Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 782
Filter
1.
Plant Physiol ; 194(3): 1383-1396, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-37972281

ABSTRACT

Photosynthetic organisms harvest light using pigment-protein complexes. In cyanobacteria, these are water-soluble antennae known as phycobilisomes (PBSs). The light absorbed by PBS is transferred to the photosystems in the thylakoid membrane to drive photosynthesis. The energy transfer between these complexes implies that protein-protein interactions allow the association of PBS with the photosystems. However, the specific proteins involved in the interaction of PBS with the photosystems are not fully characterized. Here, we show in Synechocystis sp. PCC 6803 that the recently discovered PBS linker protein ApcG (sll1873) interacts specifically with PSII through its N-terminal region. Growth of cyanobacteria is impaired in apcG deletion strains under light-limiting conditions. Furthermore, complementation of these strains using a phospho-mimicking version of ApcG causes reduced growth under normal growth conditions. Interestingly, the interaction of ApcG with PSII is affected when a phospho-mimicking version of ApcG is used, targeting the positively charged residues interacting with the thylakoid membrane, suggesting a regulatory role mediated by phosphorylation of ApcG. Low-temperature fluorescence measurements showed decreased PSI fluorescence in apcG deletion and complementation strains. The PSI fluorescence was the lowest in the phospho-mimicking complementation strain, while the pull-down experiment showed no interaction of ApcG with PSI under any tested condition. Our results highlight the importance of ApcG for selectively directing energy harvested by the PBS and imply that the phosphorylation status of ApcG plays a role in regulating energy transfer from PSII to PSI.


Subject(s)
Synechocystis , Synechocystis/metabolism , Phycobilisomes/metabolism , Photosystem I Protein Complex/metabolism , Photosystem II Protein Complex/metabolism , Energy Transfer/physiology
2.
J Phys Chem B ; 126(14): 2669-2676, 2022 04 14.
Article in English | MEDLINE | ID: mdl-35377647

ABSTRACT

Carotenoid (Car) quenching chlorophyll triplet state (3Chl a*), an unwanted photosensitizer yielding harmful reactive oxygen species, is crucial for the survival of oxygenic photosynthetic organisms. For the major light-harvesting complex of photosystem II (LHCII) in isolated form, 3Chl a* is deactivated via sub-nanosecond Chl-to-Car triplet excitation energy transfer by lutein in the central domain of LHCII; however, the mechanistic difference from LHCII in vivo remains to be explored. To investigate the intrinsic Car-photoprotection properties of LHCII in a bio-mimicking circumstance, we reconstituted trimeric spinach LHCII into the discoidal membrane of nanosize made from l-α-phosphatidylcholine and examined the triplet excited dynamics. Time-resolved optical absorption combined with circular dichroism spectroscopies revealed that, with reference to LHCII in buffer, LHCII in the membrane nanodisc shows appreciable conformational variation in the neoxanthin and the Lut621 domains and in the Chl a-terminal cluster owing to the lipid-protein interactions, which, in turn, alters the triplet population of Lut620 and Lut621 and their partition. Importantly, the unquenched 3Chl a* population in the complex was reduced by 60%, indicating that LHCII in the membrane adopts a conformation that is optimized for the alleviation of photoinhibition.


Subject(s)
Chlorophyll , Light-Harvesting Protein Complexes , Spinacia oleracea , Carotenoids/metabolism , Chlorophyll/metabolism , Chlorophyll Binding Proteins/metabolism , Energy Transfer/physiology , Light-Harvesting Protein Complexes/metabolism , Lipids , Lutein/metabolism , Nanoparticles , Photosystem II Protein Complex/metabolism , Reactive Oxygen Species/metabolism , Spinacia oleracea/metabolism , Thylakoids/metabolism
3.
Elife ; 102021 12 03.
Article in English | MEDLINE | ID: mdl-34860156

ABSTRACT

Toxoplasma gondii has evolved different developmental stages for disseminating during acute infection (i.e., tachyzoites) and establishing chronic infection (i.e., bradyzoites). Calcium ion (Ca2+) signaling tightly regulates the lytic cycle of tachyzoites by controlling microneme secretion and motility to drive egress and cell invasion. However, the roles of Ca2+ signaling pathways in bradyzoites remain largely unexplored. Here, we show that Ca2+ responses are highly restricted in bradyzoites and that they fail to egress in response to agonists. Development of dual-reporter parasites revealed dampened Ca2+ responses and minimal microneme secretion by bradyzoites induced in vitro or harvested from infected mice and tested ex vivo. Ratiometric Ca2+ imaging demonstrated lower Ca2+ basal levels, reduced magnitude, and slower Ca2+ kinetics in bradyzoites compared with tachyzoites stimulated with agonists. Diminished responses in bradyzoites were associated with downregulation of Ca2+-ATPases involved in intracellular Ca2+ storage in the endoplasmic reticulum (ER) and acidocalcisomes. Once liberated from cysts by trypsin digestion, bradyzoites incubated in glucose plus Ca2+ rapidly restored their intracellular Ca2+ and ATP stores, leading to enhanced gliding. Collectively, our findings indicate that intracellular bradyzoites exhibit dampened Ca2+ signaling and lower energy levels that restrict egress, and yet upon release they rapidly respond to changes in the environment to regain motility.


Subject(s)
Calcium/metabolism , Cell Movement/physiology , Energy Transfer/physiology , Infections/physiopathology , Toxoplasma/metabolism , Toxoplasmosis/physiopathology
4.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Article in English | MEDLINE | ID: mdl-34845027

ABSTRACT

Quantum coherences, observed as time-dependent beats in ultrafast spectroscopic experiments, arise when light-matter interactions prepare systems in superpositions of states with differing energy and fixed phase across the ensemble. Such coherences have been observed in photosynthetic systems following ultrafast laser excitation, but what these coherences imply about the underlying energy transfer dynamics remains subject to debate. Recent work showed that redox conditions tune vibronic coupling in the Fenna-Matthews-Olson (FMO) pigment-protein complex in green sulfur bacteria, raising the question of whether redox conditions may also affect the long-lived (>100 fs) quantum coherences observed in this complex. In this work, we perform ultrafast two-dimensional electronic spectroscopy measurements on the FMO complex under both oxidizing and reducing conditions. We observe that many excited-state coherences are exclusively present in reducing conditions and are absent or attenuated in oxidizing conditions. Reducing conditions mimic the natural conditions of the complex more closely. Further, the presence of these coherences correlates with the vibronic coupling that produces faster, more efficient energy transfer through the complex under reducing conditions. The growth of coherences across the waiting time and the number of beating frequencies across hundreds of wavenumbers in the power spectra suggest that the beats are excited-state coherences with a mostly vibrational character whose phase relationship is maintained through the energy transfer process. Our results suggest that excitonic energy transfer proceeds through a coherent mechanism in this complex and that the coherences may provide a tool to disentangle coherent relaxation from energy transfer driven by stochastic environmental fluctuations.


Subject(s)
Energy Transfer/physiology , Light-Harvesting Protein Complexes/physiology , Photosynthesis/physiology , Bacterial Proteins/chemistry , Light , Light-Harvesting Protein Complexes/metabolism , Oxidation-Reduction , Photosynthetic Reaction Center Complex Proteins/physiology , Pigmentation , Quantum Theory , Spectrum Analysis/methods , Vibration
5.
Int J Mol Sci ; 22(18)2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34576194

ABSTRACT

Considering bacteriochlorophyll molecules embedded in the protein matrix of the light-harvesting complexes of purple bacteria (known as LH2 and LH1-RC) as examples of systems of interacting pigment molecules, we investigated the relationship between the spatial arrangement of the pigments and their exciton transition moments. Based on the recently reported crystal structures of LH2 and LH1-RC and the outcomes of previous theoretical studies, as well as adopting the Frenkel exciton Hamiltonian for two-level molecules, we performed visualizations of the LH2 and LH1 exciton transition moments. To make the electron transition moments in the exciton representation invariant with respect to the position of the system in space, a system of pigments must be translated to the center of mass before starting the calculations. As a result, the visualization of the transition moments for LH2 provided the following pattern: two strong transitions were outside of LH2 and the other two were perpendicular and at the center of LH2. The antenna of LH1-RC was characterized as having the same location of the strongest moments in the center of the complex, exactly as in the B850 ring, which actually coincides with the RC. Considering LH2 and LH1 as supermolecules, each of which has excitation energies and corresponding transition moments, we propose that the outer transitions of LH2 can be important for inter-complex energy exchange, while the inner transitions keep the energy in the complex; moreover, in the case of LH1, the inner transitions increased the rate of antenna-to-RC energy transfer.


Subject(s)
Bacteriochlorophylls/metabolism , Light-Harvesting Protein Complexes/metabolism , Bacterial Proteins/metabolism , Energy Transfer/physiology , Photosynthesis/physiology , Proteobacteria/metabolism
6.
Photosynth Res ; 149(3): 303-311, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34037905

ABSTRACT

Photosynthetic organisms finely tune their photosynthetic machinery including pigment compositions and antenna systems to adapt to various light environments. However, it is poorly understood how the photosynthetic machinery in the green flagellate Euglena gracilis is modified under high-light conditions. In this study, we examined high-light modification of excitation-energy-relaxation processes in Euglena cells. Oxygen-evolving activity in the cells incubated at 300 µmol photons m-2 s-1 (HL cells) cannot be detected, reflecting severe photodamage to photosystem II (PSII) in vivo. Pigment compositions in the HL cells showed relative increases in 9'-cis-neoxanthin, diadinoxanthin, and chlorophyll b compared with the cells incubated at 30 µmol photons m-2 s-1 (LL cells). Absolute fluorescence spectra at 77 K exhibit smaller intensities of the PSII and photosystem I (PSI) fluorescence in the HL cells than in the LL cells. Absolute fluorescence decay-associated spectra at 77 K of the HL cells indicate suppression of excitation-energy transfer from light-harvesting complexes (LHCs) to both PSI and PSII with the time constant of 40 ps. Rapid energy quenching in LHCs and PSII in the HL cells is distinctly observed by averaged Chl-fluorescence lifetimes. These findings suggest that Euglena modifies excitation-energy-relaxation processes in addition to pigment compositions to deal with excess energy. These results provide insights into the photoprotection strategies of this alga under high-light conditions.


Subject(s)
Adaptation, Ocular/physiology , Chlorophyll/metabolism , Energy Transfer/physiology , Euglena gracilis/metabolism , Light-Harvesting Protein Complexes/metabolism , Photosynthesis/physiology
7.
Photosynth Res ; 148(1-2): 67-76, 2021 May.
Article in English | MEDLINE | ID: mdl-33710530

ABSTRACT

In the first two decades of the XXI century, corroles have emerged as an important class of porphyrinoids for photonics and biomedical photonics. In comparison with porphyrins, corroles have lower molecular symmetry and higher electron density, which leads to uniquely complementary properties. In macrocycles of free-base corroles, for example, three protons are distributed among four pyrrole nitrogens. It results in distinct tautomers that have different thermodynamic energies. Herein, we focus on the excited-state dynamics of a corrole modified with L-phenylalanine. The tautomerization in the singlet-excited state occurs in the timescales of about 10-100 picoseconds and exhibits substantial kinetic isotope effects. It, however, does not discernably affect nanosecond deactivation of the photoexcited corrole and its basic photophysics. Nevertheless, this excited-state tautomerization dynamics can strongly affect photoinduced processes with comparable or shorter timescales, considering the 100-meV energy differences between the tautomers in the excited state. The effects on the kinetics of charge transfer and energy transfer, initiated prior to reaching the equilibrium thermalization of the excited-state tautomer population, can be indeed substantial. Such considerations are crucially important in the design of systems for artificial photosynthesis and other forms of energy conversion and charge transduction.


Subject(s)
Amino Acids/chemistry , Biosynthetic Pathways , Energy Transfer/physiology , Hydrogen Bonding , Photochemical Processes , Porphyrins/chemistry , Molecular Structure
8.
Int J Sports Med ; 42(8): 760-765, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33352598

ABSTRACT

Researchers suggest that motion deriving energy from the more proximal segments of the body is important to reduce injury susceptibility. However, limited clinical assessments have been associated with efficient energy flow within a complex movement such as the baseball pitch. This research aimed to determine the relationship between glenohumeral stability as determined by the closed kinetic chain upper extremity stability test and energy transfer into and out of the humerus during the baseball pitching motion. Kinematic and kinetic data were collected at 240 Hz on twenty-four baseball pitchers. Participants performed the closed kinetic chain upper extremity stability test prior to throwing three fastballs at game speed to a catcher with the fastest fastball used for analysis. Spearman's Rho were used to examine relationships between energy flow in and out of the humerus with glenohumeral stability as determined by the average score and normalized stance width during the closed kinetic chain upper extremity stability test. There was a significant negative correlation between the average score and normalized peak power leaving the humerus (r s[22]=-0.42, p=0.04). This result provides preliminary support for the use of the closed kinetic chain upper extremity stability test as a clinical assessment of a pitcher's ability to efficiently transfer energy within the upper extremity during the pitch.


Subject(s)
Baseball/physiology , Biomechanical Phenomena/physiology , Energy Transfer/physiology , Humerus/physiology , Movement/physiology , Shoulder Joint/physiology , Adolescent , Baseball/injuries , Humans , Kinetics , Upper Extremity/physiology , Young Adult
9.
Nat Commun ; 11(1): 6011, 2020 11 26.
Article in English | MEDLINE | ID: mdl-33243997

ABSTRACT

The importance of green light for driving natural photosynthesis has long been underappreciated, however, under the presence of strong illumination, green light actually drives photosynthesis more efficiently than red light. This green light is absorbed by mixed vibronic Qy-Qx states, arising from chlorophyll (Chl)-Chl interactions, although almost nothing is known about these states. Here, we employ polarization-dependent two-dimensional electronic-vibrational spectroscopy to study the origin and dynamics of the mixed vibronic Qy-Qx states of light-harvesting complex II. We show the states in this region dominantly arise from Chl b and demonstrate how it is possible to distinguish between the degree of vibronic Qy versus Qx character. We find that the dynamics for states of predominately Chl b Qy versus Chl b Qx character are markedly different, as excitation persists for significantly longer in the Qx states and there is an oscillatory component to the Qx dynamics, which is discussed. Our findings demonstrate the central role of electronic-nuclear mixing in efficient light-harvesting and the different functionalities of Chl a and Chl b.


Subject(s)
Energy Transfer/physiology , Light-Harvesting Protein Complexes/metabolism , Photons , Thylakoids/metabolism , Chlorophyll/metabolism , Chlorophyll A/metabolism , Color , Energy Transfer/radiation effects , Light-Harvesting Protein Complexes/radiation effects , Photosynthesis/physiology , Photosynthesis/radiation effects , Plant Leaves/cytology , Spectrum Analysis/methods , Thylakoids/radiation effects
10.
Biochemistry (Mosc) ; 85(7): 820-832, 2020 Jul.
Article in English | MEDLINE | ID: mdl-33040726

ABSTRACT

The concept of "electric cables" involved in bioenergetic processes in a living cell was proposed half a century ago [Skulachev, V. P. (1971) Curr. Top. Bioenerg., Elsevier, pp. 127-190]. Membrane structures of a cell were considered as probable pathways for transferring transmembrane electrochemical potential. Further studies have shown that coupling membranes (inner mitochondrial membrane or bacterial cell membrane), i.e., those involved in the generation of membrane potential, can also serve for its transfer. A wide range of organisms from almost all major taxa have been discovered to employ the energy-transmitting function of coupling membranes. Macroscopic (millimeter or even centimeter in length) cable-like structures have been found, the most striking examples of which are giant mitochondria of some unicellular organisms (algae, fungi, protozoa) and animal tissues, filamentous mitochondria, mitochondrial reticulum in animal muscle tissue, and trichomes of cyanobacteria. The importance of such "electric cables" in cells or multicellular structures is determined by their ability to provide rapid energy exchange between metabolic counterparts, energy producers and energy consumers, as the diffusive transport of soluble macroergic molecules (ATP, etc.) requires much longer time. However, in the last 10-15 years, a new type of bacterial "electric cables" of presumably proteinaceous nature has been discovered, which serve a quite different purpose in cell bioenergetics. The molecular structure and functions of these cables will be discussed in the second part of the review ("Electric cables of living cells. II. Bacterial electron conductors").


Subject(s)
Cell Membrane/metabolism , Energy Transfer/physiology , Membrane Potentials/physiology , Cell Membrane/physiology , Electrons , Energy Metabolism/physiology , Mitochondria/metabolism , Mitochondrial Membranes/physiology
11.
Proc Natl Acad Sci U S A ; 117(37): 23158-23164, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32868421

ABSTRACT

The recently discovered, chlorophyll-f-containing, far-red photosystem II (FR-PSII) supports far-red light photosynthesis. Participation and kinetics of spectrally shifted far-red pigments are directly observable and separated from that of bulk chlorophyll-a We present an ultrafast transient absorption study of FR-PSII, investigating energy transfer and charge separation processes. Results show a rapid subpicosecond energy transfer from chlorophyll-a to the long-wavelength chlorophylls-f/d The data demonstrate the decay of an ∼720-nm negative feature on the picosecond-to-nanosecond timescales, coinciding with charge separation, secondary electron transfer, and stimulated emission decay. An ∼675-nm bleach attributed to the loss of chl-a absorption due to the formation of a cation radical, PD1+•, is only fully developed in the nanosecond spectra, indicating an unusually delayed formation. A major spectral feature on the nanosecond timescale at 725 nm is attributed to an electrochromic blue shift of a FR-chlorophyll among the reaction center pigments. These time-resolved observations provide direct experimental support for the model of Nürnberg et al. [D. J. Nürnberg et al., Science 360, 1210-1213 (2018)], in which the primary electron donor is a FR-chlorophyll and the secondary donor is chlorophyll-a (PD1 of the central chlorophyll pair). Efficient charge separation also occurs using selective excitation of long-wavelength chlorophylls-f/d, and the localization of the excited state on P720* points to a smaller (entropic) energy loss compared to conventional PSII, where the excited state is shared over all of the chlorin pigments. This has important repercussions on understanding the overall energetics of excitation energy transfer and charge separation reactions in FR-PSII.


Subject(s)
Chlorophyll/metabolism , Energy Transfer/physiology , Photosynthesis/physiology , Photosystem II Protein Complex/metabolism , Electron Transport/physiology , Kinetics , Light , Spectrum Analysis/methods
12.
Biosystems ; 197: 104210, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32763375

ABSTRACT

Centrosome, composed of two centrioles arranged in an orthogonal configuration, is an indispensable cellular organelle for mitosis. 130 years after its discovery, the structural-functional relationship of centrosome is still obscure. Encouraged by the telltale signs of the "Mouse and Magnet experiment", Paul Schafer pioneered in the research on electromagnetism of centriole with electron microscopy(EM) in the late 1960s. Followed by the decades-long slow progression of the field with sporadic reports indicating the electromagnetisms of mitosis. Piecing together the evidences, we generated a mechanistic model for centrosome function during mitosis, in which centrosome functions as an electronic generator. In particular, the spinal rotations of centrioles transform the cellular chemical energy into cellular electromagnetic energy. The model is strongly supported by multiple experimental evidences. It offers an elegant explanation for the self-organized orthogonal configuration of the two centrioles in a centrosome, that is through the dynamic electromagnetic interactions of both centrioles of the centrosome.


Subject(s)
Centrosome/physiology , Electromagnetic Radiation , Energy Transfer/physiology , Microtubules/physiology , Electromagnetic Fields , Electromagnetic Phenomena , Mitosis , Models, Biological
13.
Biosystems ; 197: 104209, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32730839

ABSTRACT

Despite several different measures of efficiency that are applicable to the photosynthetic systems, a precise degree of efficiency of these systems is not completely determined. Introducing an efficient model for the dynamics of light-harvesting complexes in biological environments is a major purpose in investigating such systems. Here, we investigate the effect of macroscopic quantum behavior of a system of two pigments on the transport phenomena in this system model which interacts with an oscillating environment. We use the second-order perturbation theory to calculate the time-dependent population of excitonic states of a two-dimensional Hamiltonian using a non-master equation approach. Our results demonstrate that the quantum efficiency is robust with respect to the macroscopicity parameter h˜ solely, but the ratio of macroscopicity over the pigment-pigment interaction energy can be considered as a parameter that may control the energy transfer efficiency at a given time. So, the dynamical behavior and the quantum efficiency of the supposed photosynthetic system may be influenced by a change in the macroscopic behavior of the system.


Subject(s)
Energy Transfer/physiology , Photosynthesis/physiology , Pigments, Biological , Quantum Theory
14.
Med Sci Sports Exerc ; 52(12): 2646-2654, 2020 12.
Article in English | MEDLINE | ID: mdl-32555021

ABSTRACT

PURPOSE: This study (i) investigates the effect of recovery power (Prec) and duration (trec) on the recovery of the curvature constant (W') of the power-duration relationship, (ii) compares the experimentally measured W' balance to that predicted (W'bal) by two models (SK2 and BAR), and (iii) presents a case of real-time performance optimization using the critical power (CP) concept. METHODS: Seven competitive amateur cyclists performed a ramp test to determine their V˙O2peak and gas exchange threshold, two to four 3-min all-out tests to determine CP and W', and nine intermittent cycling tests to investigate W' recovery. The intermittent cycling tests involved a 2-min constant work-rate interval above CP, followed by a constant work-rate recovery interval below CP (Prec and trec were varied), followed by a 3-min all-out interval. RESULTS: There was a significant two-way interaction between Prec and trec on W' recovery, P = 0.004 (η = 0.52). Simple main effects were present only with respect to Prec at each trec. The actual W' balance at the end of the recovery interval was less than the W'bal predicted by both SK2 (P = 0.035) and BAR (P = 0.015) models. The optimal strategy derived from the subject-specific recovery model reduced the race time by 55 s as compared with the self-strategy. CONCLUSIONS: This study has shown that in a recovery interval, Prec has a greater influence than trec on W' recovery. The overprediction of W'bal from SK2 and BAR suggests the need for individualized recovery parameters or models for sub-CP exercise. Finally, the optimal strategy results provide encouraging signs for real-time, model-based performance optimization.


Subject(s)
Athletic Performance/physiology , Bicycling/physiology , Oxygen Consumption/physiology , Pulmonary Gas Exchange/physiology , Adult , Analysis of Variance , Energy Transfer/physiology , Female , Humans , Male , Models, Biological , Physical Exertion/physiology , Physical Phenomena , Reproducibility of Results , Time Factors
15.
J Phys Chem Lett ; 11(8): 2883-2890, 2020 Apr 16.
Article in English | MEDLINE | ID: mdl-31978304

ABSTRACT

Nonblinking, nonbleaching, and superbright single upconversion nanoparticles have been recently discovered with nonlinear power-dependent properties and can be switchable under dual-beam excitations, which are ideal for super-resolution microscopy, single-molecule tracking, and digital assays. Here, we report that the brightness of Nd3+-Yb3+-Er3+-doped nanoparticles displays a pair of unusual double helix shapes as the function of power densities of 976 and 808 nm excitations. We systemically analyze the power-dependent emission spectra, lifetimes, and power-intensity double-log slopes of single upconversion nanoparticles, which reveal that the dynamic roles of Nd3+ ions in the tridoped nanosystem with underlining electron population pathways are power dependent. That is, at high power 808 nm excitation, Nd3+ ions can directly emit upconverted luminescence, with their conventional role of sensitization saturated in the Nd3 → Yb3+ → Er3+ energy transfer systems. Moreover, we confirm that the universal helix shape phenomena commonly exist in a set of eight batches of core-shell nanoparticles regardless of the doping concentrations of Nd3+, Yb3+, and Er3+ ions in the sensitization shell, migration shell, and active core, though the crossing nodes occur at different excitation power ranges. This study emphasizes the important role of power-dependent properties in both improving the upconversion emission efficiency and the design of nonlinear responsive probes for imaging and sensing.


Subject(s)
Luminescence , Luminescent Measurements/methods , Nanoparticles/chemistry , Energy Transfer/physiology , Microscopy, Confocal/methods , Nanoparticles/analysis
16.
Eur J Sport Sci ; 20(6): 756-766, 2020 Jul.
Article in English | MEDLINE | ID: mdl-31549912

ABSTRACT

Abstract We sought to examine the effect of step length manipulation on energy absorption and impact attenuation during graded running. Nineteen runners (10F, 9M) ran on an instrumented treadmill at three step lengths (preferred and ±10% preferred) at each of five grades (0°, ±5°, and ±10°) while 3D motion data were captured. Speed was held constant at 3.33 m/s and step length was manipulated by syncing cadence to a metronome. Manipulating step length altered energy absorption (p ≤ 0.002) and impact attenuation (p < 0.0001) across all grades. Energy absorption at the knee joint was most responsive to step length manipulations [Δ range (±10%SL-PrefSL) = 0.076-0.126 J/kg, p < 0.0001], followed by the ankle (Δ range = 0.026-0.100 J/kg, p = 0.001) and hip (Δ range = 0.008-0.018 J/kg, p < 0.006). Shortening step length reduced knee joint energy absorption at all grades with the smallest effect observed during uphill running (Δ ≥ -0.053 J/kg), while large reductions occurred during level (Δ = -0.096 J/kg) and downhill running (Δ ≥ -0.108 J/kg). Increasing step length resulted in greater knee joint energy absorption (p ≤ 0.037) across all grades of running. Impact attenuation was greatest at long step lengths (Δ = 2.708) and lowest at short step lengths (Δ = -2.061), compared to preferred. Overall, Step length influenced the energy absorption and impact attenuation characteristics of the lower extremity during level and graded running. Adopting a shorter step length may be a useful intervention to reduce knee joint loading, particularly during downhill or level running. Elongating step length placed a greater demand on the lower extremity joints, which may expedite the development of neuromuscular fatigue.


Subject(s)
Ankle Joint/physiology , Energy Transfer/physiology , Gait/physiology , Hip Joint/physiology , Knee Joint/physiology , Running/physiology , Acceleration , Accelerometry/methods , Adult , Analysis of Variance , Biomechanical Phenomena , Female , Humans , Male
17.
Spectrochim Acta A Mol Biomol Spectrosc ; 226: 117599, 2020 Feb 05.
Article in English | MEDLINE | ID: mdl-31751800

ABSTRACT

Förster resonance energy transfer (FRET) is a powerful method for probing biomolecular conformations and dynamics in bulk as well as at a single-molecule level. FRET utilizes non-radiative mechanisms to transfer energy between fluorophores, donor and acceptor when placed in close proximity. The FRET efficiency has a strong distance dependence and serves as a direct read-out for molecular interaction. In case of a significant overlap of donor emission and absorption spectra, the excited state energy can be exchanged between the identical donors in close proximity, which eventually migrates back and forth until it gets dissipated. This form of energy transfer is called energy migration or homo-FRET. Here, we have simulated FRET efficiency by considering the donor-donor interaction strength (ξDD) and donor-acceptor interaction strength (ξDA) under conditions of non-uniform distribution of molecules. Our earlier studies indicate that energy migration modulate the FRET efficiency for various values of ξDD and ξDA. We, therefore, determined the limiting values of acceptor concentration (CLA) that will allow the determination of FRET efficiency in the absence and presence of energy migration. Taken together, our study optimizes the conditions for meaningful FRET efficiency for a given FRET pair for better reporting of molecular interactions.


Subject(s)
Energy Transfer/physiology , Fluorescence Resonance Energy Transfer , Fluorescent Dyes/chemistry , Molecular Dynamics Simulation , Fluorescence , Fluorescence Resonance Energy Transfer/methods , Hydrogen Bonding , Models, Chemical , Physical Phenomena
18.
Proc Natl Acad Sci U S A ; 116(42): 21246-21255, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31570614

ABSTRACT

Photosystem II (PSII) in the thylakoid membranes of plants, algae, and cyanobacteria catalyzes light-induced oxidation of water by which light energy is converted to chemical energy and molecular oxygen is produced. In higher plants and most eukaryotic algae, the PSII core is surrounded by variable numbers of light-harvesting antenna complex II (LHCII), forming a PSII-LHCII supercomplex. In order to harvest energy efficiently at low-light-intensity conditions under water, a complete PSII-LHCII supercomplex (C2S2M2N2) of the green alga Chlamydomonas reinhardtii (Cr) contains more antenna subunits and pigments than the dominant PSII-LHCII supercomplex (C2S2M2) of plants. The detailed structure and energy transfer pathway of the Cr-PSII-LHCII remain unknown. Here we report a cryoelectron microscopy structure of a complete, C2S2M2N2-type PSII-LHCII supercomplex from C. reinhardtii at 3.37-Å resolution. The results show that the Cr-C2S2M2N2 supercomplex is organized as a dimer, with 3 LHCII trimers, 1 CP26, and 1 CP29 peripheral antenna subunits surrounding each PSII core. The N-LHCII trimer partially occupies the position of CP24, which is present in the higher-plant PSII-LHCII but absent in the green alga. The M trimer is rotated relative to the corresponding M trimer in plant PSII-LHCII. In addition, some unique features were found in the green algal PSII core. The arrangement of a huge number of pigments allowed us to deduce possible energy transfer pathways from the peripheral antennae to the PSII core.


Subject(s)
Chlamydomonas reinhardtii/metabolism , Chlorophyta/metabolism , Light-Harvesting Protein Complexes/chemistry , Light-Harvesting Protein Complexes/metabolism , Photosystem II Protein Complex/chemistry , Photosystem II Protein Complex/metabolism , Chlorophyll/metabolism , Cryoelectron Microscopy/methods , Energy Transfer/physiology , Oxygen/metabolism , Photosynthesis/physiology , Pigments, Biological/metabolism , Thylakoids/metabolism
19.
Integr Comp Biol ; 59(6): 1597-1608, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31406979

ABSTRACT

The carnivorous plant bladderwort exemplifies the use of accumulated elastic energy to power motion: respiration-driven pumps slowly load the walls of its suction traps with elastic energy (∼1 h). During a feeding strike, this energy is released suddenly to accelerate water (∼1 ms). However, due to the traps' small size and concomitant low Reynolds number, a significant fraction of the stored energy may be dissipated as viscous friction. Such losses and the mechanical reversibility of Stokes flow are thought to degrade the feeding success of other suction feeders in this size range, such as larval fish. In contrast, triggered bladderwort traps are generally successful. By mapping the energy budget of a bladderwort feeding strike, we illustrate how this smallest of suction feeders can perform like an adult fish.


Subject(s)
Energy Transfer/physiology , Food Chain , Lamiales/physiology , Biomechanical Phenomena , Thermodynamics
20.
Nat Commun ; 10(1): 3735, 2019 08 19.
Article in English | MEDLINE | ID: mdl-31427582

ABSTRACT

Triplet energy transfer occurs frequently in natural photosynthetic organisms to protect against photo-oxidative stress. For artificial light-harvesting systems, several challenges need to be addressed to realize triplet energy transfer especially in aqueous medium. Specifically, the phosphors should be shielded from water and molecular oxygen, which facilitate to maintain intense emission intensity. Moreover, the donor‒acceptor phosphors should be organized in close proximity, yet simultaneously avoiding direct homo- and hetero-interactions to minimize the potential energy losses. Herein an effective strategy has been developed to meet these requirements, by employing a rod-coil amphiphile as the compartmentalized agent. It renders synergistic rigidifying and hydrophobic shielding effects, giving rise to enhanced phosphorescent emission of the platinum(II) complexes in aqueous environment. More importantly, the donor‒acceptor platinum(II) phosphors feature ordered spatial organization in the ternary co-assembled system, resulting in high light-harvesting efficiency. Therefore, the compartmentalization strategy represents an efficient approach toward color-tunable phosphorescent nanomaterials.


Subject(s)
Energy Transfer/physiology , Luminescent Agents/chemistry , Nanostructures/chemistry , Light , Light-Harvesting Protein Complexes/chemistry , Luminescent Measurements , Models, Molecular , Oxygen/chemistry , Photosynthesis , Platinum/chemistry , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...