Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 684
Filter
1.
Carbohydr Polym ; 340: 122316, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38858029

ABSTRACT

Epimedium, a traditional Chinese medicine commonly used as a dietary supplement, contains polysaccharides and flavonoids as its main bioactive ingredients. In this study, a neutral homogeneous polysaccharide (EPSN-1) was isolated from Epimedium brevicornu Maxim. EPSN-1 was identified as a glucan with a backbone of →4)-α-D-Glcp-(1→, branched units comprised α-D-Glcp-(1→6)-α-D-Glcp-(1→, ß-D-Glcp-(1→6)-ß-D-Glcp-(1→ and α-D-Glcp-(1→ connected to the C6 position of backbone. The conformation of EPSN-1 in aqueous solution indicated its potential to form nanoparticles. This paper aims to investigate the carrier and pharmacodynamic activity of EPSN-1. The findings demonstrated that, on the one hand, EPSN-1, as a functional ingredient, may load Icariin (ICA) through non-covalent interactions, improving its biopharmaceutical properties such as solubility and stability, thereby improving its intestinal absorption. Additionally, as an effective ingredient, EPSN-1 could help maintain the balance of the intestinal environment by increasing the abundance of Parabacteroides, Lachnospiraceae UGG-001, Anaeroplasma, and Eubacterium xylanophilum group, while decreasing the abundance of Allobaculum, Blautia, and Adlercreutzia. Overall, this dual action of EPSN-1 sheds light on the potential applications of natural polysaccharides, highlighting their dual role as carriers and contributors to biological activity.


Subject(s)
Epimedium , Flavonoids , Glucans , Prostatic Hyperplasia , Epimedium/chemistry , Male , Glucans/chemistry , Glucans/pharmacology , Glucans/isolation & purification , Prostatic Hyperplasia/drug therapy , Flavonoids/chemistry , Flavonoids/pharmacology , Flavonoids/isolation & purification , Animals , Drug Carriers/chemistry , Humans , Gastrointestinal Microbiome/drug effects
2.
BMC Plant Biol ; 24(1): 480, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816792

ABSTRACT

Phosphorus, a crucial macronutrient essential for plant growth and development. Due to widespread phosphorus deficiency in soils, phosphorus deficiency stress has become one of the major abiotic stresses that plants encounter. Despite the evolution of adaptive mechanisms in plants to address phosphorus deficiency, the specific strategies employed by species such as Epimedium pubescens remain elusive. Therefore, this study observed the changes in the growth, physiological reponses, and active components accumulation in E. pubescensunder phosphorus deficiency treatment, and integrated transcriptome and miRNA analysis, so as to offer comprehensive insights into the adaptive mechanisms employed by E. pubescens in response to phosphorus deficiency across various stages of phosphorus treatment. Remarkably, our findings indicate that phosphorus deficiency induces root growth stimulation in E. pubescens, while concurrently inhibiting the growth of leaves, which are of medicinal value. Surprisingly, this stressful condition results in an augmented accumulation of active components in the leaves. During the early stages (30 days), leaves respond by upregulating genes associated with carbon metabolism, flavonoid biosynthesis, and hormone signaling. This adaptive response facilitates energy production, ROS scavenging, and morphological adjustments to cope with short-term phosphorus deficiency and sustain its growth. As time progresses (90 days), the expression of genes related to phosphorus cycling and recycling in leaves is upregulated, and transcriptional and post-transcriptional regulation (miRNA regulation and protein modification) is enhanced. Simultaneously, plant growth is further suppressed, and it gradually begins to discard and decompose leaves to resist the challenges of long-term phosphorus deficiency stress and sustain survival. In conclusion, our study deeply and comprehensively reveals adaptive strategies utilized by E. pubescens in response to phosphorus deficiency, demonstrating its resilience and thriving potential under stressful conditions. Furthermore, it provides valuable information on potential target genes for the cultivation of E. pubescens genotypes tolerant to low phosphorus.


Subject(s)
Epimedium , MicroRNAs , Phosphorus , Transcriptome , Phosphorus/deficiency , Phosphorus/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Epimedium/genetics , Epimedium/metabolism , Epimedium/physiology , Adaptation, Physiological/genetics , Gene Expression Regulation, Plant , Gene Expression Profiling , Plant Leaves/genetics , Plant Leaves/metabolism , Stress, Physiological/genetics , RNA, Plant/genetics , RNA, Plant/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Plant Roots/growth & development
3.
Zhongguo Zhong Yao Za Zhi ; 49(8): 2262-2272, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38812240

ABSTRACT

To investigate the effect of epimedium total flavone capsules on post-stroke cognitive impairment(PSCI) in rats. The transient middle cerebral artery occlusion(tMCAO) model was constructed on selected rats, and rats with impaired neurological function were randomly divided into the model group, low, middle, and high dose groups of epimedium total flavone capsules, and nimodipine tablet group. The cognitive function of rats was measured after administration. Pathological changes in brain tissue were observed after hematoxylin-eosin staining(HE). Neuronal nuclei(NeuN) and glial fibrillary acidic protein(GFAP) distribution in brain tissue were tested by immunofluorescent staining. The level of amyloid beta 1-42(Aß_(1-42)), neuron specific enolase(NSE), acetylcholine(ACH), dopamine(DA), 5-hydroxytryptamine(5-HT), norepinephrine(NE), interleukin-1ß(IL-1ß), tumor necrosis factor-α(TNF-α), and hypersensitive C-reactive protein(hs-CRP) in rat serum was tested. Moreover, Western blot was utilized to test the expression of nuclear factor-kappaB(NF-κB), p-NF-κB, alpha inhibitor of NF-κB(IκBα) protein, and p-IκBα protein in the hippocampus. The experimental results showed that epimedium total flavone capsules can improve the cognitive function of model rats, and the mechanism may be related to the regulation of the expression of p-IκBα and p-NF-κB proteins, so as to inhibit inflammatory response induced by ischemia-reperfusion.


Subject(s)
Capsules , Cognitive Dysfunction , Drugs, Chinese Herbal , Epimedium , Flavones , Rats, Sprague-Dawley , Stroke , Animals , Rats , Epimedium/chemistry , Male , Flavones/administration & dosage , Flavones/pharmacology , Flavones/chemistry , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/pharmacology , Stroke/drug therapy , Stroke/complications , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Humans , Amyloid beta-Peptides/metabolism , NF-kappa B/metabolism , NF-kappa B/genetics , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Cognition/drug effects
4.
Fitoterapia ; 176: 106006, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38744386

ABSTRACT

Yinyanghuo, a famous herb, includes the folium of Epimedium brevicornu Maxim. and Epimedium sagittatum Maxim. It is believed that their processed products, the prepared slices of the folium of Epimedium brevicornu Maxim. (PFEB) and Epimedium sagittatum Maxim. (PFES) have greater efficacy in tonifying kidney Yang to treat kidney-Yang deficiency syndrome (KDS). However, there are few studies comparing the pharmacological effects of PFEB and PFES, and the underlying mechanisms. This study compared their effects on improving hypothalamic-pituitary-adrenal (HPA) axis, immune system and sexual characteristic, as well as repairing liver injury complications in the KDS model mice. Additionally, the mechanisms of the effects relevance to their main components were explored. It was found that PFEB was more effective than PFES in increasing cAMP/cGMP ratio, SOD activity, CRH and ACTH levels, eNOS and testosterone levels, splenic lymphocytes proliferation, while in decreasing MDA content, atrophy of spleen and thymus, splenic lymphocytes apoptosis, and PDE5 level. PFES showed stronger protection than PFEB in decreasing triglyceride and hepatic lipid. The contents of baohuoside I and epimedin A, B were much higher in PFEB, while Epimedin C, Icariin, 2-O″-rhamnosylicaridide II were higher in PFES. Consequently, PFEB exhibits superior efficacy over PFES in tonifying the kidney-Yang by improving the neuroendocrine-immune network, including HPA axis, immune systems, and corpus cavernosum. However, PFES has better recovery effect on mild hepatic lipid caused by KDS. The efficacy difference between PFEB and PFES in kidney-Yang and liver may be attributed to the content variations of baohuoside I.


Subject(s)
Epimedium , Yang Deficiency , Animals , Epimedium/chemistry , Mice , Yang Deficiency/drug therapy , Male , Hypothalamo-Hypophyseal System/drug effects , Pituitary-Adrenal System/drug effects , Kidney/drug effects , Spleen/drug effects , Drugs, Chinese Herbal/pharmacology , Liver/drug effects , Kidney Diseases/drug therapy
5.
Genes (Basel) ; 15(5)2024 04 23.
Article in English | MEDLINE | ID: mdl-38790157

ABSTRACT

Epimedium koreanum is a traditional Chinese tonic herb. Its main medicinal components are secondary metabolites such as flavonoids and flavonol glycosides, but the biosynthetic mechanism is still unclear. Moisture conditions are a key environmental factor affecting E. koreanum medicinal components during harvesting. Different stages of E. koreanum under natural conditions after rainfall were selected to study changes in physiological properties, herb quality, and transcriptome. Malondialdehyde (MDA) content increased significantly in the D3 stage after rainfall, and protective enzyme levels also rose. Additionally, the flavonol glycoside content was relatively high. We sequenced the transcriptomes of D1, D3, and D9 (R) and identified differentially expressed genes (DEGs) related to flavonoid synthesis. This analysis allowed us to predict the roadmap and key genes involved in flavonoid biosynthesis for E. koreanum. These results suggest that the E. koreanum quality can be enhanced by natural drought conditions in the soil after precipitation during harvest. The harvesting period of E. koreanum is optimal when soil moisture naturally dries to a relative water content of 26% after precipitation. These conditions help E. koreanum tolerate a certain level of water scarcity, resulting in increased expression of flavonoid-related genes and ultimately enhancing the quality of the herb.


Subject(s)
Epimedium , Flavonoids , Gene Expression Regulation, Plant , Soil , Transcriptome , Epimedium/genetics , Epimedium/metabolism , Flavonoids/biosynthesis , Flavonoids/metabolism , Soil/chemistry , Gene Expression Profiling/methods , Plant Proteins/genetics , Plant Proteins/metabolism , Malondialdehyde/metabolism , Water/metabolism
6.
Chin J Nat Med ; 22(4): 293-306, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38658093

ABSTRACT

Icariin, a flavonoid glycoside, is extracted from Epimedium. This study aimed to investigate the vascular protective effects of icariin in type 1 diabetic rats by inhibiting high-mobility group box 1 (HMGB1)-related inflammation and exploring its potential mechanisms. The impact of icariin on vascular dysfunction was assessed in streptozotocin (STZ)-induced diabetic rats through vascular reactivity studies. Western blotting and immunofluorescence assays were performed to measure the expressions of target proteins. The release of HMGB1 and pro-inflammation cytokines were measured by enzyme-linked immunosorbent assay (ELISA). The results revealed that icariin administration enhanced acetylcholine-induced vasodilation in the aortas of diabetic rats. It also notably reduced the release of pro-inflammatory cytokines, including interleukin-8 (IL-8), IL-6, IL-1ß, and tumor necrosis factor-alpha (TNF-α) in diabetic rats and high glucose (HG)-induced human umbilical vein endothelial cells (HUVECs). The results also unveiled that the pro-inflammatory cytokines in the culture medium of HUVECs could be increased by rHMGB1. The increased release of HMGB1 and upregulated expressions of HMGB1-related inflammatory factors, including advanced glycation end products (RAGE), Toll-like receptor 4 (TLR4), and phosphorylated p65 (p-p65) in diabetic rats and HG-induced HUVECs, were remarkably suppressed by icariin. Notably, HMGB1 translocation from the nucleus to the cytoplasm in HUVECs under HG was inhibited by icariin. Meanwhile, icariin could activate G protein-coupled estrogen receptor (GPER) and sirt1. To explore the role of GPER and Sirt1 in the inhibitory effect of icariin on HMGB1 release and HMGB-induced inflammation, GPER inhibitor and Sirt1 inhibitor were used in this study. These inhibitors diminished the effects of icariin on HMGB1 release and HMGB1-induced inflammation. Specifically, the GPER inhibitor also negated the activation of Sirt1 by icariin. These findings suggest that icariin activates GPER and increases the expression of Sirt1, which in turn reduces HMGB1 translocation and release, thereby improving vascular endothelial function in type 1 diabetic rats by inhibiting inflammation.


Subject(s)
Diabetes Mellitus, Experimental , Flavonoids , HMGB1 Protein , Rats, Sprague-Dawley , Receptors, Cannabinoid , Receptors, G-Protein-Coupled , Signal Transduction , Sirtuin 1 , Animals , HMGB1 Protein/metabolism , HMGB1 Protein/genetics , Sirtuin 1/metabolism , Sirtuin 1/genetics , Flavonoids/pharmacology , Signal Transduction/drug effects , Rats , Male , Humans , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Receptors, G-Protein-Coupled/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Inflammation/drug therapy , Inflammation/metabolism , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/metabolism , Cytokines/metabolism , Epimedium/chemistry
7.
J Ethnopharmacol ; 329: 118164, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38593963

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Epimedium sagittatum (Sieb. et Zucc.) Maxim. has been used traditionally in Asia. It can dispel wind and cold, tonify the kidney, and strengthen bones and tendons. However, adverse effects of E. sagittatum have been reported, and the underlying mechanisms remain unclear. AIM OF THE STUDY: This study aimed to investigate liver injury caused by an aqueous extract of E. sagittatum in Institute of Cancer Research (ICR) mice and explore its potential mechanisms. MATERIALS AND METHODS: Dried E. sagittatum leaves were decocted in water to prepare aqueous extracts for ultra-high performance liquid chromatography analysis. Mice were administered an aqueous extract of E. sagittatum equivalent to either 3 g raw E. sagittatum/kg or 10 g raw E. sagittatum/kg once daily via intragastric injection for three months. The liver weights and levels of the serum biochemical parameters including alanine transaminase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), total bilirubin (TBIL), and alkaline phosphatase were measured. Hematoxylin-eosin staining was performed for histopathology. Apoptosis was detected using the TUNEL apoptosis assay kit. IL-1ß was detected using ELISA kits. Proteomics was used to identify the differentially expressed proteins. Western blot analysis was performed to determine the levels of proteins significantly affected by the aqueous extract of E. sagittatum. RESULTS: E. sagittatum treatment increased the liver weights and liver coefficients, and ALT and AST levels significantly increased (p < 0.05). A high dose of E. sagittatum significantly increased LDH and TBIL levels (p < 0.05). Ruptured cell membranes and multiple sites of inflammatory cell infiltration were also observed. No evidence of apoptosis was observed. IL-1ß levels were significantly increased (p < 0.05). The expressions of PIK3R1, p-MAP2K4, p-Jun N-terminal kinase (JNK)/JNK, p-c-Jun, VDAC2, Bax, and CYC were upregulated, whereas that of Bcl-2 was inhibited by E. sagittatum. The expression of cleaved caspase-1 was significantly increased; however, its effects on GSDMD and GSDMD-N were significantly decreased. The expression levels of cleaved caspase-3 and its effector proteins GSDME and GSDME-N significantly increased. CONCLUSIONS: Our results suggest that the aqueous extract of E. sagittatum induces liver injury in ICR mice after three months of intragastric injection via inflammatory pyroptosis.


Subject(s)
Chemical and Drug Induced Liver Injury , Epimedium , Liver , Mice, Inbred ICR , Plant Extracts , Pyroptosis , Animals , Plant Extracts/pharmacology , Plant Extracts/chemistry , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/drug therapy , Male , Mice , Pyroptosis/drug effects , Epimedium/chemistry , Liver/drug effects , Liver/pathology , Liver/metabolism , Plant Leaves/chemistry
8.
J Pharm Biomed Anal ; 245: 116151, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38652940

ABSTRACT

Herba Epimedii, known for its rich array of bioactive ingredients and widespread use in ethnopharmacological practices, still lacks a comprehensive understanding of its gastrointestinal biotransformation. In this study, we qualitatively explored the dynamic changes in Epimedium sagittatum components during in vitro simulated digestions, with a quantitative focus on its five major flavonoids. Notably, significant metabolism of E. sagittatum constituents occurred in the simulated small intestinal fluid and colonic fermentation stages, yielding various low molecular weight metabolites. Flavonoids like kaempferol glycosides were fully metabolized in the simulated intestinal fluid, while hyperoside digestion occurred during simulated colon digestion. Colonic fermentation led to the production of two known bioactive isoflavones, genistein, and daidzein. The content and bioaccessibility of the five major epimedium flavonoids-icariin, epimedin A, epimedin B, epimedin C, and baohuoside I-significantly increased after intestinal digestion. During colon fermentation, these components gradually decreased but remained incompletely metabolized after 72 h. Faecal samples after E. sagittatum fermentation exhibited shift towards dominance by Lactobacillus (Firmicutes), Bifidobacterium (Actinobacteria), Streptococcus (Firmicutes), and Dialister (Firmicutes). These findings enhance our comprehension of diverse stages of Herba Epimedii constituents in the gut, suggesting that the primary constituents become bioaccessible in the colon, where new bioactive compounds may emerge.


Subject(s)
Epimedium , Feces , Fermentation , Flavonoids , Gastrointestinal Microbiome , Humans , Gastrointestinal Microbiome/physiology , Gastrointestinal Microbiome/drug effects , Epimedium/chemistry , Epimedium/metabolism , Fermentation/physiology , Feces/microbiology , Feces/chemistry , Flavonoids/metabolism , Saliva/metabolism , Saliva/microbiology , Saliva/chemistry , Digestion/physiology , Colon/metabolism , Colon/microbiology
9.
Anal Bioanal Chem ; 416(14): 3415-3432, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38649516

ABSTRACT

Epimedium-Rhizoma drynariae (EP-RD) was a well-known herb commonly used to treat bone diseases in traditional Chinese medicine. Nevertheless, there was incomplete pharmacokinetic behavior, metabolic conversion and chemical characterization of EP-RD in vivo. Therefore, this study aimed to establish metabolic profiles combined with multicomponent pharmacokinetics to reveal the in vivo behavior of EP-RD. Firstly, the diagnostic product ions (DPIs) and neutral losses (NLs) filtering strategy combined with UHPLC-Q-Orbitrap HRMS for the in vitro chemical composition of EP-RD and metabolic profiles of plasma, urine, and feces after oral administration of EP-RD to rats were proposed to comprehensively characterize the 47 chemical compounds and the 97 exogenous in vivo (35 prototypes and 62 metabolites), and possible biotransformation pathways of EP-RD were proposed, which included phase I reactions such as hydrolysis, hydrogenation, dehydrogenation, hydroxylation, dehydroxylation, isomerization, and demethylation and phase II reactions such as glucuronidation, acetylation, methylation, and sulfation. Moreover, a UHPLC-MS/MS quantitative approach was established for the pharmacokinetic analysis of seven active components: magnoflorine, epimedin A, epimedin B, epimedin C, icariin, baohuoside II, and icariin II. Results indicated that the established method was reliably used for the quantitative study of plasma active ingredients after oral administration of EP-RD in rats. Compared to oral EP alone, the increase in area under curves and maximum plasma drug concentration (P < 0.05). This study increased the understanding of the material basis and biotransformation profiles of EP-RD in vivo, which was of great significance in exploring the pharmacological effects of EP-RD.


Subject(s)
Drugs, Chinese Herbal , Epimedium , Feces , Rats, Sprague-Dawley , Tandem Mass Spectrometry , Animals , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Rats , Feces/chemistry , Epimedium/chemistry , Drugs, Chinese Herbal/pharmacokinetics , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/metabolism , Drugs, Chinese Herbal/chemistry , Male , Administration, Oral
10.
Zhongguo Zhong Yao Za Zhi ; 49(4): 981-988, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38621905

ABSTRACT

The quantitative analysis of multicomponents by single-marker(QAMS) was established for 13 chemical components of Epimedii Folium, including neoglycolic acid, chlorogenic acid, cryo-chlorogenic acid, magnolidine, hypericin, epimedin A, epimedin B, epimedin C, icariin, baohuoside Ⅱ, sagittatoside A, icariin subside Ⅰ, and baohuoside Ⅰ, so as to investigate the feasibility and accuracy of this method in evaluating the quality of Epimedii Folium materials from different origins and different varieties. Through the scientific and accurate investigation of the experimental method, the external standard method was used to determine the content of 13 chemical components in epimedium brevieornu. At the same time, icariin was used as the internal standard, and the relative correction factors of icariin with neoglycolic acid, chlorogenic acid, cryo-chlorogenic acid, magnolidine, hypericin, epimedin A, epimedin B, epimedin C, icariin, baohuoside Ⅱ, sagittatoside A, icariin subside Ⅰ, and baohuoside Ⅰ were established, respectively. The contens of neoglycolic acid, chlorogenic acid, cryo-chlorogenic acid, magnolidine, hypericin, epimedin A, epimedin B, epimedin C, icariin, baohuoside Ⅱ, sagittatoside A, icariin subside Ⅰ, and baohuosideⅠ in Epimedii Folium were calculated by QAMS. Finally, the difference between the measured value and the calculated value was compared to verify the accuracy and scientific nature of QAMS in the determination. The relative correction factor of each component had better repeatability, and there was no significant difference between the results of the external standard method and those of QAMS. With icariin as the internal standard, QAMS simultaneously determining neoglycolic acid, chlorogenic acid, cryo-chlorogenic acid, magnolidine, hypericin, epimedin A, epimedin B, epimedin C, icariin, baohuoside Ⅱ, sagittatoside A, icariin subside Ⅰ, and baohuoside Ⅰ can be used for quantitative analysis of Epimedii Folium.


Subject(s)
Anthracenes , Drugs, Chinese Herbal , Epimedium , Perylene/analogs & derivatives , Chromatography, High Pressure Liquid/methods , Chlorogenic Acid , Flavonoids/analysis , Drugs, Chinese Herbal/chemistry , Epimedium/chemistry
11.
Phytomedicine ; 128: 155507, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38552430

ABSTRACT

BACKGROUND: Abnormal activation of astrocytes in the amygdala contributes to anxiety after hemorrhagic shock and resuscitation (HSR). Nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB)-associated epigenetic reprogramming of astrocytic activation is crucial to anxiety. A bioactive monomer derived from Epimedium icariin (ICA) has been reported to modulate NF-κB signaling and astrocytic activation. PURPOSE: The present study aimed to investigate the effects of ICA on post-HSR anxiety disorders and its potential mechanism of action. METHODS: We first induced HSR in mice through a bleeding and re-transfusion model and selectively inhibited and activated astrocytes in the amygdala using chemogenetics. Then, ICA (40 mg/kg) was administered by oral gavage once daily for 21 days. Behavioral, electrophysiological, and pathological changes were assessed after HSR using the light-dark transition test, elevated plus maze, recording of local field potential (LFP), and immunofluorescence assays. RESULTS: Exposure to HSR reduced the duration of the light chamber and attenuated open-arm entries. Moreover, HSR exposure increased the theta oscillation power in the amygdala and upregulated NF-κB p65, H3K27ac, and H3K4me3 expression. Contrarily, chemogenetic inhibition of astrocytes significantly reversed these changes. Chemogenetic inhibition in astrocytes was simulated by ICA, but chemogenetic activation of astrocytes blocked the neuroprotective effects of ICA. CONCLUSION: ICA mitigated anxiety-like behaviors induced by HSR in mice via inhibiting astrocytic activation, which is possibly associated with NF-κB-induced epigenetic reprogramming.


Subject(s)
Anxiety , Astrocytes , Flavonoids , Shock, Hemorrhagic , Animals , Astrocytes/drug effects , Flavonoids/pharmacology , Shock, Hemorrhagic/drug therapy , Mice , Anxiety/drug therapy , Male , Resuscitation/methods , Disease Models, Animal , Mice, Inbred C57BL , NF-kappa B/metabolism , Behavior, Animal/drug effects , Amygdala/drug effects , Epimedium/chemistry
12.
Immunology ; 172(2): 295-312, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38453210

ABSTRACT

Hyperactivation of the cyclic-GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signalling pathway has been shown to be associated with the development of a variety of inflammatory diseases, and the discovery of an inhibitor of the cGAS-STING signalling pathway holds great promise in the therapeutic interventions. Epimedium flavonoid (EF), a major active ingredient isolated from the medicinal plant Epimedium, has been reported to have good anti-inflammatory activity, but its exact mechanism of action remains unclear. In the present study, we found that EF in mouse bone marrow-derived macrophages (BMDMs), THP-1 (Tohoku Hospital Pediatrics-1) as well as in human peripheral blood mononuclear cells (hPBMC) inhibited the activation of the cGAS-STING signalling pathway, which subsequently led to a decrease in the expression of type I interferon (IFN-ß, CXCL10 and ISG15) and pro-inflammatory cytokines (IL-6 and TNF-α). Mechanistically, EF does not affect STING oligomerization, but inhibits the formation of functional STING signalosome by attenuating the interaction of interferon regulatory factor 3 (IRF3) with STING and TANK-binding kinase 1 (TBK1). Importantly, in vivo experiments, EF has shown promising therapeutic effects on inflammatory diseases mediated by the cGAS-STING pathway, which include the agonist model induced by DMXAA stimulation, the autoimmune inflammatory disease model induced by three prime repair exonuclease 1 (Trex1) deficiency, and the non-alcoholic steatohepatitis (NASH) model induced by a pathogenic amino acid and choline deficiency diet (MCD). To summarize, our study suggests that EF is a potent potential inhibitor component of the cGAS-STING signalling pathway for the treatment of inflammatory diseases mediated by the cGAS-STING signalling pathway.


Subject(s)
Epimedium , Flavonoids , Membrane Proteins , Nucleotidyltransferases , Signal Transduction , Nucleotidyltransferases/metabolism , Membrane Proteins/metabolism , Animals , Signal Transduction/drug effects , Humans , Mice , Flavonoids/pharmacology , Epimedium/chemistry , Interferon Regulatory Factor-3/metabolism , Macrophages/metabolism , Macrophages/immunology , Macrophages/drug effects , Mice, Inbred C57BL , Cytokines/metabolism , THP-1 Cells , Protein Serine-Threonine Kinases/metabolism , Anti-Inflammatory Agents/pharmacology , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/drug effects
14.
Phytochem Anal ; 35(4): 771-785, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38273442

ABSTRACT

INTRODUCTION: There are some problems in the quality control of Epimedii Folium (leaves of Epimedium brevicornum Maxim.), such as the mixed use of Epimedii Folium from different harvesting periods and regions, incomplete quality evaluation, and time-consuming analysis methods. OBJECTIVE: Near-infrared (NIR) spectroscopy was conducted to establish a rapid overall quality evaluation method for Epimedii Folium. MATERIALS AND METHODS: Quantitative models of the total solid, moisture, total flavonoid, and flavonol glycoside (Epimedin A, Epimedin B, Epimedin C, Icariin) contents of Epimedii Folium were established by partial least squares regression (PLSR). The root mean square error (RMSE) and correlation coefficient (R) were used to evaluate the performance of models. The qualitative models of Epimedii Folium from different geographic origins and harvest periods were established based on K-nearest neighbor (KNN), back-propagation neural network (BPNN), and random forest (RF). Accuracy and Kappa values were used to evaluate the performance of models. A new multivariable signal conversion strategy was proposed, which combines NIR spectroscopy with the PLSR model to predict the absorbance values of retention time points in the high-performance liquid chromatography (HPLC) fingerprint to obtain the predicted HPLC fingerprint. The Pearson correlation coefficient and cosine coefficient were used to evaluate the similarity between real and predicted HPLC fingerprints. RESULTS: Qualitative models, quantitative models, and the similarity between real and predicted HPLC fingerprints are satisfactory. CONCLUSION: The method serves as a fast and green analytical quality evaluation method of Epimedii Folium and can replace traditional methods to achieve the overall quality evaluation of Epimedii Folium.


Subject(s)
Chemometrics , Epimedium , Flavonoids , Spectroscopy, Near-Infrared , Spectroscopy, Near-Infrared/methods , Epimedium/chemistry , Flavonoids/analysis , Least-Squares Analysis , Chemometrics/methods , Plant Leaves/chemistry , Quality Control , Chromatography, High Pressure Liquid/methods
15.
J Pharm Biomed Anal ; 240: 115957, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38181555

ABSTRACT

Epimedium is a Chinese herbal medicine commonly used in clinical practice to reinforce yang. Previous studies have shown that Epimedium fried with suet oil based has the best effect on warming kidney and promoting yang. Evidence suggests a relationship between kidney yang deficiency syndrome (KYDS) and metabolic disorders of the intestinal microflora. However, the specific interaction between KYDS and the intestinal microbiome, as well as the internal regulatory mechanism of the KYDS intestinal microbiome regulated by Epimedium fried with suet oil, remain unclear. The purpose of this study was to investigate the regulatory effects of different processed products of Epimedium on intestinal microflora and metabolites in rats with kidney yang deficiency, and to reveal the processing mechanism of Epimedium fried with suet oil warming kidney and helping yang. 16 S rRNA and LC-MS/MS technology were used to detect fecal samples. Combined with multivariate statistical analysis, differential intestinal flora and metabolites were screened. Then the content of differential bacteria was then quantified using quantitative real-time fluorescence PCR. Furthermore, the correlation between differential bacterial flora and metabolites was analyzed using Spearman's method. The study found that the composition of intestinal flora in rats with kidney yang deficiency changed compared to healthy rats. Epimedium fried with suet oil could increase the levels of beneficial bacteria, while significantly reducing the levels of harmful bacteria. Real-time quantitative PCR results were consistent with 16 S rRNA gene sequencing analysis. Fecal metabolomics revealed that KYDS was associated with 30 different metabolites, involving metabolic pathways steroid hormone biosynthesis etc. Moreover, differential bacteria were closely correlated with potential biomarkers. Epimedium could improve metabolic disorders associated with KYDS by acting on the intestinal flora, with Epimedium fried with suet oil demonstrating the most effective regulatory effect. Its potential mechanism may involve the regulation of abnormal metabolism and the impact on the diversity and structure of the intestinal flora.


Subject(s)
Drugs, Chinese Herbal , Epimedium , Gastrointestinal Microbiome , Metabolic Diseases , Rats , Animals , Yang Deficiency/drug therapy , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/chemistry , Epimedium/chemistry , Chromatography, Liquid , Tandem Mass Spectrometry , Metabolomics , Kidney/metabolism
16.
J Sep Sci ; 47(1): e2300786, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38234027

ABSTRACT

Epimedium (EM) and Psoraleae Fructus (PF) are a traditional herb combination often used as a fixed form to treat osteoporosis disease in the clinic. However, the intricate interactions of this pair remain unknown. In our study, we undertook a comprehensive examination of their compatibility behaviors. Concurrently, a precise and sensitive quantitation method was successfully developed and validated using liquid chromatography-tandem mass spectrometry for the determination of 12 components. This method was applied in analyzing herbal extracts and biological samples (both in the portal vein and systemic plasma), which was also used to study the pharmacokinetics of the herb pair. The results indicated that the combination of EM and PF enhanced the dissolution of chemical components from PF in extracts, but it had a negligible influence on the contents of the components from EM. On the contrary, the in vivo exposure of the lowly exposed EM flavonoids significantly increased following the combination of EM and PF, whereas the highly exposed psoralen and isopsoralen were greatly reduced. These interactions might be crucial for the synergy and toxicity reduction of the herbal pair in disease treatment, which pave the way for further exploration into the clinical application and pharmacological mechanisms of EM and PF.


Subject(s)
Drugs, Chinese Herbal , Epimedium , Rats , Animals , Drugs, Chinese Herbal/analysis , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Chromatography, Liquid , Administration, Oral
17.
Rev. int. androl. (Internet) ; 21(4): 1-6, oct.-dic. 2023. tab, graf
Article in English | IBECS | ID: ibc-226000

ABSTRACT

Objective: To investigate the effect of icariin on the transformation efficiency of germ cell-like cells from mouse induced pluripotent stem cells into sperm cells in vitro. Methods: Firstly, mouse induced pluripotent stem cells were induced and cultured to transform into germ cell-like cells, and the primordial germ cell-like cells were identified by Western blot and RT-PCR. Then, different concentrations of icariin (0.1μg/mL, 1μg/mL, 10μg/mL and 100μg/mL) were added into the culture medium, and the obtained primitive germ cell-like cells were cultured, Western blot and RT-PCR were used to identify the obtained sperm cells, the transformation efficiency was compared. Results: The primordium germ cell-like cells obtained from mouse induced pluripotent stem cells in vitro specially expressed Oct-4 protein, C-kit protein, Mvh mRNA, Fragilis mRNA and Stella mRNA. The sperm cells were specially expressed VASA, SCP3 and γH2AX proteins. RT-PCR showed that the sperm cells were specially expressed Ddx4, Tp2 and Prm1 mRNA. Compared with the control group, the expression level of VASA protein (1.744±0.283, 2.882±0.373, 6.489±0.460), SCP3 protein (2.250±0.306, 7.058±0.521, 8.654±0.804), γH2AX protein (4.304±0.433, 5.713±0.339, 9.268±0.545), Ddx4 mRNA (1.374±0.145, 2.846±0.194, 4.021±0.154), Tp2 mRNA (1.358±0.130, 3.623±0.326, 5.811±0.390) and Prm1 mRNA (1.326±0.162, 3.487±0.237, 4.666±0.307) in 0.1μg/mL, 1μg/mL, 10μg/mL icariin experimental groups were all lower than that of VASA protein (10.560±0.413), SCP3 protein (13.804±0.642), γH2AX protein (11.874±0.464), Ddx4 mRNA (6.4005±0.361), Tp2 mRNA (7.314±0.256) and Prm1 mRNA (7.334±0.390) in 100μg/mL icariin experimental group. (AU)


Objetivo: Investigar el efecto de icariina en la eficiencia de la conversión in vitro inducida en espermatozoides de cultivos de células germinativas derivadas de la transformación de células madre pluripotentes inducidas de ratón. Métodos: Primero se indujeron y cultivaron células madre pluripotentes inducidas de ratón para transformarlas en células similares a las células germinales, y las células similares a las células germinales primordiales se identificaron mediante Western blot y RT-PCR. A continuación, se añadieron diferentes concentraciones de icariina (0,1μg/mL, 1μg/mL, 10μg/mL and 100μg/mL) al medio de cultivo, y se cultivaron las células primitivas similares a células germinales obtenidas, se utilizaron Western blot y RT-PCR para identificar las células espermáticas obtenidas, y se comparó la eficacia de la transformación. Resultados: Las células germinales primitivas obtenidas in vitro a partir de células madre pluripotentes inducidas de ratón expresaron especialmente la proteína Oct-4, la proteína C-kit, el ARNm de Mvh, el ARNm de Fragilis y el ARNm de Stella. Los espermatozoides expresaban especialmente las proteínas VASA, SCP3 y γH2AX. La RT-PCR mostró que los espermatozoides expresaban especialmente los ARNm Ddx4, Tp2 y Prm1. En comparación con el grupo de control, el nivel de expresión de la proteína VASA (1,744±0,283; 2,882±0,373; 6,489±0,460), la proteína SCP3 (2,250±0,306; 7,058± 0,521; 8,654±0,804), proteína γH2AX (4,304±0,433; 5,713±0,339; 9,268±0,545), ARNm Ddx4 (1,374±0,145; 2,846±0,194; 4,021±0,154), ARNm Tp2 (1,358±0,130; 3,623±0,326; 5,811±0,390) y ARNm Prm1 (1,326±0,162; 3,487±0,237; 4,666±0,307) en grupos experimentales de 0,1μg/mL, 1μg/mL, 10μg/mL de icariina fueron todos más bajos que los de la proteína VASA (10,560±0,413), proteína SCP3 (13,804±0,642), proteína γH2AX (11,874±0,464), ARNm Ddx4 (6,4005±0,361), ARNm Tp2 (7,314±0,256) y ARNm Prm1 (7,334±0,390) en 100μg/mL icariina grupo experimental. (AU)


Subject(s)
Animals , Mice , Epimedium , Induced Pluripotent Stem Cells , Infertility , Flavonoids/pharmacology , Flavonoids/adverse effects , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/adverse effects , Semen , Azoospermia
18.
Zhongguo Zhong Yao Za Zhi ; 48(20): 5612-5622, 2023 Oct.
Article in Chinese | MEDLINE | ID: mdl-38114154

ABSTRACT

This study aims to investigate the intervention effect of the aqueous extract of Epimedium sagittatum Maxim on the mouse model of bleomycin(BLM)-induced pulmonary fibrosis, so as to provide data support for the clinical treatment of pulmonary fibrosis. Ninety male C57BL/6N mice were randomized into normal(n=10), model(BLM, n=20), pirfenidone(PFD, 270 mg·kg~(-1), n=15), and low-, medium-, and high-dose E. sagittatum extract(1.67 g·kg~(-1), n=15; 3.33 g·kg~(-1), n=15; 6.67 g·kg~(-1), n=15) groups. The model of pulmonary fibrosis was established by intratracheal instillation of BLM(5 mg·kg~(-1)) in the other five groups except the normal group, which was treated with an equal amount of normal saline. On the day following the modeling, each group was treated with the corresponding drug by gavage for 21 days. During this period, the survival rate of the mice was counted. After gavage, the lung index was calculated, and the morphology and collagen deposition of the lung tissue were observed by hematoxylin-eosin(HE) and Masson staining, respectively. The levels of reactive oxygen species(ROS) in lung cell suspensions were measured by flow cytometry. The levels of glutathione peroxidase(GSH-Px), total superoxide dismutase(T-SOD), and malondialdehyde(MDA) the in lung tissue were measured. Terminal-deoxynucleoitidyl transferase-mediated nick-end labeling(TUNEL) was employed to examine the apoptosis of lung tissue cells. The content of interleukin-6(IL-6), chemokine C-C motif ligand 2(CCL-2), matrix metalloproteinase-8(MMP-8), transforming growth factor-beta 1(TGF-ß1), alpha-smooth muscle actin(α-SMA), E-cadherin, collagen Ⅰ, and fibronectin in the lung tissue was measured by enzyme-linked immunosorbent assay(ELISA). The expression levels of F4/80, Ly-6G, TGF-ß1, and collagen Ⅰ in the lung tissue were determined by immunohistochemistry. The mRNA levels of CCL-2, IL-6, and MMP-7 in the lung tissue were determined by qRT-PCR. The content of hydroxyproline(HYP) in the lung tissue was determined by alkaline hydrolysation. The expression of α-SMA and E-cadherin was detected by immunofluorescence, and the protein levels of α-SMA, vimentin, E-cadherin in the lung tissue were determined by Western blot. The results showed the aqueous extract of E. sagittatum increased the survival rate, decreased the lung index, alleviated the pathological injury, collagen deposition, and oxidative stress in the lung tissue, and reduced the apoptotic cells. Furthermore, the aqueous extract of E. sagittatum down-regulated the protein levels of F4/80 and Ly-6G and the mRNA levels of CCL-2, IL-6, and MMP-7 in the lung tissue, reduced the content of IL-6, CCL-2, and MMP-8 in the alveolar lavage fluid. In addition, it lowered the levels of HYP, TGF-ß1, α-SMA, collagen Ⅰ, fibronectin, and vimentin, and elevated the levels of E-cadherin in the lung tissue. The aqueous extract of E. sagittatum can inhibit collagen deposition, alleviate oxidative stress, and reduce inflammatory response by regulating the expression of the molecules associated with epithelial-mesenchymal transition, thus alleviating the symptoms of bleomycin-induced pulmonary fibrosis in mice.


Subject(s)
Epimedium , Pulmonary Fibrosis , Mice , Male , Animals , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Transforming Growth Factor beta1/metabolism , Epimedium/metabolism , Fibronectins/metabolism , Matrix Metalloproteinase 7/metabolism , Matrix Metalloproteinase 7/pharmacology , Matrix Metalloproteinase 7/therapeutic use , Matrix Metalloproteinase 8/metabolism , Matrix Metalloproteinase 8/pharmacology , Matrix Metalloproteinase 8/therapeutic use , Vimentin/metabolism , Interleukin-6/metabolism , Mice, Inbred C57BL , Lung , Collagen/metabolism , Bleomycin/toxicity , RNA, Messenger/metabolism , Cadherins/metabolism
19.
Zhongguo Zhong Yao Za Zhi ; 48(22): 6058-6065, 2023 Nov.
Article in Chinese | MEDLINE | ID: mdl-38114212

ABSTRACT

The poor solubility of insoluble components of traditional Chinese medicine(TCM) is an important factor restricting the development of its preparations. Natural polysaccharides of TCM can be used as functional components to increase the solubility of insoluble components. Epimedium flavonoid secondary glycoside components(EFSGC) have been shown to have positive effects on the prevention and treatment of osteoporosis, but they exhibit poor solubility. Therefore, the strategy of solubilizing EFSGC with TCM polysaccharides was adopted, and its effect on the permeability and stability of EFSGC was evaluated in this study. Based on the equilibrium solubility experiment of EFSGC, it was found that Panax notoginseng crude polysaccharide(PNCP) had the best solubilization effect on EFSGC among the ten kinds of TCM polysaccharides, which increased the solubility of EFSGC from 0.8 mg·mL~(-1) to 13.3 mg·mL~(-1). It should be noted that after the solubilization of EFSGC by preparation technology, the effects on permeability and stability should be considered. Therefore, this study also investigated these two properties. The results showed that PNCP increased the effective transmittance of EFSGC from 50.5% to 71.1%, which could increase the permeability of EFSGC significantly. At the same time, it could improve the stability of EFSGC in the simulated gastric juice environment. In order to explain the solubilization mechanism of PNCP on EGSGC, critical micelle concentration, particle size, potential, differential scanning calorimetry, and infrared spectroscopy were analyzed. It was preliminarily inferred that the mechanism was as follows: PNCP and EFSGC could self-assemble into aggregates for solubilization by intermolecular hydrogen bonding interaction in water. In summary, PNCP can not only improve the solubility of EFSGC but also improve its permeability and stability. This study lays the foundation for the application of TCM polysaccharides as a functional component to solubilize insoluble components.


Subject(s)
Cardiac Glycosides , Epimedium , Medicine, Chinese Traditional , Flavonoids/chemistry , Glycosides , Epimedium/chemistry , Solubility , Polysaccharides/chemistry
20.
Biomed Pharmacother ; 169: 115893, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37979377

ABSTRACT

AIM: Diabetes osteoporosis (DOP) is a chronic bone metabolic disease induced by diabetes, whose morbidity continues to increase. Epimedium brevicornum Maxim (EB), a popular Chinese traditional medicine, has been used to treat bone diseases in China for thousands of years. But its material basis and specific mechanism of action are not clear. METHODS: Epimedium brevicornum crude polysaccharide (EPE) is the main component, in this research the characterized the structure of EBPC1 purified from EPE was detected and its effects on cell proliferation, differentiation, and cytoskeletal in osteoblasts induced by high glucose. RESULTS: The molecular weight of EBPC1 was 10.5 kDa. It was mainly comprised of glucose and galactose, and the backbone of EBPC1 was→4)-α-D-Galp-(1→4)-α-D-Galp-(1→6)-ß-D-Galp-(1→6)-ß-D-Galp-(1→4)-α-D-Glcp-(1→4)-α-D-Glcp-(1→. The results from in vitro experiments revealed that EBPC1 significantly increased alkaline phosphatase (ALP) activity and mineralized nodule formation in primary osteoblasts, also significantly up-regulated expression of Alp mRNA and Runx2 mRNA in the presence of EBPC1 pretreatment. Moreover, EBPC1 modulated apoptosis via the regulation of Bax/Bcl2. CONCLUSION: These results indicate that EBPC1 treatment can promote osteogenesis during DOP, which can ameliorate apoptosis by regulating Bax/Bcl2 and accelerating osteogenesis in osteoblasts.


Subject(s)
Diabetes Mellitus , Epimedium , Osteoporosis , Humans , Epimedium/chemistry , Osteogenesis , bcl-2-Associated X Protein/metabolism , Osteoporosis/metabolism , Cell Differentiation , Osteoblasts , Polysaccharides/chemistry , RNA, Messenger/metabolism , Diabetes Mellitus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...