Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 246
Filter
1.
Gut Microbes ; 16(1): 2400575, 2024.
Article in English | MEDLINE | ID: mdl-39312647

ABSTRACT

Enteropathogenic E. coli (EPEC) is a Gram-negative bacterial pathogen that causes persistent diarrhea. Upon attachment to the apical plasma membrane of the intestinal epithelium, the pathogen translocates virulence proteins called effectors into the infected cells. These effectors hijack numerous host processes for the pathogen's benefit. Therefore, studying the mechanisms underlying their action is crucial for a better understanding of the disease. We show that translocated EspH interacts with multiple host Rab GTPases. AlphaFold predictions and site-directed mutagenesis identified glutamic acid and lysine at positions 37 and 41 as Rab interacting residues in EspH. Mutating these sites abolished the ability of EspH to inhibit Akt and mTORC1 signaling, lysosomal exocytosis, and bacterial invasion. Knocking out the endogenous Rab8a gene expression highlighted the involvement of Rab8a in Akt/mTORC1 signaling and lysosomal exocytosis. A phosphoinositide binding domain with a critical tyrosine was identified in EspH. Mutating the tyrosine abolished the localization of EspH at infection sites and its capacity to interact with the Rabs. Our data suggest novel EspH-dependent mechanisms that elicit immune signaling and membrane trafficking during EPEC infection.


Subject(s)
Cell Membrane , Enteropathogenic Escherichia coli , rab GTP-Binding Proteins , Humans , Cell Membrane/metabolism , Enteropathogenic Escherichia coli/metabolism , Enteropathogenic Escherichia coli/genetics , Escherichia coli Infections/microbiology , Escherichia coli Infections/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Exocytosis , Host-Pathogen Interactions , Lysosomes/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics , Phosphatidylinositols/metabolism , Protein Binding , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/genetics , Signal Transduction
2.
Microb Cell Fact ; 23(1): 163, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824527

ABSTRACT

BACKGROUND: Type I interferons (IFN-I)-a group of cytokines with immunomodulatory, antiproliferative, and antiviral properties-are widely used as therapeutics for various cancers and viral diseases. Since IFNs are proteins, they are highly susceptible to degradation by proteases and by hydrolysis in the strong acid environment of the stomach, and they are therefore administered parenterally. In this study, we examined whether the intestinal bacterium, enteropathogenic Escherichia coli (EPEC), can be exploited for oral delivery of IFN-Is. EPEC survives the harsh conditions of the stomach and, upon reaching the small intestine, expresses a type III secretion system (T3SS) that is used to translocate effector proteins across the bacterial envelope into the eukaryotic host cells. RESULTS: In this study, we developed an attenuated EPEC strain that cannot colonize the host but can secrete functional human IFNα2 variant through the T3SS. We found that this bacteria-secreted IFN exhibited antiproliferative and antiviral activities similar to commercially available IFN. CONCLUSION: These findings present a potential novel approach for the oral delivery of IFN via secreting bacteria.


Subject(s)
Enteropathogenic Escherichia coli , Type III Secretion Systems , Enteropathogenic Escherichia coli/metabolism , Humans , Type III Secretion Systems/metabolism , Interferon-alpha/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/metabolism , Interferon alpha-2/metabolism , Cell Proliferation/drug effects
3.
Chembiochem ; 25(2): e202300638, 2024 01 15.
Article in English | MEDLINE | ID: mdl-37971396

ABSTRACT

This study aimed to identify inhibitors of the translocated intimin receptor (Tir) of enteropathogenic Escherichia coli (EPEC). EPEC is an intestinal pathogen that causes diarrhea and is a major health concern worldwide. Because Tir is a key virulence factor involved in EPEC pathogenesis, inhibiting its function is a potential strategy for controlling EPEC infections. Virtual screening was applied to chemical libraries to search for compounds that inhibit Tir-mediated bacterial adherence to host cells. Three sites were targeted using the cocrystal structure published earlier. A selection of compounds was then assessed in a cell-based infection model and fluorescence microscopy assay. The results of this study provide a basis for further optimization and testing of Tir inhibitors as potential therapeutic agents for EPEC infections.


Subject(s)
Enteropathogenic Escherichia coli , Escherichia coli Infections , Escherichia coli Proteins , Humans , Enteropathogenic Escherichia coli/metabolism , Adhesins, Bacterial/metabolism , Escherichia coli Proteins/metabolism , Receptors, Cell Surface/chemistry , Carrier Proteins , Escherichia coli Infections/microbiology
4.
PLoS Pathog ; 19(12): e1011345, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38060591

ABSTRACT

The quorum sensing two-component system (TCS) QseBC has been linked to virulence, motility and metabolism regulation in multiple Gram-negative pathogens, including Enterohaemorrhagic Escherichia coli (EHEC), Uropathogenic E. coli (UPEC) and Salmonella enterica. In EHEC, the sensor histidine kinase (HK) QseC detects the quorum sensing signalling molecule AI-3 and also acts as an adrenergic sensor binding host epinephrine and norepinephrine. Downstream changes in gene expression are mediated by phosphorylation of its cognate response regulator (RR) QseB, and 'cross-talks' with non-cognate regulators KdpE and QseF to activate motility and virulence. In UPEC, cross-talk between QseBC and TCS PmrAB is crucial in the regulation and phosphorylation of QseB RR that acts as a repressor of multiple pathways, including motility. Here, we investigated QseBC regulation of motility in the atypical Enteropathogenic E. coli (EPEC) strain O125ac:H6, causative agent of persistent diarrhoea in children, and its possible cross-talk with the KdpDE and PmrAB TCS. We showed that in EPEC QseB acts as a repressor of genes involved in motility, virulence and stress response, and in absence of QseC HK, QseB is likely activated by the non-cognate PmrB HK, similarly to UPEC. We show that in absence of QseC, phosphorylated QseB activates its own expression, and is responsible for the low motility phenotypes seen in a QseC deletion mutant. Furthermore, we showed that KdpD HK regulates motility in an independent manner to QseBC and through a third unidentified party different to its own response regulator KdpE. We showed that PmrAB has a role in iron adaptation independent to QseBC. Finally, we showed that QseB is the responsible for activation of colistin and polymyxin B resistance genes while PmrA RR acts by preventing QseB activation of these resistance genes.


Subject(s)
Enteropathogenic Escherichia coli , Escherichia coli Proteins , Child , Humans , Enteropathogenic Escherichia coli/genetics , Enteropathogenic Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Colistin , Signal Transduction , Phosphorylation , Gene Expression Regulation, Bacterial , Protein Kinases/genetics , Protein Kinases/metabolism , DNA-Binding Proteins/metabolism
5.
J Transl Med ; 21(1): 793, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37940996

ABSTRACT

BACKGROUND: Ulcerative colitis (UC) is a chronic inflammatory disease of the intestine characterized by a compromised intestinal epithelial barrier. Mucin glycans are crucial in preserving barrier function during bacterial infections, although the underlying mechanisms remain largely unexplored. METHODS: A cohort comprising 15 patients diagnosed with UC and 15 healthy individuals was recruited. Stool samples were collected to perform 16S rRNA gene sequencing, while biopsy samples were subjected to nanocapillary liquid chromatography-tandem mass spectrometry (nanoLC-MS/MS) to assess O-glycosylation. Gene expression was evaluated through qPCR analysis and Western blotting. Furthermore, animal experiments were conducted to investigate the effects of Escherichia coli and/or O-glycan inhibitor benzyl-α-GalNAc on the development of colitis in mice. RESULTS: Our findings revealed that the mucus barrier was disrupted during the early stages of UC, while the MUC2 protein content remained unaltered. Additionally, a noteworthy reduction in the O-glycosylation of MUC2 was observed, along with significant changes in the intestinal microbiota during the early stages of UC. These changes included a decrease in intestinal species richness and an increase in the abundance of Escherichia coli (E. coli). Moreover, subsequent to the administration of galactose or O-glycan inhibitor to intestinal epithelial cells, it was observed that the cell culture supernatant had the ability to modify the proliferation and adhesive capacity of E. coli. Furthermore, when pathogenic E. coli or commensal E. coli were cocultured with intestinal epithelium, both strains elicited activation of the NF-KB signaling pathway in epithelial cells and facilitated the expression of serine protease in comparison to the untreated control. Consistently, the inhibition of O-glycans has been observed to enhance the pathogenicity of E. coli in vivo. Furthermore, a correlation has been established between the level of O-glycans and the development of ulcerative colitis. Specifically, a reduction in the O-glycan content of MUC2 cells has been found to increase the virulence of E. coli, thereby compromising the integrity of the intestinal epithelial barrier. CONCLUSIONS: Together, there exist complex interactions between the intestinal epithelium, O-glycans, and the intestinal microbiota, which may inform the development of novel therapeutic strategies for the treatment of ulcerative colitis.


Subject(s)
Colitis, Ulcerative , Colitis , Enteropathogenic Escherichia coli , Humans , Mice , Animals , Colitis, Ulcerative/pathology , Mucins/metabolism , NF-kappa B/metabolism , Enteropathogenic Escherichia coli/metabolism , Glycosylation , RNA, Ribosomal, 16S/metabolism , Tandem Mass Spectrometry , Colitis/pathology , Intestinal Mucosa/pathology , Polysaccharides/metabolism , Signal Transduction , Dextran Sulfate/metabolism , Disease Models, Animal , Colon/pathology
6.
Cell Rep ; 42(7): 112700, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37379216

ABSTRACT

How pathogens manipulate host UPRER to mediate immune evasion is largely unknown. Here, we identify the host zinc finger protein ZPR1 as an interacting partner of the enteropathogenic E. coli (EPEC) effector NleE using proximity-enabled protein crosslinking. We show that ZPR1 assembles via liquid-liquid phase separation (LLPS) in vitro and regulates CHOP-mediated UPRER at the transcriptional level. Interestingly, in vitro studies show that the ZPR1 binding ability with K63-ubiquitin chains, which promotes LLPS of ZPR1, is disrupted by NleE. Further analyses indicate that EPEC restricts host UPRER pathways at the transcription level in a NleE-ZPR1 cascade-dependent manner. Together, our study reveals the mechanism by which EPEC interferes with CHOP-UPRER via regulating ZPR1 to help pathogens escape host defense.


Subject(s)
Enteropathogenic Escherichia coli , Escherichia coli Infections , Escherichia coli Proteins , Humans , HeLa Cells , Virulence Factors/metabolism , Enteropathogenic Escherichia coli/metabolism , Escherichia coli Proteins/metabolism
7.
Sci Rep ; 13(1): 7024, 2023 04 29.
Article in English | MEDLINE | ID: mdl-37120613

ABSTRACT

ANR (AraC negative regulators) are a novel class of small regulatory proteins commonly found in enteric pathogens. Aar (AggR-activated regulator), the best-characterized member of the ANR family, regulates the master transcriptional regulator of virulence AggR and the global regulator HNS in enteroaggregative Escherichia coli (EAEC) by protein-protein interactions. On the other hand, Rnr (RegA-negative regulator) is an ANR homolog identified in attaching and effacing (AE) pathogens, including Citrobacter rodentium and enteropathogenic Escherichia coli (EPEC), sharing only 25% identity with Aar. We previously found that C. rodentium lacking Rnr exhibits prolonged shedding and increased gut colonization in mice compared to the parental strain. To gain mechanistic insights into this phenomenon, we characterized the regulatory role of Rnr in the virulence of prototype EPEC strain E2348/69 by genetic, biochemical, and human organoid-based approaches. Accordingly, RNA-seq analysis revealed more than 500 genes differentially regulated by Rnr, including the type-3 secretion system (T3SS). The abundance of EspA and EspB in whole cells and bacterial supernatants confirmed the negative regulatory activity of Rnr on T3SS effectors. We found that besides HNS and Ler, twenty-six other transcriptional regulators were also under Rnr control. Most importantly, the deletion of aar in EAEC or rnr in EPEC increases the adherence of these pathogens to human intestinal organoids. In contrast, the overexpression of ANR drastically reduces bacterial adherence and the formation of AE lesions in the intestine. Our study suggests a conserved regulatory mechanism and a central role of ANR in modulating intestinal colonization by these enteropathogens despite the fact that EAEC and EPEC evolved with utterly different virulence programs.


Subject(s)
Enteropathogenic Escherichia coli , Escherichia coli Infections , Escherichia coli Proteins , Humans , Animals , Mice , Virulence/genetics , Enteropathogenic Escherichia coli/metabolism , Escherichia coli Infections/microbiology , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Transcription Factors
8.
ACS Nano ; 17(4): 3574-3586, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36602915

ABSTRACT

With the extensive production and application of black phosphorus (BP) nanosheets, release to the environment is inevitable, which raises concerns about the fate and effects of this two-dimensional (2D) material on sensitive receptors such as environmental microbes. Although the bacterial toxicity of BP nanosheets has been demonstrated, whether the biological response differs in pathogenic and nonpathogenic strains of a microorganism is unknown. Here, enteropathogenic Escherichia coli (EPEC) and nonpathogenic Escherichia coli DH5α (E. coli DH5α), Escherichia coli k12 (E. coli k12), and Bacillus tropicus (B. tropicus) are used to comparatively study the microbial toxicity of BP nanosheets. Upon exposure to BP nanosheets across a range of doses from 10 to 100 µg mL-1 for 12 h, EPEC experienced enhanced growth and E. coli DH5α and E. coli k12 were not affected, whereas B. tropicus exhibited clear toxicity. By combining transcriptome sequencing, proteome analysis, and other sensitive biological techniques, the mechanism of BP-induced growth promotion for EPEC was uncovered. Briefly, BP nanosheets activate the antioxidation system to resist oxidative stress, promote protein synthesis and secretion to attenuate membrane damage, enhance the energy supply, and activate growth-related pathways. None of these impacts were evident with nonpathogenic strains. By describing the mechanism of strain-dependent microbial effects, this study not only highlights the potential risks of BP nanosheets to the environment and to human health but also calls attention to the importance of model strain selection when evaluating the hazard and toxicity of emerging nanomaterials.


Subject(s)
Enteropathogenic Escherichia coli , Escherichia coli Proteins , Humans , Carrier Proteins , Enteropathogenic Escherichia coli/genetics , Enteropathogenic Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Gene Expression Profiling , Phosphorus , Nanostructures
9.
Gut Microbes ; 14(1): 2138677, 2022.
Article in English | MEDLINE | ID: mdl-36519445

ABSTRACT

Reported numbers of diarrheal samples exhibiting co-infections or multiple infections, with two or more infectious agents, are rising, likely due to advances in bacterial diagnostic techniques. Bacterial species detected in these samples include Vibrio cholerae (V. cholerae) and enteropathogenic Escherichia coli (EPEC), which infect the small intestine and are associated with high mortality rates. It has previously been reported that EPEC exhibit enhanced virulence in the presence of V. cholerae owing to their ability to sense and respond to elevated concentrations of cholera autoinducer 1 (CAI-1), which is the primary quorum-sensing (QS) molecule produced by V. cholerae. In this study, we examined this interspecies bacterial communication in the presence of indole, a major microbiome-derived metabolite found at high concentrations in the human gut. Interestingly, we discovered that although indole did not affect bacterial growth or CAI-1 production, it impaired the ability of EPEC to enhance its virulence activity in response to the presence of V. cholerae. Furthermore, the co-culture of EPEC and V. cholerae in the presence of B. thetaiotaomicron, an indole-producing commensal bacteria, ablated the enhancement of EPEC virulence. Together, these results suggest that microbiome compositions or diets that influence indole gut concentrations may differentially impact the virulence of pathogens and their ability to sense and respond to competing bacteria.


Subject(s)
Enteropathogenic Escherichia coli , Gastrointestinal Microbiome , Indoles , Vibrio cholerae , Humans , Bacterial Proteins/genetics , Enteropathogenic Escherichia coli/metabolism , Gene Expression Regulation, Bacterial , Indoles/metabolism , Quorum Sensing/physiology
10.
mBio ; 13(6): e0227022, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36326250

ABSTRACT

Type 4 pili (T4P) are retractable surface appendages found on numerous bacteria and archaea that play essential roles in various microbial functions, including host colonization by pathogens. An ATPase is required for T4P extension, but the mechanism by which chemical energy is transduced to mechanical energy for pilus extension has not been elucidated. Here, we report the cryo-electron microscopy (cryo-EM) structure of the BfpD ATPase from enteropathogenic Escherichia coli (EPEC) in the presence of either ADP or a mixture of ADP and AMP-PNP. Both structures, solved at 3 Å resolution, reveal the typical toroid shape of AAA+ ATPases and unambiguous 6-fold symmetry. This 6-fold symmetry contrasts with the 2-fold symmetry previously reported for other T4P extension ATPase structures, all of which were from thermophiles and solved by crystallography. In the presence of the nucleotide mixture, BfpD bound exclusively AMP-PNP, and this binding resulted in a modest outward expansion in comparison to the structure in the presence of ADP, suggesting a concerted model for hydrolysis. De novo molecular models reveal a partially open configuration of all subunits where the nucleotide binding site may not be optimally positioned for catalysis. ATPase functional studies reveal modest activity similar to that of other extension ATPases, while calculations indicate that this activity is insufficient to power pilus extension. Our results reveal that, despite similarities in primary sequence and tertiary structure, T4P extension ATPases exhibit divergent quaternary configurations. Our data raise new possibilities regarding the mechanism by which T4P extension ATPases power pilus formation. IMPORTANCE Type 4 pili are hairlike surface appendages on many bacteria and archaea that can be extended and retracted with tremendous force. They play a critical role in disease caused by several deadly human pathogens. Pilus extension is made possible by an enzyme that converts chemical energy to mechanical energy. Here, we describe the three-dimensional structure of such an enzyme from a human pathogen in unprecedented detail, which reveals a mechanism of action that has not been seen previously among enzymes that power type 4 pilus extension.


Subject(s)
Enteropathogenic Escherichia coli , Humans , Enteropathogenic Escherichia coli/metabolism , Adenosine Triphosphatases/metabolism , Cryoelectron Microscopy , Adenylyl Imidodiphosphate/analysis , Adenylyl Imidodiphosphate/metabolism , Fimbriae, Bacterial/metabolism , Fimbriae Proteins/metabolism
11.
Int J Mol Sci ; 23(22)2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36430181

ABSTRACT

In enteropathogenic Escherichia coli (EPEC), the production of flagella and the type III secretion system (T3SS) is activated in the presence of host cultured epithelial cells. The goal of this study was to investigate the relationship between expression of flagella and the T3SS. Mutants deficient in assembling T3SS basal and translocon components (ΔespA, ΔespB, ΔespD, ΔescC, ΔescN, and ΔescV), and in secreting effector molecules (ΔsepD and ΔsepL) were tested for flagella production under several growth conditions. The ΔespA mutant did not produce flagella in any condition tested, although fliC was transcribed. The remaining mutants produced different levels of flagella upon growth in LB or in the presence of cells but were significantly diminished in flagella production after growth in Dulbecco's minimal essential medium. We also investigated the role of virulence and global regulator genes in expression of flagella. The ΔqseB and ΔqseC mutants produced abundant flagella only when growing in LB and in the presence of HeLa cells, indicating that QseB and QseC act as negative regulators of fliC transcription. The ΔgrlR, ΔperA, Δler, Δhns, and Δfis mutants produced low levels of flagella, suggesting these regulators are activators of fliC expression. These data suggest that the presence of an intact T3SS is required for assembly of flagella highlighting the existence in EPEC of a cross-talk between these two virulence-associated T3SSs.


Subject(s)
Enteropathogenic Escherichia coli , Escherichia coli Proteins , Humans , Enteropathogenic Escherichia coli/genetics , Enteropathogenic Escherichia coli/metabolism , Type III Secretion Systems/genetics , Type III Secretion Systems/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , HeLa Cells , Gene Expression Regulation, Bacterial , Flagella/genetics , Flagella/metabolism
12.
PeerJ ; 10: e13914, 2022.
Article in English | MEDLINE | ID: mdl-36187747

ABSTRACT

Eutrophication of the planet's aquatic systems is increasing at an unprecedented rate. In freshwater systems, nitrate-one of the nutrients responsible for eutrophication-is linked to biodiversity losses and ecosystem degradation. One of the main sources of freshwater nitrate pollution in New Zealand is agriculture. New Zealand's pastoral farming system relies heavily on the application of chemical fertilisers. These fertilisers in combination with animal urine, also high in nitrogen, result in high rates of nitrogen leaching into adjacent aquatic systems. In addition to nitrogen, livestock waste commonly carries human and animal enteropathogenic bacteria, many of which can survive in freshwater environments. Two strains of enteropathogenic bacteria found in New Zealand cattle, are K99 and Shiga-toxin producing Escherichia coli (STEC). To better understand the effects of ambient nitrate concentrations in the water column on environmental enteropathogenic bacteria survival, a microcosm experiment with three nitrate-nitrogen concentrations (0, 1, and 3 mg NO3-N /L), two enteropathogenic bacterial strains (STEC O26-human, and K99-animal), and two water types (sterile and containing natural microbiota) was run. Both STEC O26 and K99 reached 500 CFU/10 ml in both water types at all three nitrate concentrations within 24 hours and remained at those levels for the full 91 days of the experiment. Although enteropathogenic strains showed no response to water column nitrate concentrations, the survival of background Escherichia coli, imported as part of the in-stream microbiota did, surviving longer in 1 and 3 mg NO3-N/Lconcentrations (P < 0.001). While further work is needed to fully understand how nitrate enrichment and in-stream microbiota may affect the viability of human and animal pathogens in freshwater systems, it is clear that these two New Zealand strains of STEC O26 and K99 can persist in river water for extended periods alongside some natural microbiota.


Subject(s)
Enteropathogenic Escherichia coli , Escherichia coli Infections , Escherichia coli Proteins , Shiga-Toxigenic Escherichia coli , Animals , Cattle , Humans , Enteropathogenic Escherichia coli/metabolism , Nitrates , Escherichia coli Infections/microbiology , Ecosystem , Fertilizers , Escherichia coli Proteins/metabolism , Shiga-Toxigenic Escherichia coli/metabolism , Water
13.
Int J Mol Sci ; 23(18)2022 Sep 08.
Article in English | MEDLINE | ID: mdl-36142263

ABSTRACT

The attachment of enteropathogenic Escherichia coli (EPEC) to intestinal epithelial cells is facilitated by several adhesins; however, the individual host-cell receptors for pili-mediated adherence have not been fully characterized. In this study, we evaluated the hypothesis that the E. coli common pilus (ECP) tip adhesin protein EcpD mediates attachment of EPEC to several extracellular matrix (ECM) glycoproteins (fibronectin, laminin, collagens I and IV, and mucin). We found that the ΔecpA mutant, which lacks production of the EcpA filament but retains EcpD on the surface, adhered to these glycoproteins below the wild-type levels, while the ΔecpD mutant, which does not display EcpA or EcpD, bound significantly less to these host glycoproteins. In agreement, a purified recombinant EcpD subunit bound significantly more than EcpA to laminin, fibronectin, collagens I and IV, and mucin in a dose-dependent manner. These are compelling data that strongly suggest that ECP-producing EPEC may bind to host ECM glycoproteins and mucins through the tip adhesin protein EcpD. This study highlights the versatility of EPEC to bind to different host proteins and suggests that the interaction of ECP with the host's ECM glycoproteins may facilitate colonization of the intestinal mucosal epithelium.


Subject(s)
Enteropathogenic Escherichia coli , Escherichia coli Infections , Escherichia coli Proteins , Adhesins, Escherichia coli/genetics , Adhesins, Escherichia coli/metabolism , Bacterial Adhesion , Enteropathogenic Escherichia coli/metabolism , Escherichia coli Infections/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Fibronectins/metabolism , Fimbriae Proteins/genetics , Fimbriae Proteins/metabolism , Fimbriae, Bacterial/metabolism , Humans , Laminin/metabolism , Mucins/metabolism
14.
Microb Cell Fact ; 21(1): 133, 2022 Jul 02.
Article in English | MEDLINE | ID: mdl-35780105

ABSTRACT

BACKGROUND: Bacterial type III secretion systems (T3SSs) assemble a multiprotein complex termed the injectisome, which acts as a molecular syringe for translocation of specific effector proteins into the cytoplasm of host cells. The use of injectisomes for delivery of therapeutic proteins into mammalian cells is attractive for biomedical applications. With that aim, we previously generated a non-pathogenic Escherichia coli strain, called Synthetic Injector E. coli (SIEC), which assembles functional injectisomes from enteropathogenic E. coli (EPEC). The assembly of injectisomes in EPEC is assisted by the lytic transglycosylase EtgA, which degrades the peptidoglycan layer. As SIEC lacks EtgA, we investigated whether expression of this transglycosylase enhances the protein translocation capacity of the engineered bacterium. RESULTS: The etgA gene from EPEC was integrated into the SIEC chromosome under the control of the inducible tac promoter, generating the strain SIEC-eEtgA. The controlled expression of EtgA had no effect on the growth or viability of bacteria. Upon induction, injectisome assembly was ~ 30% greater in SIEC-eEtgA than in the parental strain, as determined by the level of T3SS translocon proteins, the hemolytic activity of the bacterial strain, and the impairment in flagellar motility. The functionality of SIEC-eEtgA injectisomes was evaluated in a derivative strain carrying a synthetic operon (eLEE5), which was capable of delivering Tir effector protein into the cytoplasm of HeLa cells triggering F-actin polymerization beneath the attached bacterium. Lastly, using ß-lactamase as a reporter of T3SS-protein injection, we determined that the protein translocation capacity was ~ 65% higher in the SIEC-EtgA strain than in the parental SIEC strain. CONCLUSIONS: We demonstrate that EtgA enhances the assembly of functional injectisomes in a synthetic injector E. coli strain, enabling the translocation of greater amounts of proteins into the cytoplasm of mammalian cells. Accordingly, EtgA expression may boost the protein translocation of SIEC strains programmed as living biotherapeutics.


Subject(s)
Cell Engineering , Enteropathogenic Escherichia coli , Escherichia coli Proteins , Glycosyltransferases , Cell Engineering/methods , Enteropathogenic Escherichia coli/chemistry , Enteropathogenic Escherichia coli/genetics , Enteropathogenic Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Glycosyltransferases/metabolism , HeLa Cells , Humans , Protein Transport
15.
Methods Mol Biol ; 2427: 37-46, 2022.
Article in English | MEDLINE | ID: mdl-35619023

ABSTRACT

The type III secretion system (T3SS) is crucial for the virulence of several pathogenic Escherichia coli species as well as for other gram-negative bacterial strains. Therefore, the ability to monitor this system constitutes a valuable tool for assessing the involvement of different proteins in bacterial virulence, for identifying critical domains and specific mutations, and for evaluating the antivirulence activities of various drugs. The major advantage of the T3SS secretion assay for E. coli over assays for other gram-negative pathogens is that it does not necessarily require specific antibodies. Here, we describe how to grow enteropathogenic E. coli (EPEC) and enterohemorrhagic E. coli (EHEC) strains under T3SS-inducing conditions, separate the supernatant fraction from the bacterial pellet, analyze this fraction on sodium dodecyl sulfate (SDS)-polyacrylamide gels, and evaluate the level of T3SS activity. We describe a qualitative analysis using Coomassie staining and a quantitative assay using western blotting.


Subject(s)
Enterohemorrhagic Escherichia coli , Enteropathogenic Escherichia coli , Escherichia coli Proteins , Enterohemorrhagic Escherichia coli/metabolism , Enteropathogenic Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Type III Secretion Systems/genetics , Type III Secretion Systems/metabolism , Virulence Factors/metabolism
16.
Cell Mol Gastroenterol Hepatol ; 13(3): 695-716, 2022.
Article in English | MEDLINE | ID: mdl-34823064

ABSTRACT

BACKGROUND & AIMS: Diarrhea is one of the most common illnesses and is often caused by bacterial infection. Recently, we have shown that human Na+/H+ exchanger NHE3 (hNHE3), but not non-human NHE3s, interacts with the E3 ubiquitin ligase Nedd4-2. We hypothesize that this property of hNHE3 contributes to the increased severity of diarrhea in humans. METHODS: We used humanized mice expressing hNHE3 in the intestine (hNHE3int) to compare the contribution of hNHE3 and mouse NHE3 to diarrhea induced by cholera toxin (CTX) and enteropathogenic Escherichia coli (EPEC). We measured Na+/H+ exchange activity and fluid absorption. The role of Nedd4-2 on hNHE3 activity and ubiquitination was determined by knockdown in Caco-2bbe cells. The effects of protein kinase A (PKA), the primary mediator of CTX-induced diarrhea, on Nedd4-2 and hNHE3 phosphorylation and their interaction were determined. RESULTS: The effects of CTX and EPEC were greater in hNHE3int mice than in control wild-type (WT) mice, resulting in greater inhibition of NHE3 activity and increased fluid accumulation in the intestine, the hallmark of diarrhea. Activation of PKA increased ubiquitination of hNHE3 and enhanced interaction of Nedd4-2 with hNHE3 via phosphorylation of Nedd4-2 at S342. S342A mutation mitigated the Nedd4-2-hNHE3 interaction and blocked PKA-induced inhibition of hNHE3. Unlike non-human NHE3s, inhibition of hNHE3 by PKA is independent of NHE3 phosphorylation, suggesting a distinct mechanism of hNHE3 regulation. CONCLUSIONS: The effects of CTX and EPEC on hNHE3 are amplified, and the unique properties of hNHE3 may contribute to diarrheal symptoms occurring in humans.


Subject(s)
Enteropathogenic Escherichia coli , Sodium-Hydrogen Exchanger 3 , Animals , Cholera Toxin/metabolism , Cholera Toxin/pharmacology , Enteropathogenic Escherichia coli/metabolism , Humans , Mice , Sodium/metabolism , Sodium-Hydrogen Exchanger 3/genetics , Sodium-Hydrogen Exchanger 3/metabolism , Ubiquitination
17.
Gut Microbes ; 14(1): 2013763, 2022.
Article in English | MEDLINE | ID: mdl-34965187

ABSTRACT

Many bacterial pathogens employ a protein complex, termed the type III secretion system (T3SS), to inject bacterial effectors into host cells. These effectors manipulate various cellular processes to promote bacterial growth and survival. The T3SS complex adopts a nano-syringe shape that is assembled across the bacterial membranes, with an extracellular needle extending toward the host cell membrane. The assembly of the T3SS is initiated by the association of three proteins, known as SctR, SctS, and SctT, which create an entry portal to the translocation channel within the bacterial inner membrane. Using the T3SS of enteropathogenic Escherichia coli, we investigated, by mutational and functional analyses, the role of two structural construction sites formed within the SctRST complex and revealed that they are mutation-resistant components that are likely to act as seals preventing leakage of ions and metabolites rather than as substrate gates. In addition, we identified two residues in the SctS protein, Pro23, and Lys54, that are critical for the proper activity of the T3SS. We propose that Pro23 is critical for the physical orientation of the SctS transmembrane domains that create the tip of the SctRST complex and for their positioning with regard to other T3SS substructures. Surprisingly, we found that SctS Lys54, which was previously suggested to mediate the SctS self-oligomerization, is critical for T3SS activity due to its essential role in SctS-SctT hetero-interactions.


Subject(s)
Enteropathogenic Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Type III Secretion Systems/metabolism , Amino Acid Motifs , Enteropathogenic Escherichia coli/chemistry , Enteropathogenic Escherichia coli/genetics , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Protein Binding , Protein Domains , Type III Secretion Systems/chemistry , Type III Secretion Systems/genetics
18.
PLoS One ; 16(11): e0259900, 2021.
Article in English | MEDLINE | ID: mdl-34780538

ABSTRACT

Enteropathogenic Escherichia coli O127 is encapsulated by a protective layer of polysaccharide made of the same strain specific O-antigen as the serotype lipopolysaccharide. Seven genes encoding capsule export functions comprise the group 4 capsule (gfc) operon. Genes gfcE, etk and etp encode homologs of the group 1 capsule secretion system but the upstream gfcABCD genes encode unknown functions specific to group 4 capsule export. We have developed an expression system for the large-scale production of the outer membrane protein GfcD. Contrary to annotations, we find that GfcD is a non-acylated integral membrane protein. Circular dichroism spectroscopy, light-scattering data, and the HHomp server suggested that GfcD is a monomeric ß-barrel with 26 ß-strands and an internal globular domain. We identified a set of novel protein-protein interactions between GfcB, GfcC, and GfcD, both in vivo and in vitro, and quantified the binding properties with isothermal calorimetry and biolayer interferometry. GfcC and GfcB form a high-affinity heterodimer with a KD near 100 nM. This heterodimer binds to GfcD (KD = 28 µM) significantly better than either GfcB or GfcC alone. These gfc proteins may form a complex at the outer membrane for group 4 capsule secretion or for a yet unknown function.


Subject(s)
Bacterial Outer Membrane/metabolism , Enteropathogenic Escherichia coli/metabolism , O Antigens/chemistry , O Antigens/metabolism , Calorimetry , Circular Dichroism , Dynamic Light Scattering , Enteropathogenic Escherichia coli/genetics , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , O Antigens/genetics , Operon , Protein Multimerization , Protein Structure, Secondary
19.
Protein Sci ; 30(12): 2433-2444, 2021 12.
Article in English | MEDLINE | ID: mdl-34662450

ABSTRACT

Gram-negative pathogens like Enteropathogenic Escherichia coli (EPEC) utilize the type three secretion system (T3SS) to translocate various effector proteins that are needed to "hijack" the host system for pathogenic survival. Specialized T3SS chaperones inside bacterial cells stabilize these effector proteins and facilitate their translocation. CesT is a unique multi-cargo chaperone that interacts with and translocates ~10 different effector proteins. Here, we report the specific interaction between CesT and its key effector, NleH2, and explore the potential role of NleH2 as a kinase for CesT phosphorylation. First, we identified the chaperone-binding domain (CBD; 19-97aa) of NleH2, and mapped the specific interaction sites for both CesT and NleH2. The N- and C-terminal residues of the CBD interact with the dimeric interface of CesT. Further, we compared the CesT binding to NleH2, to that of another key effector Tir and with the global carbon regulator CsrA. Notably, the effectors have the binding regions at the ß-sheet core and dimer interface of CesT, whereas the CsrA regulator interacts predominantly through the C-terminal region, which is found ~17 Å away from the effectors-binding sites. Next, we showed that NleH2 remains an active kinase even as a complex with CesT and is responsible for its autophosphorylation as well as phosphorylation of CesT at Tyr153. Collectively, our findings enhance the understanding of the role of multi-cargo chaperone CesT in orchestrating effector translocation through T3SS.


Subject(s)
Enteropathogenic Escherichia coli/genetics , Escherichia coli Proteins/chemistry , Molecular Chaperones/chemistry , RNA-Binding Proteins/chemistry , Receptors, Cell Surface/chemistry , Repressor Proteins/chemistry , Amino Acid Sequence , Binding Sites , Cloning, Molecular , Enteropathogenic Escherichia coli/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Gene Expression , Gene Expression Regulation, Bacterial , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Kinetics , Models, Molecular , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Phosphorylation , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Processing, Post-Translational , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Substrate Specificity , Type III Secretion Systems/genetics , Type III Secretion Systems/metabolism
20.
J Mol Biol ; 433(21): 167188, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34454944

ABSTRACT

Type III protein secretion is widespread in Gram-negative pathogens. It comprises the injectisome with a surface-exposed needle and an inner membrane translocase. The translocase contains the SctRSTU export channel enveloped by the export gate subunit SctV that binds chaperone/exported clients and forms a putative ante-chamber. We probed the assembly, function, structure and dynamics of SctV from enteropathogenic E. coli (EPEC). In both EPEC and E. coli lab strains, SctV forms peripheral oligomeric clusters that are detergent-extracted as homo-nonamers. Membrane-embedded SctV9 is necessary and sufficient to act as a receptor for different chaperone/exported protein pairs with distinct C-domain binding sites that are essential for secretion. Negative staining electron microscopy revealed that peptidisc-reconstituted His-SctV9 forms a tripartite particle of ∼22 nm with a N-terminal domain connected by a short linker to a C-domain ring structure with a ∼5 nm-wide inner opening. The isolated C-domain ring was resolved with cryo-EM at 3.1 Å and structurally compared to other SctV homologues. Its four sub-domains undergo a three-stage "pinching" motion. Hydrogen-deuterium exchange mass spectrometry revealed this to involve dynamic and rigid hinges and a hyper-flexible sub-domain that flips out of the ring periphery and binds chaperones on and between adjacent protomers. These motions are coincident with local conformational changes at the pore surface and ring entry mouth that may also be modulated by the ATPase inner stalk. We propose that the intrinsic dynamics of the SctV protomer are modulated by chaperones and the ATPase and could affect allosterically the other subunits of the nonameric ring during secretion.


Subject(s)
Adenosine Triphosphatases/chemistry , Enteropathogenic Escherichia coli/ultrastructure , Escherichia coli Proteins/chemistry , Flagella/ultrastructure , SEC Translocation Channels/chemistry , Type III Secretion Systems/ultrastructure , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Allosteric Regulation , Binding Sites , Cloning, Molecular , Cryoelectron Microscopy , Deuterium Exchange Measurement , Enteropathogenic Escherichia coli/genetics , Enteropathogenic Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Flagella/genetics , Flagella/metabolism , Gene Expression , Gene Expression Regulation, Bacterial , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Kinetics , Mass Spectrometry , Models, Molecular , Molecular Chaperones/chemistry , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , SEC Translocation Channels/genetics , SEC Translocation Channels/metabolism , Substrate Specificity , Type III Secretion Systems/genetics , Type III Secretion Systems/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL