drug therapy , Endotoxemia/metabolism , Endotoxemia/chemically induced , Lipopolysaccharides/pharmacology , Dose-Response Relationship, Drug , Brain Diseases/drug therapy , Brain Diseases/metabolism , Brain Diseases/pathology , Hypnotics and Sedatives/pharmacology
3.
Res Vet Sci ; 171: 105205, 2024 May.
Article in English | MEDLINE | ID: mdl-38479101

ABSTRACT

Sepsis/endotoxemia associates with coagulation abnormalities. We showed previously that exogenous choline treatment reversed the changes in platelet count and function as well as prevented disseminated intravascular coagulation (DIC) in endotoxemic dogs. The aim of this follow-up study was to evaluate the effect of treatment with choline or cytidine-5'-diphosphocholine (CDP-choline), a choline donor, on endotoxin-induced hemostatic alterations using thromboelastography (TEG). Dogs were randomized to six groups and received intravenously (iv) saline, choline (20 mg/kg) or CDP-choline (70 mg/kg) in the control groups, whereas endotoxin (0.1 mg/kg, iv) was used alone or in combination with choline or CDP-choline at the same doses in the treatment groups. TEG variables including R- and K-time (clot formation), maximum amplitude (MA) and α-angle (clot stability), G value (clot elasticity), and EPL, A, and LY30 (fibrinolysis), as well as overall assessment of coagulation (coagulation index - CI), were measured before and at 0.5-48 h after the treatments. TEG parameters did not change significantly in the control groups, except for CI parameter after choline administration. Endotoxemia resulted in increased R-time and A value (P < 0.05), decreased K-time (P < 0.05), α-angle (P < 0.001) and CI values (P < 0.01) at different time points. Treatment with either choline or CDP-choline attenuated or prevented completely the alterations in TEG parameters in endotoxemic dogs with CDP-choline being more effective. These results confirm and extend the effectiveness of choline or CDP-choline in endotoxemia by further demonstrating their efficacy in attenuating or preventing the altered viscoelastic properties of blood clot measured by TEG.


Subject(s)
Choline , Cytidine Diphosphate Choline , Dog Diseases , Endotoxemia , Animals , Dogs , Choline/therapeutic use , Cytidine Diphosphate Choline/therapeutic use , Dog Diseases/drug therapy , Endotoxemia/drug therapy , Endotoxemia/veterinary , Endotoxins/adverse effects , Follow-Up Studies , Hemostatics , Thrombelastography/veterinary , Thrombelastography/methods
4.
Nutr Res ; 124: 94-110, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38430822

ABSTRACT

Anti-inflammatory activities of catechin-rich green tea extract (GTE) in obese rodents protect against metabolic endotoxemia by decreasing intestinal permeability and absorption of gut-derived endotoxin. However, translation to human health has not been established. We hypothesized that GTE would reduce endotoxemia by decreasing gut permeability and intestinal and systemic inflammation in persons with metabolic syndrome (MetS) compared with healthy persons. A randomized, double-blind, placebo-controlled, crossover trial in healthy adults (n = 19, 34 ± 2 years) and adults with MetS (n = 21, 40 ± 3 years) examined 4-week administration of a decaffeinated GTE confection (890 mg/d total catechins) on serum endotoxin, intestinal permeability, gut and systemic inflammation, and cardiometabolic parameters. Compared with the placebo, the GTE confection decreased serum endotoxin (P = .023) in both healthy persons and those with MetS, while increasing concentrations of circulating catechins (P < .0001) and γ-valerolactones (P = .0001). Fecal calprotectin (P = .029) and myeloperoxidase (P = .048) concentrations were decreased by GTE regardless of health status. Following the ingestion of gut permeability probes, urinary lactose/mannitol (P = .043) but not sucralose/erythritol (P > .05) was decreased by GTE regardless of health status. No between-treatment differences (P > .05) were observed for plasma aminotransferases, blood pressure, plasma lipids, or body mass nor were plasma tumor necrosis factor-α, interleukin-6, or the ratio of lipopolysaccharide-binding protein/soluble cluster of differentiation-14 affected. However, fasting glucose in both study groups was decreased (P = .029) by the GTE confection compared with within-treatment arm baseline concentrations. These findings demonstrate that catechin-rich GTE is effective to decrease circulating endotoxin and improve glycemic control in healthy adults and those with MetS, likely by reducing gut inflammation and small intestinal permeability but without affecting systemic inflammation.


Subject(s)
Acute-Phase Proteins , Blood Glucose , Carrier Proteins , Catechin , Cross-Over Studies , Endotoxins , Inflammation , Membrane Glycoproteins , Metabolic Syndrome , Permeability , Plant Extracts , Tea , Humans , Metabolic Syndrome/drug therapy , Double-Blind Method , Endotoxins/blood , Adult , Male , Female , Plant Extracts/pharmacology , Tea/chemistry , Catechin/pharmacology , Catechin/analogs & derivatives , Catechin/administration & dosage , Inflammation/drug therapy , Inflammation/blood , Blood Glucose/metabolism , Blood Glucose/drug effects , Endotoxemia/drug therapy , Fasting , Middle Aged , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Camellia sinensis/chemistry
5.
Int J Biol Macromol ; 264(Pt 1): 130500, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38428770

ABSTRACT

BACKGROUND: Endotoxemia is a severe and dangerous clinical syndrome that results in elevated morbidity, especially in intensive care units. Neonates are particularly susceptible to endotoxemia due to their immature immune systems. There are few effective treatments for neonatal endotoxemia. One group of compounds with potential in the treatment of neonatal inflammatory diseases such as endotoxemia is the flavonoids, mainly due to their antioxidant and anti-inflammatory properties. Among these, naringenin (NGN) is a citrus flavonoid which has already been reported to have anti-inflammatory, antioxidant, anti-nociceptive and anti-cancer effects. Unfortunately, its clinical application is limited by its low solubility and bioavailability. However, cyclodextrins (CDs) have been widely used to improve the solubility of nonpolar drugs and enhance the bioavailability of these natural products. OBJECTIVE: We, therefore, aimed to investigate the effects of NGN non-complexed and complexed with hydroxypropyl-ß-cyclodextrin (HPßCD) on neonatal endotoxemia injuries in a rodent model and describe the probable molecular mechanisms involved in NGN activities. METHOD: We used exposure to a bacterial lipopolysaccharide (LPS) to induce neonatal endotoxemia in the mice. RESULTS: It was found that NGN (100 mg/kg i.p.) exposure during the neonatal period reduced leukocyte migration and decreased pro-inflammatory cytokine (TNF-α, IL-1ß and IL-6) levels in the lungs, heart, kidneys or cerebral cortex. In addition, NGN upregulated IL-10 production in the lungs and kidneys of neonate mice. The administration of NGN also enhanced antioxidant enzyme catalase and SOD activity, reduced lipid peroxidation and protein carbonylation and increased the reduced sulfhydryl groups in an organ-dependent manner, attenuating the oxidative damage caused by LPS exposure. NGN decreased ERK1/2, p38MAPK and COX-2 activation in the lungs of neonate mice. Moreover, NGN complexed with HPßCD was able to increase the animal survival rate. CONCLUSION: NGN attenuated inflammatory and oxidative damage in the lungs, heart and kidneys caused by neonatal endotoxemia through the MAPK signaling pathways regulation. Our results show that NGN has beneficial effects against neonatal endotoxemia and could be useful in the treatment of neonatal inflammatory injuries.


Subject(s)
Citrus , Endotoxemia , Flavanones , Mice , Animals , Flavonoids/therapeutic use , 2-Hydroxypropyl-beta-cyclodextrin/pharmacology , Antioxidants/pharmacology , Antioxidants/therapeutic use , Endotoxemia/chemically induced , Endotoxemia/drug therapy , Lipopolysaccharides/therapeutic use , Anti-Inflammatory Agents/pharmacology
6.
Biol Pharm Bull ; 47(3): 549-555, 2024.
Article in English | MEDLINE | ID: mdl-38432910

ABSTRACT

Severe infection pathogenicity is induced by processes such as pathogen exposure, immune cell activation, inflammatory cytokine production, and vascular hyperpermeability. Highly effective drugs, such as antipathogenic agents, steroids, and antibodies that suppress cytokine function, have been developed to treat the first three processes. However, these drugs cannot completely suppress severe infectious diseases, such as coronavirus disease 2019 (COVID-19). Therefore, developing novel drugs that inhibit vascular hyperpermeability is crucial. This review summarizes the mechanisms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced vascular hyperpermeability and identifies inhibitors that increase endothelial cell (EC) junction-related proteins and determines their efficacy in COVID-19 and endotoxemia models. Analyzing the effects of SARS-CoV-2 on vascular permeability revealed that SARS-CoV-2 suppresses Claudin-5 (CLDN5) expression, which is responsible for adhesion between ECs, thereby increasing vascular permeability. Inhibiting CLDN5 function in mice induced vascular hyperpermeability and pulmonary edema. In contrast, Enhancing CLDN5 expression suppressed SARS-CoV-2-induced endothelial hyperpermeability, suggesting that SARS-CoV-2-induced vascular hyperpermeability contributes to pathological progression, which can be suppressed by upregulating EC junction proteins. Based on these results, we focused on Roundabout4 (Robo4), another EC-specific protein that stabilizes EC junctions. EC-specific Robo4 overexpression suppressed vascular hyperpermeability and mortality in lipopolysaccharide-treated mice. An ALK1 inhibitor (a molecule that increases Robo4 expression), suppressed vascular hyperpermeability and mortality in lipopolysaccharide- and SARS-CoV-2-treated mice. These results indicate that Robo4 expression-increasing drugs suppress vascular permeability and pathological phenotype in COVID-19 and endotoxemia models.


Subject(s)
COVID-19 , Communicable Diseases , Endotoxemia , Animals , Mice , Capillary Permeability , Endotoxemia/drug therapy , Lipopolysaccharides , SARS-CoV-2 , Claudin-5 , Cytokines , Receptors, Cell Surface
7.
Res Vet Sci ; 170: 105187, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38422840

ABSTRACT

To assess the effects of the acute inflammatory response (AIR) induced by Escherichia coli lipopolysaccharide (LPS) on plasma and tissue disposition of florfenicol (FFC) and its metabolite florfenicol amine (FFC-a), after its intramuscular (IM) administration, twenty-two New Zealand rabbits were randomly distributed in two experimental groups: Group 1 (LPS) was treated with three intravenous doses of 2 µg LPS/kg bw, before an intramuscular dose of 20 mg/kg FFC twenty-four h after the first LPS or SS injection; Group 2 (Control) was treated with saline solution (SS) in equivalent volumes as LPS-treated group. Blood samples were collected before (T0) and at different times after FFC administration. Acute inflammatory response was assessed in a parallel study where significant increases in body temperature, C-reactive protein concentrations and leukopenia were observed in the group treated with LPS. In another two groups of rabbits, 4 h after FFC treatment, rabbits were euthanized and tissue samples were collected for analysis of FFC and FFC-a concentrations. Pharmacokinetic parameters of FFC that showed significantly higher values in LPS-treated rabbits compared with control rabbits were absorption half-life, area under the curve, mean residence time and clearance /F (Cl/F). Elimination half-life and mean residence time of FFC-a were significantly higher in LPS-treated rabbits, whereas the metabolite ratio of FFC-a decreased significantly. Significant differences in tissue distribution of FFC and FFC-a were observed in rabbits treated with LPS. Modifications in plasma and tissue disposition of FFC and FFC-a were attributed mainly to haemodynamic modifications induced by the AIR through LPS administration.


Subject(s)
Endotoxemia , Thiamphenicol , Thiamphenicol/analogs & derivatives , Rabbits , Animals , Lipopolysaccharides , Anti-Bacterial Agents , Endotoxemia/chemically induced , Endotoxemia/drug therapy , Endotoxemia/veterinary , Escherichia coli/metabolism , Thiamphenicol/pharmacokinetics , Inflammation/veterinary , Half-Life , Injections, Intramuscular/veterinary
8.
Neurol Res ; 46(2): 195-206, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37989260

ABSTRACT

OBJECTIVE: Endotoxins, products of Gram-negative bacteria, are the primary cause of blood-brain barrier (BBB) damage. In the present study, we aimed to investigate the possible neuroprotection mechanisms of melatonin on BBB damage induced by endotoxemia. METHODS: Adult, female Sprague-Dawley rats (n = 42) were separated into four random groups as a control group and three treatment groups. Lipopolysaccharide (7,5 mg/kg/day) was administrated for a single dose to generate a 24-hour sepsis model on rats. Melatonin (10 mg/kg/day) was treated a week before sepsis. Afterward, the dissected brain tissues were examined by histopathological, biochemical, and molecular analyses. RESULTS: LPS caused weight loss in the groups. As a result, degenerated neurons with cytoplasmic vacuoles and irregular pyknotic nuclei, pale stained necrotic neurons, and vascular congestion were observed in LPS-exposed rats. However, MEL decreased the number of degenerated neurons in treated groups. MEL treatment increased ZO1 and Occludin immunoreactivity while decreasing TLR4 in brain tissues. MEL effect on protein expression was recorded for ZO1 increase and TLR4 decrease in brain tissue compared to LPS groups. MEL also decreased MDA levels in brain tissue. CONCLUSIONS: MEL recovered the degenerative damage of sepsis by contributing to blood-brain barrier integrity, and by decreasing inflammation, thus the neuroprotective effects of MEL might provide an experimental basis for clinical applications.


Subject(s)
Endotoxemia , Melatonin , Rats , Animals , Female , Melatonin/pharmacology , Melatonin/therapeutic use , Blood-Brain Barrier/metabolism , Rats, Sprague-Dawley , Lipopolysaccharides/toxicity , Endotoxemia/drug therapy , Toll-Like Receptor 4/metabolism
9.
Int J Mol Sci ; 24(23)2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38068895

ABSTRACT

Sepsis results from uncontrolled inflammation, characterized by cytokine storm and immunoparalysis. To assess whether galgravin, a natural lignan isolated from Piper kadsura, can be used to treat sepsis, models of bacterial lipopolysaccharide (LPS)-activated macrophages and LPS-induced endotoxemia mice were used. Galgravin suppressed NF-κB activation in LPS-activated RAW 264.7 macrophages without causing significant cytotoxicity, in which proinflammatory molecules like TNF-α, IL-6, iNOS, and COX-2 were downregulated. In addition, the expression of TNF-α and IL-6 was also suppressed by galgravin in LPS-activated murine bone marrow-derived macrophages. Moreover, galgravin significantly downregulated the mRNA expression of TNF-α, IL-6, and iNOS in the lungs and decreased TNF-α and IL-6 in the serum and IL-6 in the bronchoalveolar lavage fluid of LPS-challenged mice. The COX-2 expression in tissues, including the lung, liver, and kidney, as well as the lung alveolar hemorrhage, was also reduced by galgravin. The present study reveals the anti-inflammatory effects of galgravin in mouse models and implies its potential application in inflammation diseases.


Subject(s)
Endotoxemia , Kadsura , Lignans , Piper , Mice , Animals , Lipopolysaccharides/toxicity , NF-kappa B/metabolism , Kadsura/metabolism , Tumor Necrosis Factor-alpha/metabolism , Endotoxemia/chemically induced , Endotoxemia/drug therapy , Anti-Inflammatory Agents/adverse effects , Interleukin-6/genetics , Interleukin-6/metabolism , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Inflammation/metabolism , Lignans/therapeutic use
10.
Int Immunopharmacol ; 124(Pt B): 111073, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37844468

ABSTRACT

Guggulsterone (GS) is a phytosterol used to treat inflammatory diseases. Although many studies have examined the anti-inflammatory activities of GS, the detailed mechanisms of GS in lipopolysaccharide (LPS)-induced inflammation and endotoxemia have not yet been examined. Therefore, we investigated the anti-inflammatory effects of GS on LPS-induced inflammation. In murine peritoneal macrophages, the anti-inflammatory activity of GS was primarily mediated by heme oxygenase-1 (HO-1) induction. HO-1 induction by GS was mediated by GSH depletion and reactive oxygen species (ROS) production. The ROS generated by GS caused the phosphorylation of GSK3ß (ser9/21) and p38, leading to the translocation of nuclear factor erythroid-related factor 2 (Nrf2), which ultimately induced HO-1. In addition, GS pretreatment significantly inhibited inducible nitric oxide synthase (iNOS), iNOS-derived NO, and COX-2 protein and mRNA expression, and production of COX-derived prostaglandin PGE2, interleukin (IL)-1ß, IL-6, and tumor necrosis factor-α (TNF-α). In a mouse model of endotoxemia, GS treatment prolonged survival and inhibited the expression of inflammatory mediators, including IL-1ß, IL-6, and TNF-α. GS treatment also inhibited LPS-induced liver injury. These results suggest that GS-induced HO-1 could exert anti-inflammatory effects via ROS-dependent GSK (ser21/9)-p38 phosphorylation and nuclear translocation of Nrf2.


Subject(s)
Endotoxemia , Lipopolysaccharides , Animals , Mice , Lipopolysaccharides/pharmacology , NF-kappa B/metabolism , Interleukin-6/metabolism , Tumor Necrosis Factor-alpha/metabolism , Heme Oxygenase-1/metabolism , NF-E2-Related Factor 2/metabolism , Reactive Oxygen Species/metabolism , Endotoxemia/chemically induced , Endotoxemia/drug therapy , Inflammation/drug therapy , Inflammation/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism
11.
Int Immunopharmacol ; 125(Pt A): 111083, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37871380

ABSTRACT

Hydrangenol, a dihydroisocoumarin, isolated from the leaves of Hydrangea serrata, possesses anti-inflammatory, anti-obesity, and anti-photoaging activities. In this study, we investigated the protective effects of hydrangenol (HG) against lipopolysaccharide (LPS)-induced endotoxemia and elucidated the underlying molecular mechanisms of action in C57BL/6 mice. Oral administration of HG (20 or 40 mg/kg) significantly restored the survival rate and population of macrophages, T helper cells (CD3+/CD4+), and Th17 cells (CD3+/CD4+/CCR6+) in the spleens of mice with LPS-induced endotoxemia. HG suppressed the expression of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin (IL)-6, IL-1ß, and Interferon (IFN)-γ and the mRNA and protein expressions of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) in the intestine and lung of LPS-treated mice. Molecular data showed that HG ameliorated the activation of nuclear factor kappa B (NF-κB) p65, signal transducers and activators of transcription 3 (STAT3), and c-Fos and c-Jun (AP-1 subunits) via the myeloid differentiation primary response 88 (MyD88) dependent toll-like receptor 4 (TLR4) signaling pathway in the LPS-treated mouse intestines. HG treatment caused the recovery of LPS-induced impaired tight junction (occludin and claudin-2) protein and mRNA expressions. Furthermore, HG improved LPS-induced gut dysbiosis in mice. Taken together, our results suggest that HG protects against LPS-induced endotoxemia by restoring immune cells and the capacity of the intestinal barrier, reducing intestinal inflammation, and improving the composition of the gut microbiota.


Subject(s)
Endotoxemia , Lipopolysaccharides , Animals , Mice , Endotoxemia/chemically induced , Endotoxemia/drug therapy , Inflammation/chemically induced , Inflammation/drug therapy , Mice, Inbred C57BL , NF-kappa B/metabolism , Interleukin-6/metabolism , RNA, Messenger
12.
Microb Pathog ; 185: 106426, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37879450

ABSTRACT

Mastitis is a serious disease for humans and animals, which causes huge economic losses in the dairy industry and is hard to prevent due to the complex and unclear pathogenesis. Subacute ruminal acidosis (SARA) has contributed to the development of mastitis by inducing ruminal dysbiosis and subsequent low-grade endotoxemia (LGE), however, how ruminal metabolic changes regulate this progress is still unclear. Our previous study revealed that cows with SARA had increased ruminal retinoic acid (RA) levels, a metabolic intermediate of vitamin A that plays an essential role in mucosal immune responses. Hence, the aim of this study was to investigate the protective effect of RA on LGE-induced mastitis and the underlying mechanisms in mice. The results showed that RA alleviated LGE-induced mastitis, as evidenced by RA significantly reduced the increase in mammary proinflammatory cytokines and improved blood-milk barrier injury caused by LGE. In addition, RA increased the expression of tight junction proteins, including ZO-1, occludin and claudin-3. Furthermore, we found that RA limited the mammary inflammatory responses by inhibiting the activation of NF-κB and NLRP3 signaling pathways. These findings suggest that RA effectively alleviates LGE-induced mastitis and implies a potential strategy for the treatment and prevention of mastitis and other diseases.


Subject(s)
Endotoxemia , Mastitis , Humans , Female , Animals , Mice , Cattle , Tretinoin/adverse effects , Endotoxemia/complications , Endotoxemia/drug therapy , Mastitis/drug therapy , Mastitis/pathology , Signal Transduction , NF-kappa B/metabolism , Lipopolysaccharides/adverse effects
13.
Biochem Pharmacol ; 218: 115894, 2023 12.
Article in English | MEDLINE | ID: mdl-37898389

ABSTRACT

TWIK2 channel plays a critical role in NLRP3 inflammasome activation and mice deficient in TWIK2 channel are protected from sepsis and inflammatory lung injury. However, inhibitors of TWIK2 channel are currently in an early stage of development, and the molecular determinants underlying the chemical modulation of TWIK2 channel remain unexplored. In this study, we identified NPBA and the synthesized derivative NPBA-4 potently and selectively inhibited TWIK2 channel by using whole-cell patch clamp techniques. Furthermore, the mutation of the last residues of the selectivity filter in both P1 and P2 (i.e., T106A, T214A) of TWIK2 channel substantially abolished the effect of NPBA on TWIK2 channel. Our data suggest that NPBA blocked TWIK2 channel through binding at the bottom of the selectivity filter, which was also supported by molecular docking prediction. Moreover, we found that NPBA significantly suppressed NLRP3 inflammasome activation in macrophages and alleviated LPS-induced endotoxemia and organ injury in vivo. Notably, the protective effects of NPBA against LPS-induced endotoxemia were abolished in Kcnk6-/- mice. In summary, our study has uncovered a series of novel inhibitors of TWIK2 channel and revealed their distinct molecular determinants interacting TWIK2 channel. These findings provide new insights into the mechanisms of pharmacological action on TWIK2 channel and opportunities for the development of selective TWIK2 channel modulators to treat related inflammatory diseases.


Subject(s)
Endotoxemia , Inflammasomes , Animals , Mice , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Lipopolysaccharides/toxicity , Endotoxemia/chemically induced , Endotoxemia/drug therapy , Endotoxemia/prevention & control , Molecular Docking Simulation
14.
Crit Care ; 27(1): 374, 2023 09 29.
Article in English | MEDLINE | ID: mdl-37773186

ABSTRACT

BACKGROUND AND AIMS: The triggering factors of sepsis-induced myocardial dysfunction (SIMD) are poorly understood and are not addressed by current treatments. S100A8/A9 is a pro-inflammatory alarmin abundantly secreted by activated neutrophils during infection and inflammation. We investigated the efficacy of S100A8/A9 blockade as a potential new treatment in SIMD. METHODS: The relationship between plasma S100A8/A9 and cardiac dysfunction was assessed in a cohort of 62 patients with severe sepsis admitted to the intensive care unit of Linköping University Hospital, Sweden. We used S100A8/A9 blockade with the small-molecule inhibitor ABR-238901 and S100A9-/- mice for therapeutic and mechanistic studies on endotoxemia-induced cardiac dysfunction in mice. RESULTS: In sepsis patients, elevated plasma S100A8/A9 was associated with left-ventricular (LV) systolic dysfunction and increased SOFA score. In wild-type mice, 5 mg/kg of bacterial lipopolysaccharide (LPS) induced rapid plasma S100A8/A9 increase and acute LV dysfunction. Two ABR-238901 doses (30 mg/kg) administered intraperitoneally with a 6 h interval, starting directly after LPS or at a later time-point when LV dysfunction is fully established, efficiently prevented and reversed the phenotype, respectively. In contrast, dexamethasone did not improve cardiac function compared to PBS-treated endotoxemic controls. S100A8/A9 inhibition potently reduced systemic levels of inflammatory mediators, prevented upregulation of inflammatory genes and restored mitochondrial function in the myocardium. The S100A9-/- mice were protected against LPS-induced LV dysfunction to an extent comparable with pharmacologic S100A8/A9 blockade. The ABR-238901 treatment did not induce an additional improvement of LV function in the S100A9-/- mice, confirming target specificity. CONCLUSION: Elevated S100A8/A9 is associated with the development of LV dysfunction in severe sepsis patients and in a mouse model of endotoxemia. Pharmacological blockade of S100A8/A9 with ABR-238901 has potent anti-inflammatory effects, mitigates myocardial dysfunction and might represent a novel therapeutic strategy for patients with severe sepsis.


Subject(s)
Endotoxemia , Heart Diseases , Ventricular Dysfunction, Left , Humans , Mice , Animals , Endotoxemia/complications , Endotoxemia/drug therapy , Lipopolysaccharides , Calgranulin A/physiology , Calgranulin B/genetics , Myocardium , Inflammation/drug therapy
15.
Eur J Pharm Sci ; 191: 106588, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37734468

ABSTRACT

INTRODUCTION: During septic shock, impairment of microcirculation leads to enhanced permeability of intestinal mucosa triggered by generalized vasodilation and capillary leak. Intravenous angiotensin II (AT-II) has been approved for the treatment of septic shock; however, no in-vivo data exist on the influence of AT-II on hepatic and intestinal microcirculation. MATERIAL AND METHODS: Sixty male Lewis rats were randomly assigned to six study groups (each n = 10): sham, lipopolysaccharide-induced septic shock, therapy with low- or high-dose AT-II (50 or 100 ng/kg/min, respectively), and septic shock treated with low- or high-dose AT-II. After median laparotomy, hepatic and intestinal microcirculation measures derived from micro-lightguide spectrophotometry were assessed for 3 h and included oxygen saturation (SO2), relative blood flow (relBF) and relative hemoglobin level (relHb). Hemodynamic measurements were performed using a left ventricular conductance catheter, and blood samples were taken hourly to analyze blood gasses and systemic cytokines. RESULTS: AT-II increased mean arterial pressure in a dose-dependent manner in both septic and non-septic animals (p < 0.001). Lower hepatic and intestinal SO2 (both p < 0.001) were measured in animals without endotoxemia who received high-dose AT-II treatment, however, significantly impaired cardiac output was also reported in this group (p < 0.001). In endotoxemic rats, hepatic relBF and relHb were comparable among the treatment groups; however, hepatic SO2 was reduced during low- and high-dose AT-II treatment (p < 0.001). In contrast, intestinal SO2 remained unchanged despite treatment with AT-II. Intestinal relBF (p = 0.028) and interleukin (IL)-10 plasma levels (p < 0.001) were significantly elevated during treatment with high-dose AT-II compared with low-dose AT-II. CONCLUSIONS: A dose-dependent decrease of hepatic and intestinal microcirculation during therapy with AT-II in non-septic rats was observed, which might have been influenced by a corresponding reduction in cardiac output due to elevated afterload. While hepatic microcirculation was reduced during endotoxemia, no evidence for a reduction in intestinal microcirculation facilitated by AT-II was found. In contrast, both intestinal relBF and anti-inflammatory IL-10 levels were increased during high-dose AT-II treatment.


Subject(s)
Endotoxemia , Shock, Septic , Rats , Male , Animals , Endotoxemia/chemically induced , Endotoxemia/drug therapy , Shock, Septic/drug therapy , Angiotensin II , Microcirculation/physiology , Rats, Inbred Lew , Hemodynamics
16.
J Med Life ; 16(6): 941-947, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37675176

ABSTRACT

Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection. This study aimed to investigate the potential protective effect of the lungs in sepsis by modulating inflammatory and oxidative stress markers. Twenty-four adult male Swiss-albino mice, aged 8-12 weeks and weighing 20-30 g, were divided into four equal groups (n=6): sham (laparotomy only), CLP (laparotomy plus cecal ligation and puncture), vehicle (DMSO administered one hour before CLP), and Ticagrelor (50 mg/kg IP administered one hour before CLP). Tissue levels of pro-inflammatory and oxidative stress markers in the lung were assessed using ELISA. F2 isoprostane levels were significantly higher in the sepsis group (p<0.05) compared to the sham group, while Ticagrelor significantly decreased the inflammatory and oxidative stress markers compared to the sepsis group. All mice in the sepsis group had considerable (p=0.05) lung tissue damage, but Ticagrelor considerably decreased lung tissue injury (p=0.05). Furthermore, Ticagrelor was found to reduce tissue cytokine levels of the lung (IL-1, TNF a, IL-6, F2 isoprostane, GPR 17, MIF) in male mice during CLP-induced polymicrobial sepsis by modulation of pro-inflammatory and oxidative stress cascade signaling pathways.


Subject(s)
Endotoxemia , Sepsis , Male , Animals , Mice , Endotoxemia/drug therapy , F2-Isoprostanes , Ticagrelor/pharmacology , Ticagrelor/therapeutic use , Lung
17.
Int J Mol Sci ; 24(15)2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37569823

ABSTRACT

Sepsis is a life-threatening medical emergency triggered by excessive inflammation in response to an infection. High mortality rates and limited therapeutic options pose significant challenges in sepsis treatment. Histone deacetylase inhibitors (HDACi), such as suberoylanilide hydroxamic acid (SAHA), have been proposed as potent anti-inflammatory agents for treating inflammatory diseases. However, the underlying mechanisms of sepsis treatment remain poorly understood. In this study, we investigated the effects of SAHA treatment in the lipopolysaccharide (LPS)-induced endotoxemia mouse model as it closely mimics the early stages of the systemic inflammation of sepsis. Our results demonstrate a reduced inflammatory mediator secretion and improved survival rates in mice. Using quantitative acetylomics, we found that SAHA administration increases the acetylation of lactate dehydrogenase (LDHA), and consequently inhibits LDHA activity. Notably, the reduced enzyme activity of LDHA results in a reduced rate of glycolysis. Furthermore, our experiments with bone marrow-derived macrophages (BMDMs) show that SAHA administration reduced oxidative stress and extracellular ATP concentrations, ultimately blunting inflammasome activation. Overall, our study provides insights into the mechanism underlying SAHA's therapeutic effects in sepsis treatment and highlights LDHA as a potential target for developing novel sepsis treatment.


Subject(s)
Endotoxemia , Sepsis , Animals , Mice , Vorinostat/pharmacology , Vorinostat/therapeutic use , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Endotoxemia/drug therapy , Hydroxamic Acids/pharmacology , Hydroxamic Acids/therapeutic use , Sepsis/drug therapy
18.
Int J Mol Sci ; 24(14)2023 Jul 22.
Article in English | MEDLINE | ID: mdl-37511541

ABSTRACT

When stimulated by proinflammatory mediators, endothelial cells release ultra-large von Willebrand factor (ULVWF) multimers that are hyperactive in activating and aggregating platelets. These ULVWF multimers can accumulate in the circulation and on the inflamed endothelium because they are insufficiently cleaved by the metalloprotease ADAMTS-13, which becomes moderately deficient under conditions of systemic inflammation. This moderate ADAMTS-13 deficiency may lead to thrombotic complications that contribute to ischemic tissue injury and organ failure that are associated with severe infections. To test this hypothesis, we investigated whether recombinant ADAMTS-13 improves the pathological course of endotoxemia in lipopolysaccharide (LPS)-treated mice. C57BL/J6 mice received a bolus infusion of either 5 µg/mouse of ADAMTS-13 or vehicle control 30 min after LPS challenge and were monitored for seven-day survival. During the monitoring period, platelet counts, VWF antigen, and ADAMTS-13 activity were measured. Thrombosis was also examined by the immunohistochemistry in the liver. We found that ADAMTS-13 reduced mortality from 66% to 34.9%. The improved survival was associated with a greater recovery from thrombocytopenia, higher plasma ADAMTS-13 activity, and less thrombotic vascular occlusion. These results suggest that systemic inflammation could result in deficient ULVWF proteolysis by ADAMTS-13 and that ADAMTS-13 improves the outcomes of endotoxemia-induced inflammation.


Subject(s)
ADAM Proteins , Endotoxemia , Animals , Mice , Endothelial Cells , ADAMTS13 Protein , Endotoxemia/drug therapy , Lipopolysaccharides , Mice, Inbred C57BL , von Willebrand Factor
19.
Sci Rep ; 13(1): 11369, 2023 07 13.
Article in English | MEDLINE | ID: mdl-37443327

ABSTRACT

Hospital mortality in sepsis varies between 30-45%. It has been shown that administration of inhaled nitric oxide (iNO) and intravenous corticosteroid in a porcine endotoxemia model attenuated the systemic inflammatory response. We explored the anti-inflammatory effect of a double-treatment strategy (iNO + low-dose steroid) on the lungs in a long-term porcine endotoxic shock model. As metalloproteinases (MMPs) are involved in the initiation of multiple organ dysfunction in septic shock, we evaluated the influence of this combination therapy on MMP2 and MMP9 activity and proIL-1ß maturation. A shock-like condition was established in 23 animals by continuous infusion of E. coli lipopolysaccharide (LPS) for 10 h. Then the animals were observed for 10 h. Twelve pigs received iNO and hydrocortisone (iNO treatment started 3 h after the initial LPS infusion and continued until the end of the experiment). Eleven pigs were controls. Pigs treated with iNO and hydrocortisone displayed less inflammatory infiltrates in the lungs than the controls and a lower level of IL-1ß. The proMMP2 was significantly decreased in the iNO and hydrocortisone group. The amount of an active MMP9 (~ 60 kDa) was decreased in the iNO and hydrocortisone group. Total gelatinolytic activity was lower in the iNO and hydrocortisone group. Reduced MMP activity was accompanied by a 2.5-fold decrease of the active IL-1ß form (17 kDa) in the pulmonary tissue of iNO combined with hydrocortisone exposed pigs. We demonstrated that in a porcine endotoxemia model the NO inhalation combined with intravenous hydrocortisone led to the attenuation of the inflammatory cascade induced by bacterial LPS. The decrease in pulmonary MMPs activities was accompanied by reduced proIL-1ß processing.


Subject(s)
Endotoxemia , Sepsis , Shock, Septic , Animals , Swine , Hydrocortisone , Nitric Oxide/pharmacology , Lipopolysaccharides/pharmacology , Matrix Metalloproteinase 9/therapeutic use , Endotoxemia/drug therapy , Endotoxemia/chemically induced , Escherichia coli , Lung , Sepsis/drug therapy , Shock, Septic/drug therapy , Administration, Inhalation
20.
Front Immunol ; 14: 1176775, 2023.
Article in English | MEDLINE | ID: mdl-37261364

ABSTRACT

Objective: Inflammation-induced free radical release is important in the pathogenesis of several diseases, including atherosclerosis and sepsis. Heme oxygenase (HO) breaks down heme into carbon monoxide, iron, and biliverdin. Biliverdin IXα is directly converted to bilirubin by biliverdin reductase. Unconjugated bilirubin is a powerful antioxidant, and elevated levels have beneficial effects in preclinical models and human cardiovascular disease. However, its impact during acute inflammation in humans is unknown. In the present study, we investigated the impact of atazanavir-induced (unconjugated) hyperbilirubinemia on antioxidant capacity, inflammation, and vascular dysfunction in human experimental endotoxemia. Approach and results: Following double-blinded four-day treatment with atazanavir 2dd300 mg (or placebo), twenty healthy male volunteers received 2 ng/kg Escherichia coli lipopolysaccharide intravenously. Blood was drawn to determine the bilirubin levels, antioxidant capacity, and cytokine response. It was demonstrated that following atazanavir treatment, total bilirubin concentrations increased to maximum values of 4.67 (95%CI 3.91-5.59) compared to 0.82 (95%CI 0.64-1.07) mg/dL in the control group (p<0.01). Furthermore, the anti-oxidant capacity, as measured by the ferric-reducing ability of plasma (FRAP), was significantly increased with 36% in hyperbilirubinemia subjects (p<0.0001), and FRAP concentrations correlated strongly to bilirubin concentrations (R2 = 0.77, p<0.001). Hyperbilirubinemia attenuated the release of interleukin-10 from 377 (95%CI 233-609) to 219 (95%CI 152-318) pg/mL (p=0.01), whereas the release of pro-inflammatory cytokines remained unaltered. In vitro, in the absence of hyperbilirubinemia, atazanavir did not influence lipopolysaccharide-induced cytokine release in a whole blood assay. Vascular function was assessed using forearm venous occlusion plethysmography after intra-arterial infusion of acetylcholine and nitroglycerin. Hyperbilirubinemia completely prevented the LPS-associated blunted vascular response to acetylcholine and nitroglycerin. Conclusions: Atazanavir-induced hyperbilirubinemia increases antioxidant capacity, attenuates interleukin-10 release, and prevents vascular hyporesponsiveness during human systemic inflammation elicited by experimental endotoxemia. Clinical trial registration: http://clinicaltrials.gov, identifier NCT00916448.


Subject(s)
Endotoxemia , Interleukin-10 , Humans , Male , Atazanavir Sulfate/adverse effects , Nitroglycerin/adverse effects , Endotoxemia/drug therapy , Lipopolysaccharides/adverse effects , Acetylcholine/pharmacology , Antioxidants/therapeutic use , Biliverdine , Hyperbilirubinemia/chemically induced , Hyperbilirubinemia/drug therapy , Bilirubin
SELECTION OF CITATIONS
SEARCH DETAIL
...