Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
1.
Vet Microbiol ; 295: 110153, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38889618

ABSTRACT

Bovine leukemia virus (BLV) is a widespread virus that decreases milk production and quality in dairy cows. As crucial components of BLV, BLV-encoded microRNAs (BLV-miRNAs) affect BLV replication and may impact the synthesis of Lactoferrin (LTF), Lactoperoxidase (LPO), Alpha-lactalbumin (alpha-LA), and Beta-lactoglobulin (beta-LG). In this study, we investigated the targeting relationship between BLV-miRNAs and LTF, LPO, alpha-LA, and beta-LG in cow's milk. Additionally, we investigated the possible mechanisms by which BLV reduces milk quality. The results showed that cow's milk had significantly lower levels of LTF, LPO, and alpha-LA proteins in BLV-positive cows than in BLV-negative cows. BLV-△miRNAs (miRNA-deleted BLV) enhanced the reduction of LPO, alpha-LA, and beta-LG protein levels caused by BLV infection. Multiple BLV-miRNAs have binding sites with LTF and LPO mRNA; however, only BLV-miR-B1-5 P has a targeting relationship with LPO mRNA. The results revealed that BLV-miR-B1-5 P inhibits LPO protein expression by targeting LPO mRNA. However, BLV does not directly regulate the expression of LTF, alpha-LA, or beta-LG proteins through BLV-miRNAs.


Subject(s)
Lactalbumin , Lactoferrin , Lactoglobulins , Lactoperoxidase , Leukemia Virus, Bovine , MicroRNAs , Milk , Animals , Lactoferrin/genetics , Lactoferrin/metabolism , Lactoperoxidase/metabolism , Lactoperoxidase/genetics , Lactalbumin/genetics , Lactalbumin/metabolism , Cattle , Lactoglobulins/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Leukemia Virus, Bovine/genetics , Female , Enzootic Bovine Leukosis/virology , Enzootic Bovine Leukosis/genetics
2.
Vet Ital ; 59(1): 83-92, 2023 03 31.
Article in English | MEDLINE | ID: mdl-37994640

ABSTRACT

The retrovirus bovine leukemia virus (BLV) might produce abnormal immune function, associated with susceptibility to developing other infectious diseases, including mastitis. This study aimed to determine the proviral load and cytokines gene expression in peripheral blood mononuclear cells (PMBC) and milk somatic cells (SC) in BLV-infected and non-infected cattle. Of 27 BLV-infected cows in PBMC, 17 (62.96%) had a high proviral load (HPL), and 10 (37.04%) had a low proviral load (LPL). All SC samples had low proviral load (LPL-SC). Higher IFN-γ and IL-10 expression, and lower IL-12 and IL-6 expression, were found in PBMC from BLV-infected compared to BLV non-infected cattle. Moreover, higher IFN-γ, IL-12, and IL-6 expression, and lower IL-10 expression were observed in cattle with LPL-PBMC compared to HPL-PBMC. In milk samples, lower IFN-γ and higher IL-12 mRNA expression were observed in LPL-SC compared to BLV non-infected cattle in SC. IL-10 and IL-6 expression mRNA was significantly lower in LPL-SC than in SC from BLV non-infected cattle. This study shows that milk SC maintains lower proviral load levels than PBMC. This first report on Th1 and Th2 cytokines expression levels in SC may be relevant to future control strategies for BLV infection, mastitis, and udder health management.


Subject(s)
Cattle Diseases , Enzootic Bovine Leukosis , Leukemia Virus, Bovine , Mastitis , Female , Cattle , Animals , Cytokines/genetics , Leukocytes, Mononuclear , Interleukin-10 , Leukemia Virus, Bovine/genetics , Enzootic Bovine Leukosis/genetics , Proviruses/genetics , Milk , Interleukin-6 , Interleukin-12 , RNA, Messenger , Mastitis/veterinary
3.
BMC Vet Res ; 19(1): 185, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37784057

ABSTRACT

BACKGROUND: The Kumamoto strain of Japanese Brown (JBRK) cattle is a sub-breed of Wagyu and has a different genetic background than that of Japanese Black (JB) cattle. Bovine leukemia virus (BLV) is the pathogen causing enzootic bovine leukosis (EBL), the predominant type of bovine leukosis (BL). EBL is one of the most common bovine infectious diseases in dairy countries, including Japan. Some host genetic factors, including the bovine leukocyte antigen (BoLA)-DRB3 gene, have been associated with the proviral load (PVL) of BLV and/or onset of EBL. Here, we determined the number of BL cases by analyzing prefectural case records in detail. We measured the PVL of BLV-infected JBRK cattle and compared it with that obtained for other major breeds, JB and Holstein-Friesian (HF) cattle. Finally, the relationship between PVL levels and BoLA-DRB3 haplotypes was investigated in BLV-infected JBRK cattle. RESULTS: We determined the number of BL cases recorded over the past ten years in Kumamoto Prefecture by cattle breed. A limited number of BL cases was observed in JBRK cattle. The proportion of BL cases in the JBRK was lower than that in JB and HF. The PVL was significantly lower in BLV-infected JBRK cattle than that in the JB and HF breeds. Finally, in BLV-infected JBRK cattle, the PVL was not significantly affected by BoLA-DRB3 alleles and haplotypes. BoLA-DRB3 allelic frequency did not differ between BLV-infected JBRK cattle with low PVL and high PVL. CONCLUSIONS: To our knowledge, this is the first report showing that BL occurred less in the JBRK population of Kumamoto Prefecture. After BLV-infection, the PVL was significantly lower in JBRK cattle than that in JB and HF breeds. The genetic factors implicated in maintaining a low PVL have yet to be elucidated, but the BoLA-DRB3 haplotypes are likely not involved.


Subject(s)
Cattle Diseases , Enzootic Bovine Leukosis , Leukemia Virus, Bovine , Cattle , Animals , Leukemia Virus, Bovine/genetics , Histocompatibility Antigens Class II/genetics , Proviruses/genetics , Enzootic Bovine Leukosis/genetics , Gene Frequency
4.
Vet Microbiol ; 284: 109829, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37451183

ABSTRACT

Enzootic bovine leukosis (EBL) is typically observed in cattle older than 3 years, but some cases of onset in cattle younger than 3 years have been reported in Japan. BoLA-DRB3 polymorphisms are associated with susceptibility to EBL onset. However, little is known about the relationship between the polymorphisms and EBL onset in young cattle. In the present study, we performed BoLA-DRB3 genotyping in 59 EBL cattle younger than 3 years (25 Holstein-Friesian and 34 Japanese Black) and compared the results with those of 69 EBL cattle older than 3 years (38 Holstein-Friesian and 31 Japanese Black). The BoLA-DRB3*15:01 allele was detected at a frequency of 37.3 % (48.0 % and 29.4 % in Holstein-Friesian and Japanese Black, respectively) and was identified as an early EBL onset susceptibility allele. Nine EBL cattle younger than 3 years (5 Holstein-Friesian and 4 Japanese Black), but only 1 EBL cattle older than 3 years (1 Holstein-Friesian), had a BoLA-DRB3*15:01/*15:01 homozygous genotype. The frequency of the BoLA-DRB3*15:01 allele occurring with a different allele (BoLA-DRB3*015:01/other) in cattle younger than 3 years was 44.1 % (56.0 % Holstein-Friesian and 35.3 % Japanese Black) and significantly higher than that in cattle older than 3 years (28.9 % Holstein-Friesian and 9.7 % Japanese Black) (P = 0.0013). These results suggest that BoLA-DRB3*15:01/*15:01 and BoLA-DRB3*15:01/other genotypes are early EBL onset susceptibility genotypes. The present findings may contribute to cattle breeding selection.


Subject(s)
Cattle Diseases , Enzootic Bovine Leukosis , Cattle/genetics , Animals , Enzootic Bovine Leukosis/genetics , Alleles , Histocompatibility Antigens Class II/genetics , Polymorphism, Genetic
5.
Retrovirology ; 20(1): 11, 2023 06 02.
Article in English | MEDLINE | ID: mdl-37268923

ABSTRACT

Bovine Leukemia Virus (BLV) is the etiological agent of enzootic bovine leukosis, a disease characterized by the neoplastic proliferation of B cells in cattle. While most European countries have introduced efficient eradication programs, BLV is still present worldwide and no treatment is available. A major feature of BLV infection is the viral latency, which enables the escape from the host immune system, the maintenance of a persistent infection and ultimately the tumoral development. BLV latency is a multifactorial phenomenon resulting in the silencing of viral genes due to genetic and epigenetic repressions of the viral promoter located in the 5' Long Terminal Repeat (5'LTR). However, viral miRNAs and antisense transcripts are expressed from two different proviral regions, respectively the miRNA cluster and the 3'LTR. These latter transcripts are expressed despite the viral latency affecting the 5'LTR and are increasingly considered to take part in tumoral development. In the present review, we provide a summary of the experimental evidence that has enabled to characterize the molecular mechanisms regulating each of the three BLV transcriptional units, either through cis-regulatory elements or through epigenetic modifications. Additionally, we describe the recently identified BLV miRNAs and antisense transcripts and their implications in BLV-induced tumorigenesis. Finally, we discuss the relevance of BLV as an experimental model for the closely related human T-lymphotropic virus HTLV-1.


Subject(s)
Enzootic Bovine Leukosis , Leukemia Virus, Bovine , MicroRNAs , Animals , Cattle , Humans , Transcription Factors/genetics , Leukemia Virus, Bovine/genetics , Gene Expression Regulation , MicroRNAs/genetics , Epigenesis, Genetic , Enzootic Bovine Leukosis/genetics
6.
PLoS One ; 18(2): e0281317, 2023.
Article in English | MEDLINE | ID: mdl-36730262

ABSTRACT

Bovine leukemia virus (BLV) is a retrovirus that causes malignant B-cell lymphoma in up to ten-percent of infected cattle. To date, the mechanisms of BLV linked to malignant transformation remain elusive. Although BLV-encoded miRNAs have been associated with the regulation of different genes involved in oncogenic pathways, this association has not been evaluated in cattle naturally infected with BLV. The objective of this study was to determine the relative expression of BLV-encoded miRNA blv-miR-b4-3p, the host analogous miRNA bo-miR-29a and a couple of potential target mRNAs (HBP-1 and PXDN, with anti-tumorigenic function in B-cells), in cattle naturally infected with BLV compared to uninfected animals (control group). We observed that PXDN was significantly downregulated in BLV-infected cattle (P = 0.03). Considering the similar expression of endogenous bo-miR-29a in both animal groups, the downregulation of PXDN in BLV-naturally infected cattle could be linked to blv-miR-b4-3p expression in these animals. Knowing that PXDN is involved in anti-tumoral pathways in B-cells, the results presented here suggest that blv-miR-b4-3p might be involved in BLV tumorigenesis during natural infection with BLV in cattle.


Subject(s)
Enzootic Bovine Leukosis , Leukemia Virus, Bovine , Lymphoma, B-Cell , MicroRNAs , Neoplasms , Animals , Cattle , MicroRNAs/genetics , Leukemia Virus, Bovine/genetics , B-Lymphocytes , Enzootic Bovine Leukosis/genetics
7.
mSphere ; 8(1): e0049322, 2023 02 21.
Article in English | MEDLINE | ID: mdl-36625728

ABSTRACT

In the transmission control of chronic and untreatable livestock diseases such as bovine leukemia virus (BLV) infection, the removal of viral superspreaders is a fundamental approach. On the other hand, selective breeding of cattle with BLV-resistant capacity is also critical for reducing the viral damage to productivity by keeping infected cattle. To provide a way of measuring BLV proviral load (PVL) and identifying susceptible/resistant cattle simply and rapidly, we developed a fourplex droplet digital PCR method targeting the BLV pol gene, BLV-susceptible bovine major histocompatibility complex (BoLA)-DRB3*016:01 allele, resistant DRB3*009:02 allele, and housekeeping RPP30 gene (IPATS-BLV). IPATS-BLV successfully measured the percentage of BLV-infected cells and determined allele types precisely. Furthermore, it discriminated homozygous from heterozygous carriers. Using this method to determine the impact of carrying these alleles on the BLV PVL, we found DRB3*009:02-carrying cattle could suppress the PVL to a low or undetectable level, even with the presence of a susceptible heterozygous allele. Although the population of DRB3*016:01-carrying cattle showed significantly higher PVLs compared with cattle carrying other alleles, their individual PVLs were highly variable. Because of the simplicity and speed of this single-well assay, our method has the potential of being a suitable platform for the combined diagnosis of pathogen level and host biomarkers in other infectious diseases satisfying the two following characteristics of disease outcomes: (i) pathogen level acts as a critical maker of disease progression; and (ii) impactful disease-related host genetic biomarkers are already identified. IMPORTANCE While pathogen-level quantification is an important diagnostic of disease severity and transmissibility, disease-related host biomarkers are also useful in predicting outcomes in infectious diseases. In this study, we demonstrate that combined proviral load (PVL) and host biomarker diagnostics can be used to detect bovine leukemia virus (BLV) infection, which has a negative economic impact on the cattle industry. We developed a fourplex droplet digital PCR assay for PVL of BLV and susceptible and resistant host genes named IPATS-BLV. IPATS-BLV has inherent merits in measuring PVL and identifying susceptible and resistant cattle with superior simplicity and speed because of a single-well assay. Our new laboratory technique contributes to strengthening risk-based herd management used to control within-herd BLV transmission. Furthermore, this assay design potentially improves the diagnostics of other infectious diseases by combining the pathogen level and disease-related host genetic biomarker to predict disease outcomes.


Subject(s)
Enzootic Bovine Leukosis , Leukemia Virus, Bovine , Polymerase Chain Reaction , Animals , Cattle , Alleles , Communicable Diseases/diagnosis , Communicable Diseases/genetics , Disease Susceptibility , Enzootic Bovine Leukosis/diagnosis , Enzootic Bovine Leukosis/genetics , Genetic Markers , Histocompatibility Antigens Class II/genetics , Leukemia Virus, Bovine/genetics , Polymerase Chain Reaction/methods
8.
Int J Mol Sci ; 23(18)2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36142686

ABSTRACT

Enzootic bovine leukosis (EBL) is a B-cell lymphosarcoma caused by the bovine leukemia virus (BLV). Most BLV-infected cattle show no clinical signs and only some develop EBL. The pathogenesis of EBL remains unclear and there are no methods for predicting EBL before its onset. Previously, it was reported that miRNA profiles in milk small extracellular vesicles (sEVs) were affected in cattle in the late stage of BLV infection. It raised a possibility that miRNA profile in milk sEVs from EBL cattle could be also affected. To characterize the difference in milk of EBL cattle and healthy cattle, we examined the miRNA profiles in milk sEVs from four EBL and BLV-uninfected cattle each using microarray analysis. Among the detected miRNAs, three miRNAs-bta-miR-1246, hsa-miR-1290, and hsa-miR-424-5p-which were detectable using quantitative real-time PCR (qPCR) and are associated with cancers in humans-were selected as biomarker candidates for EBL. To evaluate the utility of these miRNAs as biomarkers for EBL, their levels were measured using milk that was freshly collected from 13 EBL and seven BLV-uninfected cattle. bta-miR-1246 and hsa-miR-424-5p, but not hsa-miR-1290, were detected using qPCR and their levels in milk sEVs from EBL cattle were significantly higher than those in BLV-uninfected cattle. bta-miR-1246 and hsa-miR-424-5p in sEVs may promote metastasis by targeting tumor suppressor genes, resulting in increased amounts in milk sEVs in EBL cattle. These results suggest that bta-miR-1246 and hsa-miR-424-5p levels in milk sEVs could serve as biomarkers for EBL.


Subject(s)
Enzootic Bovine Leukosis , Extracellular Vesicles , Leukemia Virus, Bovine , MicroRNAs , Animals , Biomarkers , Cattle , Enzootic Bovine Leukosis/diagnosis , Enzootic Bovine Leukosis/genetics , Extracellular Vesicles/genetics , Humans , Leukemia Virus, Bovine/genetics , MicroRNAs/genetics , Milk
9.
HLA ; 99(1): 12-24, 2022 01.
Article in English | MEDLINE | ID: mdl-34837483

ABSTRACT

As genetically resistant individuals, the "elite controllers" (ECs) of human immunodeficiency virus infection have been focused on as the keys to developing further functional treatments in medicine. In the livestock production field, identifying the ECs of bovine leukemia virus (BLV) infection in cattle is desired to stop BLV transmission chains on farms. Cattle carrying the bovine leukocyte antigen (BoLA)-DRB3*009:02 allele (DRB3*009:02) have a strong possibility of being BLV ECs. Most of cattle carrying this allele maintain undetectable BLV proviral loads and do not shed virus even when infected. BLV ECs can act as transmission barriers when placed between uninfected and infected cattle in a barn. To identify cattle carrying DRB3*009:02 in large populations more easily, we developed a pooled testing system. It employs a highly sensitive, specific real-time PCR assay and TaqMan MGB probes (DRB3*009:02-TaqMan assay). Using this system, we determined the percentage of DRB3*009:02-carrying cattle on Kyushu Island, Japan. Our pooled testing system detected cattle carrying the DRB3*009:02 allele from a DNA pool containing one DRB3*009:02-positive animal and 29 cattle with other alleles. Its capacity is sufficient for herd-level screening for DRB3*009:02-carrying cattle. The DRB3*009:02-TaqMan assay showed high-discriminative sensitivity and specificity toward DRB3*009:02, making it suitable for identifying DRB3*009:02-carrying cattle in post-screening tests on individuals. We determined that the percentage of DRB3*009:02-carrying cattle in Kyushu Island was 10.56%. With its ease of use and reliable detection, this new method strengthens the laboratory typing for DRB3*009:02-carrying cattle. Thus, our findings support the use of BLV ECs in the field.


Subject(s)
Cattle , Enzootic Bovine Leukosis , Leukemia Virus, Bovine , Alleles , Animals , Cattle/genetics , Enzootic Bovine Leukosis/diagnosis , Enzootic Bovine Leukosis/genetics , Haplotypes , Histocompatibility Antigens Class II/genetics , Leukemia Virus, Bovine/genetics , Viral Load
10.
Vet Microbiol ; 263: 109269, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34781193

ABSTRACT

Enzootic bovine leukosis (EBL) is a B-cell lymphoma caused by the bovine leukemia virus (BLV). Although an association between EBL and mutations in the bovine tumor suppressor gene TP53 (bTP53) has been suggested, the substantive incidence rate of bTP53 mutations in EBL cattle is still unclear. In this study, we investigated the complete sequence (exons 2-11) of bTP53 in tissue and peripheral blood leukocyte (PBL) samples obtained from 154 EBL cattle and 117 cattle without EBL (non-EBL cattle) to elucidate the correlation between bTP53 mutations and EBL. The detection frequencies of non-synonymous (NS) and deletion mutations in bTP53 in EBL cattle were significantly higher than those in non-EBL cattle in both tissue and PBL samples (p < 0.05). Among these mutations in EBL cattle, 73.7 % (42/54) were homologous to those of human TP53 (hTP53), which were previously detected in various tumors. It has been reported that 95.2 % (40/42) of these hTP53 mutations induced complete or partial loss of the transactivating function of its encoding protein, P53. Moreover, the BLV proviral load in tissue samples was significantly higher in cattle harboring bTP53 NS and deletion mutations than in cattle without these mutations in both EBL and BLV-infected non-EBL cattle (p < 0.05). Although the activity of the mutant variants of bP53 must be further investigated, our findings revealed that bTP53 mutations are involved in tumorigenesis in BLV-infected cells and EBL-associated carcinogenesis.


Subject(s)
Enzootic Bovine Leukosis , Tumor Suppressor Protein p53 , Animals , Cattle/genetics , Enzootic Bovine Leukosis/genetics , Leukemia Virus, Bovine/physiology , Mutation , Tumor Suppressor Protein p53/genetics
11.
Article in English | MEDLINE | ID: mdl-34064361

ABSTRACT

Bovine leukemia virus (BLV) is the causative agent of leukemia/lymphoma in cattle. It has been found in humans and cattle-derived food products. In humans, it is described as a potential risk factor for breast cancer development. However, the transmission path remains unclear. Here, a molecular epidemiology analysis was performed to identify signatures of genetic flux of BLV among humans, animals, and food products. Sequences obtained from these sources in Colombia were used (n = 183) and compared with reference sequences available in GenBank. Phylogenetic reconstruction was performed in IQ-TREE software with the maximum likelihood algorithm. Haplotype (hap) distribution among the population was carried out with a median-joining model in Network5.0. Recombination events were inferred using SplitsTree4 software. In the phylogenetic analysis, no specific branches were identified for the Colombian sequences or for the different sources. A total of 31 haps were found, with Hap 1, 4, 5 and 7 being shared among the three sources of the study. Reticulation events among the different sources were also detected during the recombination analysis. These results show new insights about the zoonotic potential of BLV, showing evidence of genetic flux between cattle and humans. Prevention and control strategies should be considered to avoid viral dissemination as part of the One Health program policies.


Subject(s)
Enzootic Bovine Leukosis , Leukemia Virus, Bovine , Animals , Cattle , Colombia/epidemiology , Enzootic Bovine Leukosis/epidemiology , Enzootic Bovine Leukosis/genetics , Haplotypes , Humans , Leukemia Virus, Bovine/genetics , Phylogeny
12.
J Vet Med Sci ; 83(6): 898-904, 2021 Jun 09.
Article in English | MEDLINE | ID: mdl-33840719

ABSTRACT

Enzootic bovine leukosis (EBL) is typically observed in cattle over 3 years old. However, some cases of EBL onset in young beef cattle have been reported in Japan. The mechanism for early EBL onset is unclear. In Japan, beef cattle are given large amounts of concentrated feed with low vitamin A. Bone morphogenetic proteins (BMPs) are regulators of cell proliferation, differentiation, and apoptosis, and thought to represent one of the key players in tumor malignancy. The purpose of this study was to evaluate the differences in BMP-6 methylation status between EBL beef cattle under 3 years old and other cattle. We investigated the methylation status of the BMP-6 promoter region in 32 EBL beef cattle under 3 years old. We also compared the methylation status of EBL dairy cattle to that of healthy cattle. Median methylation rate of the BMP-6 promoter region in EBL beef cattle under 3 years old was 8.9%, which was significantly higher than that of other groups. Hypermethylation of the BMP-6 promoter region might contribute to early onset of EBL in beef cattle under 3 years old, and animal feeding management practices specific to beef cattle may affect the methylation status of the BMP-6 promoter region.


Subject(s)
Cattle Diseases , Enzootic Bovine Leukosis , Leukemia Virus, Bovine , Animals , Bone Morphogenetic Protein 6 , Cattle , Enzootic Bovine Leukosis/genetics , Japan , Promoter Regions, Genetic
13.
Sci Rep ; 11(1): 4521, 2021 02 25.
Article in English | MEDLINE | ID: mdl-33633166

ABSTRACT

Bovine leukemia virus (BLV) is an oncogenic retrovirus which induces malignant lymphoma termed enzootic bovine leukosis (EBL) after a long incubation period. Insertion sites of the BLV proviral genome as well as the associations between disease progression and polymorphisms of the virus and host genome are not fully understood. To characterize the biological coherence between virus and host, we developed a DNA-capture-seq approach, in which DNA probes were used to efficiently enrich target sequence reads from the next-generation sequencing (NGS) library. In addition, enriched reads can also be analyzed for detection of proviral integration sites and clonal expansion of infected cells since the reads include chimeric reads of the host and proviral genomes. To validate this DNA-capture-seq approach, a persistently BLV-infected fetal lamb kidney cell line (FLK-BLV), four EBL tumor samples and four non-EBL blood samples were analyzed to identify BLV integration sites. The results showed efficient enrichment of target sequence reads and oligoclonal integrations of the BLV proviral genome in the FLK-BLV cell line. Moreover, three out of four EBL tumor samples displayed multiple integration sites of the BLV proviral genome, while one sample displayed a single integration site. In this study, we found the evidence for the first time that the integrated provirus defective at the 5' end was present in the persistent lymphocytosis cattle. The efficient and sensitive identification of BLV variability, integration sites and clonal expansion described in this study provide support for use of this innovative tool for understanding the detailed mechanisms of BLV infection during the course of disease progression.


Subject(s)
Enzootic Bovine Leukosis/genetics , Enzootic Bovine Leukosis/virology , Genome, Viral , Genomics , Host-Pathogen Interactions/genetics , Leukemia Virus, Bovine/genetics , Polymorphism, Single Nucleotide , Virus Integration , Animals , Cattle , Disease Susceptibility , Genetic Predisposition to Disease , Genetic Variation , Genomics/methods , Genotype , High-Throughput Nucleotide Sequencing , Open Reading Frames
14.
J Dairy Sci ; 104(2): 1993-2007, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33246606

ABSTRACT

In dairy cattle infected with bovine leukemia virus (BLV), the proviral load (PVL) level is directly related to the viral transmission from infected animals to their healthy herdmates. Two contrasting phenotypic groups can be identified when assessing PVL in peripheral blood of infected cows. A large number of reports point to bovine genetic variants (single nucleotide polymorphisms) as one of the key determinants underlying PVL level. However, biological mechanisms driving BLV PVL profiles and infection progression in cattle have not yet been elucidated. In this study, we evaluated whether a set of candidate genes affecting BLV PVL level according to whole genome association studies are differentially expressed in peripheral blood mononuclear cells derived from phenotypically contrasting groups of BLV-infected cows. During a 10-mo-long sampling scheme, 129 Holstein cows were phenotyped measuring anti-BLV antibody levels, PVL quantification, and white blood cell subpopulation counts. Finally, the expression of 8 genes (BOLA-DRB3, PRRC2A, ABT1, TNF, BAG6, BOLA-A, LY6G5B, and IER3) located within the bovine major histocompatibility complex region harboring whole genome association SNP hits was evaluated in 2 phenotypic groups: high PVL (n = 7) and low PVL (n = 8). The log2 initial fluorescence value (N0) transformed mean expression values for the ABT1 transcription factor were statistically different in high- and low-PVL groups, showing a higher expression of the ABT1 gene in low-PVL cows. The PRRC2A and IER3 genes had a significant positive (correlation coefficient = 0.61) and negative (correlation coefficient = -0.45) correlation with the lymphocyte counts, respectively. Additionally, the relationships between gene expression values and lymphocyte counts were modeled using linear regressions. Lymphocyte levels in infected cows were better explained (coefficient of determination = 0.56) when fitted a multiple linear regression model using both PRRC2A and IER3 expression values as independent variables. The present study showed evidence of differential gene expression between contrasting BLV infection phenotypes. These genes have not been previously related to BLV pathobiology. This valuable information represents a step forward in understanding the BLV biology and the immune response of naturally infected cows under a commercial milk production system. Efforts to elucidate biological mechanisms leading to BLV infection progression in cows are valuable for BLV control programs. Further studies integrating genotypic data, global transcriptome analysis, and BLV progression phenotypes are needed to better understand the BLV-host interaction.


Subject(s)
Enzootic Bovine Leukosis/genetics , Leukemia Virus, Bovine/physiology , Polymorphism, Single Nucleotide/genetics , Animals , Cattle , Enzootic Bovine Leukosis/virology , Female , Genome-Wide Association Study/veterinary , Leukocyte Count/veterinary , Leukocytes/virology , Leukocytes, Mononuclear/virology , Lymphocyte Count/veterinary , Phenotype , Proviruses/physiology , Viral Load/veterinary
15.
Acta Virol ; 64(4): 451-456, 2020.
Article in English | MEDLINE | ID: mdl-33151739

ABSTRACT

Bovine leukemia virus (BLV) is a retrovirus that affects primarily milky cows. Animals serologically positive to BLV show a Th1 cytokine profile with a predominance of interferon gamma (IFN-γ). IFN-γ has antiviral activity through mechanisms such as resistance to infection, inhibition of viral replication and apoptosis. The objective of this work was to determine the transcription levels of IFN-γ and its relationship with proviral load and persistent lymphocytosis in a population of Holstein cows of the province of Antioquia, Colombia. IFN-γ transcription levels were evaluated by qPCR in 140 Holstein cows. A one-way analysis of variance and a Student's t test were used to evaluate the differences between the means. The amount of IFN-γ mRNA found in BLV-positive cows was lower than in BLV-negative cows. Moreover, in the group of infected cows a lower level of IFN-γ mRNA expression was found in BLV and persistent lymphocytosis cows (BLV+PL) compared with BLV and aleukemia cows (BLV+AL). The level of IFN-γ mRNA expression was lower in cows with high proviral load (HPL) compared to cows with low proviral load (LPL). BLV infection is related to abnormal expression of IFN-γ mRNA, although IFN-γ has antiviral activity, its expression is affected by high proviral load. Keywords: cytokine; immune system; leukemia; bovine leukemia virus.


Subject(s)
Enzootic Bovine Leukosis/immunology , Interferon-gamma/genetics , Lymphocytosis/veterinary , Viral Load , Animals , Cattle , Colombia , Enzootic Bovine Leukosis/genetics , Humans , Leukemia Virus, Bovine , Lymphocytosis/genetics , Proviruses , RNA, Messenger
16.
BMC Vet Res ; 16(1): 407, 2020 Oct 28.
Article in English | MEDLINE | ID: mdl-33115449

ABSTRACT

BACKGROUND: Infection with bovine leukemia virus (BLV), the causative agent for enzootic bovine leukosis (EBL), is increasing in dairy farms of Japan. The tendency of tumor development following BLV infection in certain cow families and bull lines has previously been described. We therefore hypothesized the existence of a genetic component which differentiates cattle susceptibility to the disease. RESULTS: We analyzed routinely collected large-scale data including postmortem inspection data, which were combined with pedigree information and epidemiological data of BLV infection. A total of 6,022 postmortem inspection records of Holstein cattle, raised on 226 farms served by a regional abattoir over 10 years from 2004 to 2015, were analyzed for associations between sire information and EBL development. We then identified statistically the relative susceptibility to EBL development for the progeny of specific sires and paternal grandsires (PGSs). The heritability of EBL development was calculated as 0.19. Similarly, proviral loads (PVLs) of progeny from identified sires and PGSs were analyzed, but no significant differences were found. CONCLUSIONS: These observations suggest that because EBL development in our Holstein population is, at least in part, influenced by genetic factors independent of PVL levels, genetic improvement for lower incidence of EBL development in cattle notwithstanding BLV infection is possible.


Subject(s)
Enzootic Bovine Leukosis/genetics , Genetic Predisposition to Disease , Animals , Cattle , Enzootic Bovine Leukosis/epidemiology , Enzootic Bovine Leukosis/virology , Female , Japan/epidemiology , Leukemia Virus, Bovine , Male , Pedigree , Proviruses , Viral Load/veterinary
17.
Lett Appl Microbiol ; 71(6): 560-566, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32852051

ABSTRACT

Along with progress in globalization of society, the spread of infectious diseases has accelerated worldwide. The deployment of highly sensitive genetic tests is essential for early diagnosis and early containment of potential outbreaks and epidemics, as well as routine surveillance, although tedious and expensive nucleic acid extraction steps represent a major drawback. Here we developed a simple and rapid DNA extraction method, named as an EZ-Fast kit, applicable to the field setting. The kit does not require advanced laboratory equipment or expensive DNA extraction kits and achieves crude DNA extraction within 10 min at extremely low cost and can easily be performed in field settings. When combined with real-time PCR and LAMP analyses, the performance of the POCT, using 183 bovine blood samples, was similar to that of the existing DNA extraction method: 92·5% (135/146) (real-time PCR) and 93·7% (133/142) (LAMP) diagnostic sensitivities, and 100% diagnostic specificities. The developed POCT provides a powerful tool to facilitate on-site diagnosis in a field setting.


Subject(s)
DNA/genetics , Diagnostic Tests, Routine/methods , Enzootic Bovine Leukosis/diagnosis , Nucleic Acid Amplification Techniques/methods , Real-Time Polymerase Chain Reaction/methods , Animals , Cattle , DNA/blood , Enzootic Bovine Leukosis/blood , Enzootic Bovine Leukosis/genetics , Nucleic Acid Amplification Techniques/veterinary , Point-of-Care Testing , Real-Time Polymerase Chain Reaction/veterinary , Sensitivity and Specificity
18.
PLoS One ; 15(6): e0234939, 2020.
Article in English | MEDLINE | ID: mdl-32579585

ABSTRACT

Bovine leukemia virus (BLV) is a δ-retrovirus responsible for Enzootic Bovine Leukosis (EBL), a lymphoproliferative disease that affects cattle. The virus causes immune system deregulation, favoring the development of secondary infections. In that context, mastitis incidence is believed to be increased in BLV infected cattle. The aim of this study was to analyze the transcriptome profile of a BLV infected mammary epithelial cell line (MAC-T). Our results show that BLV infected MAC-T cells have an altered expression of IFN I signal pathway and genes involved in defense response to virus, as well as a collagen catabolic process and some protooncogenes and tumor suppressor genes. Our results provide evidence to better understand the effect of BLV on bovine mammary epithelial cell's immune response.


Subject(s)
Enzootic Bovine Leukosis/genetics , Epithelial Cells/metabolism , Epithelial Cells/virology , Leukemia Virus, Bovine/physiology , Mammary Glands, Animal/pathology , RNA-Seq , Transcriptome/genetics , Animals , Cattle , Cell Line , Cluster Analysis , Female , Gene Expression Regulation , Genome , Principal Component Analysis
19.
Viruses ; 12(6)2020 06 16.
Article in English | MEDLINE | ID: mdl-32560231

ABSTRACT

Bovine leukemia virus (BLV) is the causative agent of enzootic bovine leukosis, which is the most common neoplastic disease of cattle and is closely related to human T-cell leukemia viruses. We investigated the role of a new host protein, PRMT5, in BLV infection. We found that PRMT5 is overexpressed only in BLV-infected cattle with a high proviral load, but not in those with a low proviral load. Furthermore, this upregulation continued to the lymphoma stage. PRMT5 expression was upregulated in response to experimental BLV infection; moreover, PRMT5 upregulation began in an early stage of BLV infection rather than after a long period of proviral latency. Second, siRNA-mediated PRMT5 knockdown enhanced BLV gene expression at the transcript and protein levels. Additionally, a selective small-molecule inhibitor of PRMT5 (CMP5) enhanced BLV gene expression. Interestingly, CMP5 treatment, but not siRNA knockdown, altered the gp51 glycosylation pattern and increased the molecular weight of gp51, thereby decreasing BLV-induced syncytium formation. This was supported by the observation that CMP5 treatment enhanced the formation of the complex type of N-glycan more than the high mannose type. In conclusion, PRMT5 overexpression is related to the development of BLV infection with a high proviral load and lymphoma stage and PRMT5 inhibition enhances BLV gene expression. This is the first study to investigate the role of PRMT5 in BLV infection in vivo and in vitro and to reveal a novel function for a small-molecule compound in BLV-gp51 glycosylation processing.


Subject(s)
Enzootic Bovine Leukosis/enzymology , Enzootic Bovine Leukosis/virology , Giant Cells/virology , Leukemia Virus, Bovine/genetics , Protein-Arginine N-Methyltransferases/metabolism , Animals , Cattle , Enzootic Bovine Leukosis/genetics , Gene Expression Regulation, Viral , Giant Cells/enzymology , Glycosylation , Host-Pathogen Interactions , Protein-Arginine N-Methyltransferases/genetics , Viral Proteins/genetics , Viral Proteins/metabolism
20.
Vet Res ; 51(1): 4, 2020 Jan 13.
Article in English | MEDLINE | ID: mdl-31931875

ABSTRACT

Cattle maintaining a low proviral load (LPL) status after bovine leukaemia virus (BLV) infection have been recognized as BLV controllers and non-transmitters to uninfected cattle in experimental and natural conditions. LPL has been associated with host genetics, mainly with the BoLA class II DRB3 gene. The aim of this work was to study the kinetics of BLV and the host response in Holstein calves carrying different BoLA-DRB3 alleles. Twenty BLV-free calves were inoculated with infected lymphocytes. Two calves were maintained uninfected as controls. Proviral load, total leukocyte and lymphocyte counts, anti-BLVgp51 titres and BLVp24 expression levels were determined in blood samples at various times post-inoculation. The viral load peaked at 30 days post-inoculation (dpi) in all animals. The viral load decreased steadily from seroconversion (38 dpi) to the end of the study (178 dpi) in calves carrying a resistance-associated allele (*0902), while it was maintained at elevated levels in calves with *1501 or neutral alleles after seroconversion. Leukocyte and lymphocyte counts and BLVp24 expression did not significantly differ between genetic groups. Animals with < 20 proviral copies/30 ng of DNA at 178 dpi or < 200 proviral copies at 88 dpi were classified as LPL, while calves with levels above these limits were considered to have high proviral load (HPL) profiles. All six calves with the *1501 allele progressed to HPL, while LPL was attained by 6/7 (86%) and 2/6 (33%) of the calves with the *0902 and neutral alleles, respectively. One calf with both *0902 and *1501 developed LPL. This is the first report of experimental induction of the LPL profile in cattle.


Subject(s)
Disease Resistance , Disease Susceptibility/veterinary , Enzootic Bovine Leukosis/physiopathology , Histocompatibility Antigens Class II/genetics , Leukemia Virus, Bovine/physiology , Viral Load , Alleles , Animals , Cattle , Enzootic Bovine Leukosis/genetics , Enzootic Bovine Leukosis/virology , Genetic Predisposition to Disease , Histocompatibility Antigens Class II/immunology
SELECTION OF CITATIONS
SEARCH DETAIL