Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 368
Filter
1.
Chem Biol Drug Des ; 103(5): e14539, 2024 May.
Article in English | MEDLINE | ID: mdl-38760181

ABSTRACT

Tyrosinase is a copper-containing enzyme involved in the biosynthesis of melanin pigment. While the excess production of melanin causes hyperpigmentation of human skin, hypopigmentation results in medical conditions like vitiligo. Tyrosinase inhibitors could be used as efficient skin whitening agents and tyrosinase agonists could be used for enhanced melanin synthesis and skin protection from UV exposure. Among a wide range of tyrosinase-regulating compounds, natural and synthetic derivatives of furochromenones, such as 8-methoxypsoralen (8-MOP), are known to both activate and inhibit tyrosinase. We recently reported a synthetic approach to generate a variety of dihydrofuro[3,2-c]chromenones and furo[3,2-c]chromenones in a metal-free condition. In the present study, we investigated these compounds for their potential as antagonists or agonists of tyrosinase. Using fungal tyrosinase-based in vitro biochemical assay, we obtained one compound (3k) which could inhibit tyrosinase activity, and the other compound (4f) that stimulated tyrosinase activity. The kinetic studies revealed that compound 3k caused 'mixed' type tyrosinase inhibition and 4f stimulated the catalytic efficiency. Studying the mechanisms of these compounds may provide a basis for the development of new effective tyrosinase inhibitors or activators.


Subject(s)
Enzyme Inhibitors , Monophenol Monooxygenase , Monophenol Monooxygenase/antagonists & inhibitors , Monophenol Monooxygenase/metabolism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Kinetics , Humans , Methoxsalen/pharmacology , Methoxsalen/chemistry , Enzyme Activators/chemistry , Enzyme Activators/pharmacology
2.
Chem Biol Drug Des ; 99(2): 247-263, 2022 02.
Article in English | MEDLINE | ID: mdl-34714587

ABSTRACT

Glucokinase is a key enzyme which converts glucose into glucose-6-phosphate in the liver and pancreatic cells of the human. In the liver, glucokinase promotes the synthesis of glycogen, and in the pancreas, it helps in glucose-sensitive insulin release. It serves as a "glucose sensor" and thereby plays an important role in the regulation of glucose homeostasis. Due to this activity, glucokinase is considered as an attractive drug target for type 2 diabetes. It created a lot of interest among the researchers, and several small molecules were discovered. The research work was initiated in 1990. However, the hypoglycemic effect, increased liver burden, and loss of efficacy over time were faced during clinical development. Dorzagliatin, a novel glucokinase activator that acts on both the liver and pancreas, is in the late-stage clinical development. TTP399, a promising hepatoselective GK activator, showed a clinically significant and sustained reduction in glycated hemoglobin with a low risk of adverse effects. The successful findings generated immense interest to continue further research in finding small molecule GK activators for the treatment of type 2 diabetes. The article covers different series of GK activators reported over the past decade and the structural insights into the GK-GK activator binding which, we believe will stimulate the discovery of novel GK activators to treat type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Enzyme Activators/pharmacology , Glucokinase/drug effects , Hypoglycemic Agents/pharmacology , Animals , Drug Discovery , Enzyme Activators/chemistry , Enzyme Activators/therapeutic use , Humans , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/therapeutic use
3.
Molecules ; 26(23)2021 Nov 28.
Article in English | MEDLINE | ID: mdl-34885792

ABSTRACT

Glucokinase activators are considered as new therapeutic arsenals that bind to the allosteric activator sites of glucokinase enzymes, thereby maximizing its catalytic rate and increasing its affinity to glucose. This study was designed to identify potent glucokinase activators from prenylated flavonoids isolated from medicinal plants using molecular docking, molecular dynamics simulation, density functional theory, and ADMET analysis. Virtual screening was carried out on glucokinase enzymes using 221 naturally occurring prenylated flavonoids, followed by molecular dynamics simulation (100 ns), density functional theory (B3LYP model), and ADMET (admeSar 2 online server) studies. The result obtained from the virtual screening with the glucokinase revealed arcommunol B (-10.1 kcal/mol), kuwanon S (-9.6 kcal/mol), manuifolin H (-9.5 kcal/mol), and kuwanon F (-9.4 kcal/mol) as the top-ranked molecules. Additionally, the molecular dynamics simulation and MM/GBSA calculations showed that the hit molecules were stable at the active site of the glucokinase enzyme. Furthermore, the DFT and ADMET studies revealed the hit molecules as potential glucokinase activators and drug-like candidates. Our findings suggested further evaluation of the top-ranked prenylated flavonoids for their in vitro and in vivo glucokinase activating potentials.


Subject(s)
Enzyme Activators/pharmacology , Flavonoids/pharmacology , Glucokinase/metabolism , Catalytic Domain/drug effects , Enzyme Activators/chemistry , Flavonoids/chemistry , Glucokinase/chemistry , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation
4.
Molecules ; 26(23)2021 Dec 02.
Article in English | MEDLINE | ID: mdl-34885917

ABSTRACT

After being rather neglected as a research field in the past, carbonic anhydrase activators (CAAs) were undoubtedly demonstrated to be useful in diverse pharmaceutical and industrial applications. They also improved the knowledge of the requirements to selectively interact with a CA isoform over the others and confirmed the catalytic mechanism of this class of compounds. Amino acid and amine derivatives were the most explored in in vitro, in vivo and crystallographic studies as CAAs. Most of them were able to activate human or non-human CA isoforms in the nanomolar range, being proposed as therapeutic and industrial tools. Some isoforms are better activated by amino acids than amines derivatives and the stereochemistry may exert a role. Finally, non-human CAs have been very recently tested for activation studies, paving the way to innovative industrial and environmental applications.


Subject(s)
Carbonic Anhydrases/metabolism , Enzyme Activation/drug effects , Enzyme Activators/chemistry , Enzyme Activators/pharmacology , Amines/chemistry , Amines/pharmacology , Amino Acids/chemistry , Amino Acids/pharmacology , Animals , Humans , Models, Molecular , Protein Isoforms/agonists , Protein Isoforms/metabolism
5.
Molecules ; 26(24)2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34946739

ABSTRACT

Alzheimer's disease (AD) is a devastating neurodegenerative disorder, one of the main characteristics of which is the abnormal accumulation of amyloid peptide (Aß) in the brain. Whereas ß-secretase supports Aß formation along the amyloidogenic processing of the ß-amyloid precursor protein (ßAPP), α-secretase counterbalances this pathway by both preventing Aß production and triggering the release of the neuroprotective sAPPα metabolite. Therefore, stimulating α-secretase and/or inhibiting ß-secretase can be considered a promising anti-AD therapeutic track. In this context, we tested andrographolide, a labdane diterpene derived from the plant Andrographis paniculata, as well as 24 synthesized derivatives, for their ability to induce sAPPα production in cultured SH-SY5Y human neuroblastoma cells. Following several rounds of screening, we identified three hits that were subjected to full characterization. Interestingly, andrographolide (8,17-olefinic) and its close derivative 14α-(5',7'-dichloro-8'-quinolyloxy)-3,19-acetonylidene (compound 9) behave as moderate α-secretase activators, while 14α-(2'-methyl-5',7'-dichloro-8'-quinolyloxy)-8,9-olefinic compounds 31 (3,19-acetonylidene) and 37 (3,19-diol), whose two structures are quite similar although distant from that of andrographolide and 9, stand as ß-secretase inhibitors. Importantly, these results were confirmed in human HEK293 cells and these compounds do not trigger toxicity in either cell line. Altogether, these findings may represent an encouraging starting point for the future development of andrographolide-based compounds aimed at both activating α-secretase and inhibiting ß-secretase that could prove useful in our quest for the therapeutic treatment of AD.


Subject(s)
Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Protein Precursor/metabolism , Diterpenes , Enzyme Activators , Diterpenes/chemical synthesis , Diterpenes/chemistry , Diterpenes/pharmacology , Enzyme Activators/chemical synthesis , Enzyme Activators/chemistry , Enzyme Activators/pharmacology , HEK293 Cells , Humans
6.
Sci Rep ; 11(1): 23549, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34876614

ABSTRACT

Mitochondrial oxidative phosphorylation (OXPHOS) has become an attractive target in anti-cancer studies in recent years. In this study, we found that a small molecule phenylbutenoid dimer NMac1 (Nm23-H1 activator 1), (±)-trans-3-(3,4-dimethoxyphenyl)-4-[(E)-3,4-dimethoxystyryl]cyclohex-1-ene, a previously identified anti-metastatic agent, has novel anti-proliferative effect only under glucose starvation in metastatic breast cancer cells. NMac1 causes significant activation of AMPK by decreasing ATP synthesis, lowers mitochondrial membrane potential (MMP, ΔΨm), and inhibits oxygen consumption rate (OCR) under glucose starvation. These effects of NMac1 are provoked by a consequence of OXPHOS complex I inhibition. Through the structure-activity relationship (SAR) study of NMac1 derivatives, NMac24 was identified as the most effective compound in anti-proliferation. NMac1 and NMac24 effectively suppress cancer cell proliferation in 3D-spheroid in vivo-like models only under glucose starvation. These results suggest that NMac1 and NMac24 have the potential as anti-cancer agents having cytotoxic effects selectively in glucose restricted cells.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Cyclohexenes/pharmacology , NM23 Nucleoside Diphosphate Kinases/drug effects , Styrenes/pharmacology , Adenosine Triphosphate/biosynthesis , Antineoplastic Agents/chemistry , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Cyclohexenes/chemistry , Electron Transport Complex I/antagonists & inhibitors , Enzyme Activators/chemistry , Enzyme Activators/pharmacology , Female , Gene Regulatory Networks/drug effects , Glucose/metabolism , Humans , MCF-7 Cells , Membrane Potential, Mitochondrial/drug effects , Metabolome/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , NM23 Nucleoside Diphosphate Kinases/metabolism , Oxidative Phosphorylation/drug effects , Oxygen Consumption/drug effects , Signal Transduction/drug effects , Structure-Activity Relationship , Styrenes/chemistry
7.
J Med Chem ; 64(23): 17304-17325, 2021 12 09.
Article in English | MEDLINE | ID: mdl-34847663

ABSTRACT

As a vital kinase in the glycolysis system, PKM2 is extensively expressed in colorectal cancer (CRC) to support the energy and biosynthetic needs. In this study, we designed a series of parthenolide (PTL) derivatives through a stepwise structure optimization, and an excellent derivate 29e showed good activity on PKM2 (AC50 = 86.29 nM) and displayed significant antiproliferative activity against HT29 (IC50 = 0.66 µM) and SW480 (IC50 = 0.22 µM) cells. 29e decreased the expression of total PKM2, prevented nucleus translocation of PKM2 dimer, and inhibited PKM2/STAT3 signaling pathway. 29e remarkably increased OCR and decreased the extracellular acidification rate (ECAR). The antiproliferative effect of 29e depended on PKM2, and the Cys424 of PKM2 was the key binding site. Furthermore, 29e significantly suppressed tumor growth in the HT29 xenograft model without obvious toxicity. These outcomes demonstrate that 29e is a promising drug candidate for the treatment of CRC.


Subject(s)
Colorectal Neoplasms/pathology , Enzyme Activators/pharmacology , Protein Kinase C/drug effects , Sesquiterpenes/pharmacology , Animals , Binding Sites , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Colorectal Neoplasms/enzymology , Dimerization , Enzyme Activators/chemistry , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , STAT3 Transcription Factor/metabolism , Sesquiterpenes/chemistry , Signal Transduction/drug effects , Structure-Activity Relationship , Xenograft Model Antitumor Assays
8.
Int J Mol Sci ; 22(21)2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34769159

ABSTRACT

Mori Ramulus, the dried twigs of Morus alba L., has been attracting attention for its potent antioxidant activity, but its role in muscle cells has not yet been elucidated. The purpose of this study was to evaluate the protective effect of aqueous extracts of Mori Ramulus (AEMR) against oxidative stress caused by hydrogen peroxide (H2O2) in C2C12 mouse myoblasts, and in dexamethasone (DEX)-induced muscle atrophied models. Our results showed that AEMR rescued H2O2-induced cell viability loss and the collapse of the mitochondria membrane potential. AEMR was also able to activate AMP-activated protein kinase (AMPK) in H2O2-treated C2C12 cells, whereas compound C, a pharmacological inhibitor of AMPK, blocked the protective effects of AEMR. In addition, H2O2-triggered DNA damage was markedly attenuated in the presence of AEMR, which was associated with the inhibition of reactive oxygen species (ROS) generation. Further studies showed that AEMR inhibited cytochrome c release from mitochondria into the cytoplasm, and Bcl-2 suppression and Bax activation induced by H2O2. Furthermore, AEMR diminished H2O2-induced activation of caspase-3, which was associated with the ability of AEMR to block the degradation of poly (ADP-ribose) polymerase, thereby attenuating H2O2-induced apoptosis. However, compound C greatly abolished the protective effect of AEMR against H2O2-induced C2C12 cell apoptosis, including the restoration of mitochondrial dysfunction. Taken together, these results demonstrate that AEMR could protect C2C12 myoblasts from oxidative damage by maintaining mitochondrial function while eliminating ROS, at least with activation of the AMPK signaling pathway. In addition, oral administration of AEMR alleviated gastrocnemius and soleus muscle loss in DEX-induced muscle atrophied rats. Our findings support that AEMR might be a promising therapeutic candidate for treating oxidative stress-mediated myoblast injury and muscle atrophy.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Antioxidants/pharmacology , Enzyme Activators/pharmacology , Myoblasts/drug effects , Oxidative Stress/drug effects , Animals , Antioxidants/chemistry , Cell Line , Enzyme Activators/chemistry , Hydrogen Peroxide/metabolism , Mice , Morus/chemistry , Myoblasts/metabolism
9.
Nat Commun ; 12(1): 5492, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34535643

ABSTRACT

Soluble guanylate cyclase (sGC) is the receptor for nitric oxide (NO) in human. It is an important validated drug target for cardiovascular diseases. sGC can be pharmacologically activated by stimulators and activators. However, the detailed structural mechanisms, through which sGC is recognized and positively modulated by these drugs at high spacial resolution, are poorly understood. Here, we present cryo-electron microscopy structures of human sGC in complex with NO and sGC stimulators, YC-1 and riociguat, and also in complex with the activator cinaciguat. These structures uncover the molecular details of how stimulators interact with residues from both ß H-NOX and CC domains, to stabilize sGC in the extended active conformation. In contrast, cinaciguat occupies the haem pocket in the ß H-NOX domain and sGC shows both inactive and active conformations. These structures suggest a converged mechanism of sGC activation by pharmacological compounds.


Subject(s)
Enzyme Activators/pharmacology , Soluble Guanylyl Cyclase/metabolism , Animals , Benzoates/chemistry , Benzoates/pharmacology , Binding Sites , Cell Line , Cryoelectron Microscopy , Enzyme Activation/drug effects , Enzyme Activators/chemistry , Humans , Indazoles/chemistry , Indazoles/pharmacology , Models, Molecular , Nitric Oxide/pharmacology , Protein Multimerization , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyrimidines/chemistry , Pyrimidines/pharmacology , Soluble Guanylyl Cyclase/chemistry , Soluble Guanylyl Cyclase/ultrastructure
10.
J Enzyme Inhib Med Chem ; 36(1): 1783-1797, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34340630

ABSTRACT

Carbonic Anhydrase Activators (CAAs) could represent a novel approach for the treatment of Alzheimer's disease, ageing, and other conditions that require remedial achievement of spatial learning and memory therapy. Within a research project aimed at developing novel CAAs selective for certain isoforms, three series of indole-based derivatives were investigated. Enzyme activation assay on human CA I, II, VA, and VII isoforms revealed several effective micromolar activators, with promising selectivity profiles towards the brain-associated cytosolic isoform hCA VII. Molecular modelling studies suggested a theoretical model of the complex between hCA VII and the new activators and provide a possible explanation for their modulating as well as selectivity properties. Preliminary biological evaluations demonstrated that one of the most potent CAA 7 is not cytotoxic and is able to increase the release of the brain-derived neurotrophic factor (BDNF) from human microglial cells, highlighting its possible application in the treatment of CNS-related disorders.


Subject(s)
Carbonic Anhydrases/drug effects , Enzyme Activators/pharmacology , Indoles/pharmacology , Isoenzymes/drug effects , Brain-Derived Neurotrophic Factor/metabolism , Carbon-13 Magnetic Resonance Spectroscopy , Carbonic Anhydrases/metabolism , Cell Survival/drug effects , Enzyme Activation , Enzyme Activators/chemistry , Enzyme-Linked Immunosorbent Assay/methods , Humans , Indoles/chemistry , Isoenzymes/metabolism , Microglia/cytology , Microglia/drug effects , Models, Molecular , Proton Magnetic Resonance Spectroscopy , Substrate Specificity
11.
Arch Biochem Biophys ; 711: 109017, 2021 10 30.
Article in English | MEDLINE | ID: mdl-34411580

ABSTRACT

A previous study showed that 2'-3'-O-(2,4,6-trinitrophenyl) adenosine 5'-triphosphate (TNP-ATP) was a weak allosteric activator of Rhizobium etli pyruvate carboxylase (RePC) in the absence of acetyl-CoA. On the other hand, TNP-ATP inhibited the allosteric activation of RePC by acetyl-CoA. Here, we aimed to study the role of triphosphate group of TNP-ATP on its allosteric activation of the enzyme and inhibition of acetyl-CoA-dependent activation of RePC using TNP-ATP and its derivatives, including TNP-ADP, TNP-AMP and TNP-adenosine. The pyruvate carboxylation activity was assayed to determine the effect of reducing the number of phosphate groups in TNP-ATP derivatives on allosteric activation and inhibition of acetyl-CoA activation of RePC and chicken liver pyruvate carboxylase (CLPC). Reducing the number of phosphate groups in TNP-ATP derivatives decreased the activation efficacy for both RePC and CLPC compared to TNP-ATP. The apparent binding affinity and inhibition of activation of the enzymes by acetyl-CoA were also diminished when the number of phosphate groups in the TNP-ATP derivatives was reduced. Whilst TNP-AMP activated RePC, it did not activate CLPC, but it did inhibit acetyl-CoA activation of both RePC and CLPC. Similarly, TNP-adenosine did not activate RePC; however, it did inhibit acetyl-CoA activation using a different mechanism compared to phosphorylated TNP-derivatives. These findings indicate that mechanisms of PC activation and inhibition of acetyl-CoA activation by TNP-ATP and its derivatives are different. This study provides the basis for possible drug development for treatment of metabolic diseases and cancers with aberrant expression of PC.


Subject(s)
Acetyl Coenzyme A/chemistry , Adenosine Triphosphate/analogs & derivatives , Allosteric Regulation/drug effects , Enzyme Activators/chemistry , Pyruvate Carboxylase/chemistry , Adenosine Diphosphate/analogs & derivatives , Adenosine Diphosphate/chemistry , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/chemistry , Adenosine Triphosphate/chemistry , Animals , Chickens , Enzyme Assays , Kinetics , Liver/enzymology , Molecular Structure
12.
Int J Biol Macromol ; 186: 174-180, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34252461

ABSTRACT

The influence of phenolic compounds on the enzymatic hydrolysis of cellulose was studied in depth using spectrophotometric techniques, adsorption analysis and Scanning Electron Microscopy (SEM). In this paper for the first time, both possible interactions between phenolic compounds and the enzyme or the substrate were investigated, with the use of various phenolic compounds, cellulase from T. reesei, and Avicel as cellulose source. Three classes of phenolic compounds have been identified, based on their effect on the hydrolysis of cellulose: inhibitors (quercetin, kaempferol, trans-cinnamic acid, luteolin, ellagic acid), non-inhibitors (p-coumaric acid, rutin, caffeic acid), and activators (ferulic acid, syringic acid, sinapic acid, vanillic acid). Secondly, since various structures of phenolic compounds were tested, a structure - action comprehensive correlation was possible leading to the conclusion that an -OCH3 group was necessary for the activating effect. Finally, based on the adsorption spectra and unique SEM images, a different way of adsorption (either on the enzyme or on the substrate) was noticed, depending on the activating or inhibiting action of the phenolic compound.


Subject(s)
Cellulase/antagonists & inhibitors , Cellulose/metabolism , Enzyme Activators/pharmacology , Enzyme Inhibitors/pharmacology , Phenols/pharmacology , Cellulase/metabolism , Cellulose/chemistry , Enzyme Activation , Enzyme Activators/chemistry , Enzyme Inhibitors/chemistry , Hydrolysis , Hypocreales/enzymology , Microscopy, Electron, Scanning , Molecular Structure , Phenols/chemistry , Spectrophotometry , Structure-Activity Relationship
13.
Bioorg Med Chem Lett ; 49: 128293, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34332037

ABSTRACT

PLD3 and PLD4 have recently been revealed to be endosomal exonucleases that regulate the innate immune response by digesting the ligands of nucleic acid sensors. These enzymes can suppress RNA and DNA innate immune sensors like toll-like receptor 9, and PLD4-deficent mice exhibit inflammatory disease. Targeting these immunoregulatory enzymes presents an opportunity to indirectly regulate innate immune nucleic acid sensors that could yield immunotherapies, adjuvants, and nucleic acid drug stabilizers. To aid in delineating the therapeutic potential of these targets, we have developed a high-throughput fluorescence enzymatic assay to identify modulators of PLD3 and PLD4. Screening of a diversity library (N = 17952) yielded preferential inhibitors of PLD3 and PLD4 in addition to a PLD3 selective activator. The modulation models of these compounds were delineated by kinetic analysis. This work presents an inexpensive and simple method to identify modulators of these immunoregulatory exonucleases.


Subject(s)
Enzyme Activators/chemistry , Enzyme Inhibitors/chemistry , Exodeoxyribonucleases/antagonists & inhibitors , Phospholipase D/antagonists & inhibitors , Enzyme Assays , Fluorescent Dyes/chemistry , High-Throughput Screening Assays , Humans , Nitrophenols/chemistry , Thymine Nucleotides/chemistry , Umbelliferones/chemistry
14.
Int J Mol Sci ; 22(10)2021 May 12.
Article in English | MEDLINE | ID: mdl-34065957

ABSTRACT

The presented research concerns the triple activity of trans-cinnamic (tCA), ferulic (FA) and syringic acids (SA). They act as thyroid peroxidase (TPO) activators, lipoxygenase (LOX) inhibitors and show antiradical activity. All compounds showed a dose-dependent TPO activatory effect, thus the AC50 value (the concentration resulting in 50% activation) was determined. The tested compounds can be ranked as follows: tCA > FA > SA with AC50 = 0.10, 0.39, 0.69 mM, respectively. Strong synergism was found between FA and SA. The activatory effects of all tested compounds may result from interaction with the TPO allosteric site. It was proposed that conformational change resulting from activator binding to TPO allosteric pocket results from the flexibility of a nearby loop formed by residues Val352-Tyr363. All compounds act as uncompetitive LOX inhibitors. The most effective were tCA and SA, whereas the weakest was FA (IC50 = 0.009 mM and IC50 0.027 mM, respectively). In all cases, an interaction between the inhibitors carboxylic groups and side-chain atoms of Arg102 and Arg139 in an allosteric pocket of LOX was suggested. FA/tCA and FA/SA acted synergistically, whereas tCA/SA demonstrated antagonism. The highest antiradical activity was found in the case of SA (IC50 = 0.22 mM). FA/tCA and tCA/SA acted synergistically, whereas antagonism was found for the SA/FA mixture.


Subject(s)
Autoantigens/metabolism , Enzyme Activators/pharmacology , Iodide Peroxidase/metabolism , Iron-Binding Proteins/metabolism , Lipoxygenase Inhibitors/pharmacology , Phytochemicals/pharmacology , Protein-Lysine 6-Oxidase/metabolism , Autoantigens/chemistry , Cinnamates/chemistry , Cinnamates/pharmacology , Coumaric Acids/chemistry , Coumaric Acids/pharmacology , Dose-Response Relationship, Drug , Enzyme Activators/chemistry , Gallic Acid/analogs & derivatives , Gallic Acid/chemistry , Gallic Acid/pharmacology , Humans , Inhibitory Concentration 50 , Iodide Peroxidase/chemistry , Iron-Binding Proteins/chemistry , Lipoxygenase Inhibitors/chemistry , Models, Molecular , Phytochemicals/chemistry , Protein-Lysine 6-Oxidase/chemistry , Structure-Activity Relationship
15.
Mech Ageing Dev ; 197: 111496, 2021 07.
Article in English | MEDLINE | ID: mdl-33957218

ABSTRACT

We have reported that pseudoginsenoside-F11 (PF11) can significantly improve the cognitive impairments in several Alzheimer's disease (AD) models, but the mechanism has not been fully elucidated. In the present study, the effects of PF11 on AD, in particular the underlying mechanisms related with protein phosphatase 2A (PP2A), were investigated in a rat model induced by okadaic acid (OA), a selective inhibitor of PP2A. The results showed that PF11 treatment dose-dependently improved the learning and memory impairments in OA-induced AD rats. PF11 could significantly inhibit OA-induced tau hyperphosphorylation, suppress the activation of glial cells, alleviate neuroinflammation, thus rescue the neuronal and synaptic damage. Further investigation revealed that PF11 could regulate the protein expression of methyl modifying enzymes (leucine carboxyl methyltransferase-1 and protein phosphatase methylesterase-1) in the brain, thus increase methyl-PP2A protein expression and indirectly increase the activity of PP2A. Molecular docking analysis, structural alignment and in vitro results showed that PF11 was similar in the shape and electrostatic field feature to a known activator of PP2A, and could directly bind and activate PP2A. In conclusion, the present data indicate that PF11 can ameliorate OA-induced learning and memory impairment in rats via modulating PP2A.


Subject(s)
Enzyme Activators , Ginsenosides , Learning Disabilities , Memory Disorders , Molecular Docking Simulation , Okadaic Acid/toxicity , Protein Phosphatase 2 , Animals , Enzyme Activators/chemistry , Enzyme Activators/pharmacology , Ginsenosides/chemistry , Ginsenosides/pharmacology , Learning Disabilities/chemically induced , Learning Disabilities/drug therapy , Learning Disabilities/enzymology , Male , Memory Disorders/chemically induced , Memory Disorders/drug therapy , Memory Disorders/enzymology , Protein Phosphatase 2/chemistry , Protein Phosphatase 2/metabolism , Rats , Rats, Sprague-Dawley
16.
Biosci Rep ; 41(5)2021 05 28.
Article in English | MEDLINE | ID: mdl-33950219

ABSTRACT

Selective modulation of retinaldehyde dehydrogenases (RALDHs)-the main aldehyde dehydrogenase (ALDH) enzymes converting retinal into retinoic acid (RA), is very important not only in the RA signaling pathway but also for the potential regulatory effects on RALDH isozyme-specific processes and RALDH-related cancers. However, very few selective modulators for RALDHs have been identified, partly due to variable overexpression protocols of RALDHs and insensitive activity assay that needs to be addressed. In the present study, deletion of the N-terminal disordered regions is found to enable simple preparation of all RALDHs and their closest paralog ALDH2 using a single protocol. Fluorescence-based activity assay was employed for enzymatic activity investigation and screening for RALDH-specific modulators from extracts of various spices and herbs that are well-known for containing many phyto-derived anti-cancer constituents. Under the established conditions, spice and herb extracts exhibited differential regulatory effects on RALDHs/ALDH2 with several extracts showing potential selective inhibition of the activity of RALDHs. In addition, the presence of magnesium ions was shown to significantly increase the activity for the natural substrate retinal of RALDH3 but not the others, while His-tag cleavage considerably increased the activity of ALDH2 for the non-specific substrate retinal. Altogether we propose a readily reproducible workflow to find selective modulators for RALDHs and suggest potential sources of selective modulators from spices and herbs.


Subject(s)
Enzyme Assays/methods , Plant Extracts/pharmacology , Retinal Dehydrogenase/metabolism , Enzyme Activators/chemistry , Enzyme Activators/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Escherichia coli , Humans , Plant Extracts/chemistry , Recombinant Proteins/chemistry , Recombinant Proteins/drug effects , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Retinal Dehydrogenase/chemistry , Retinal Dehydrogenase/drug effects , Retinal Dehydrogenase/genetics , Sequence Homology
17.
J Tradit Chin Med ; 41(2): 284-292, 2021 04.
Article in English | MEDLINE | ID: mdl-33825409

ABSTRACT

OBJECTIVE: To investigate the efficacy of Tianma (Rhizoma Gastrodiae) and Gouteng (Ramulus Uncariae Rhynchophyllae cum Uncis) on cytochrome P450 (CYP450) enzyme activities in rats. METHODS: A cocktail strategy was followed to evaluate the influence of Tianma (Rhizoma Gastrodiae) and Gouteng (Ramulus Uncariae Rhynchophyllae cum Uncis) on the activities of CYP450 isoforms (CYP1A2, CYP3A4, CYP2E1, CYP2C19, CYP2C9, CYP2D6), which were determined by changes in the pharmacokinetic parameters of six probe drugs, theophylline, dapsone, chlorzoxazone, omeprazole, tolbutamide and dextromethorphan. Study groups included, Control group (CG), Tianma (Rhizoma Gastrodiae) group (TM), Gouteng (Ramulus Uncariae Rhynchophyllae cum Uncis) group (GT) and Tianma Gouteng (Gastrodia Uncaria) group (TMGT). RESULTS: No significant differences between Tianma (Rhizoma Gastrodiae) and control groups were found. Compared with the control group, in the Gouteng (Ramulus Uncariae Rhynchophyllae cum Uncis) group both the AUC and t1/2 of dapsone and tolbutamide were reduced, whereas the CL (clearance rate) of dapsone and tolbutamide were increased. Compared with the control group, in the Tianma Gouteng group, the AUC and t1/2 of dapsone and tolbutamide were reduced, the CL of dapsone and tolbutamide were increased, and the AUC and t1/2 of chlorzoxazone were increased and the CL of chlorzoxazone was reduced. CONCLUSION: Tianma (Rhizoma Gastrodiae) has no significant effect on the six CYP450 subtypes. The activities of CYP3A4 and CYP2C9 were increased by Gouteng (Ramulus Uncariae Rhynchophyllae cum Uncis). The activities of CYP3A4 and CYP2C9 were increased, whereas the activity of CYP32E1 was reduced by combined Tianma (Rhizoma Gastrodiae) and Gouteng (Ramulus Uncariae Rhynchophyllae cum Uncis).


Subject(s)
Cytochrome P-450 Enzyme Inhibitors/chemistry , Drugs, Chinese Herbal/chemistry , Enzyme Activators/chemistry , Orchidaceae/chemistry , Uncaria/chemistry , Animals , Cytochrome P-450 Enzyme Inhibitors/administration & dosage , Cytochrome P-450 Enzyme System/chemistry , Drugs, Chinese Herbal/administration & dosage , Enzyme Activators/administration & dosage , Isoenzymes/chemistry , Male , Rats , Rats, Wistar
18.
J Med Chem ; 64(9): 5323-5344, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33872507

ABSTRACT

Herein we describe the discovery, mode of action, and preclinical characterization of the soluble guanylate cyclase (sGC) activator runcaciguat. The sGC enzyme, via the formation of cyclic guanosine monophoshphate, is a key regulator of body and tissue homeostasis. sGC activators with their unique mode of action are activating the oxidized and heme-free and therefore NO-unresponsive form of sGC, which is formed under oxidative stress. The first generation of sGC activators like cinaciguat or ataciguat exhibited limitations and were discontinued. We overcame limitations of first-generation sGC activators and identified a new chemical class via high-throughput screening. The investigation of the structure-activity relationship allowed to improve potency and multiple solubility, permeability, metabolism, and drug-drug interactions parameters. This program resulted in the discovery of the oral sGC activator runcaciguat (compound 45, BAY 1101042). Runcaciguat is currently investigated in clinical phase 2 studies for the treatment of patients with chronic kidney disease and nonproliferative diabetic retinopathy.


Subject(s)
Drug Design , Enzyme Activators/chemistry , Soluble Guanylyl Cyclase/chemistry , Animals , Binding Sites , Crystallography, X-Ray , Cytochrome P-450 CYP3A/chemistry , Cytochrome P-450 CYP3A/metabolism , Dogs , Enzyme Activators/metabolism , Enzyme Activators/pharmacology , Enzyme Activators/therapeutic use , Half-Life , Heart Rate/drug effects , Hemodynamics/drug effects , Hypertension/drug therapy , Hypertension/pathology , Molecular Dynamics Simulation , Rats , Rats, Inbred SHR , Solubility , Soluble Guanylyl Cyclase/metabolism , Structure-Activity Relationship
19.
Arch Pharm (Weinheim) ; 354(7): e2000458, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33683726

ABSTRACT

Adenosine monophosphate-activated protein kinase (AMPK) plays a key role in maintaining whole-body homeostasis and has been regarded as a therapeutic target for the treatment of diabetic nephropathy (DN). Herein, a series of 1,2,4-oxadiazole-containing pyrazolo[3,4-b]pyridinone derivatives is reported as AMPKɑ1ß1γ1 activators. The in vitro biological assay demonstrated that compounds 12k (EC50 [AMPKα1γ1ß1] = 180 nM) and 13q (EC50 [AMPKα1γ1ß1] = 2 nM) displayed significant enzyme activation. Mechanism studies indicated that both compounds reduced the levels of reactive oxygen species in a rat kidney fibroblast cell line (NRK-49F) stimulated by transforming growth factor-ß and induced early apoptosis of NRK-49F cells at 10 µM. Molecular docking studies suggested that 13q exhibited critical hydrogen-bond interactions with the critical amino acid residues Lys29, Lys31, Asn111, and Asp88 at the binding site of the AMPK protein. These results enrich the structure pool of AMPK activators and provide novel lead compounds for the subsequent development of compounds with a promising therapeutic potential against DN.


Subject(s)
Enzyme Activators/pharmacology , Oxadiazoles/pharmacology , Pyrazoles/pharmacology , Pyridones/pharmacology , AMP-Activated Protein Kinases/drug effects , AMP-Activated Protein Kinases/metabolism , Animals , Apoptosis/drug effects , Cell Line , Drug Design , Enzyme Activation/drug effects , Enzyme Activators/chemical synthesis , Enzyme Activators/chemistry , Fibroblasts/cytology , Fibroblasts/drug effects , Humans , Kidney/cytology , Kidney/drug effects , Molecular Docking Simulation , Oxadiazoles/chemical synthesis , Oxadiazoles/chemistry , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Pyridones/chemical synthesis , Pyridones/chemistry , Rats , Reactive Oxygen Species/metabolism , Structure-Activity Relationship
20.
Int J Mol Sci ; 22(2)2021 Jan 09.
Article in English | MEDLINE | ID: mdl-33435517

ABSTRACT

GPR55 is a GPCR of the non-CB1/CB2 cannabinoid receptor family, which is activated by lysophosphatidylinositol (LPI) and stimulates the proliferation of cancer cells. Anandamide, a bioactive lipid endocannabinoid, acts as a biased agonist of GPR55 and induces cancer cell death, but is unstable and psychoactive. We hypothesized that other endocannabinoids and structurally similar compounds, which are more hydrolytically stable, could also induce cancer cell death via GPR55 activation. We chemically synthesized and tested a set of fatty acid amides and esters for cell death induction via GPR55 activation. The most active compounds appeared to be N-acyl dopamines, especially N-docosahexaenoyl dopamine (DHA-DA). Using a panel of cancer cell lines and a set of receptor and intracellular signal transduction machinery inhibitors together with cell viability, Ca2+, NO, ROS (reactive oxygen species) and gene expression measurement, we showed for the first time that for these compounds, the mechanism of cell death induction differed from that published for anandamide and included neuronal nitric oxide synthase (nNOS) overstimulation with concomitant oxidative stress induction. The combination of DHA-DA with LPI, which normally stimulates cancer proliferation and is increased in cancer setting, had an increased cytotoxicity for the cancer cells indicating a therapeutic potential.


Subject(s)
Antineoplastic Agents/pharmacology , Cannabinoid Receptor Agonists/pharmacology , Dopamine/analogs & derivatives , Enzyme Activators/pharmacology , Nitric Oxide Synthase Type I/metabolism , Receptors, Cannabinoid/metabolism , Animals , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cannabinoid Receptor Agonists/chemistry , Cell Line, Tumor , Dopamine/chemistry , Dopamine/pharmacology , Enzyme Activators/chemistry , Fatty Acids/chemistry , Fatty Acids/pharmacology , Humans , Molecular Docking Simulation , Neoplasms/drug therapy , Neoplasms/metabolism , PC12 Cells , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...