Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 519
Filter
1.
J Nanobiotechnology ; 22(1): 231, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720360

ABSTRACT

BACKGROUND: Circulating tumor cells (CTCs) are considered as a useful biomarker for early cancer diagnosis, which play a crucial role in metastatic process. Unfortunately, the tumor heterogeneity and extremely rare occurrence rate of CTCs among billions of interfering leukocytes seriously hamper the sensitivity and purity of CTCs isolation. METHODS: To address these, we firstly used microfluidic chips to detect the broad-spectrum of triple target combination biomarkers in CTCs of 10 types of cancer patients, including EpCAM, EGFR and Her2. Then, we constructed hybrid engineered cell membrane-camouflaged magnetic nanoparticles (HE-CM-MNs) for efficient capture of heterogeneous CTCs with high-purity, which was enabled by inheriting the recognition ability of HE-CM for various CTCs and reducing homologous cell interaction with leukocytes. Compared with single E-CM-MNs, HE-CM-MNs showed a significant improvement in the capture efficiency for a cell mixture, with an efficiency of 90%. And the capture efficiency of HE-CM-MNs toward 12 subpopulations of tumor cells was ranged from 70 to 85%. Furthermore, by using HE-CM-MNs, we successfully isolated heterogeneous CTCs with high purity from clinical blood samples. Finally, the captured CTCs by HE-CM-MNs could be used for gene mutation analysis. CONCLUSIONS: This study demonstrated the promising potential of HE-CM-MNs for heterogeneous CTCs detection and downstream analysis.


Subject(s)
Biomarkers, Tumor , Cell Membrane , Cell Separation , Magnetite Nanoparticles , Neoplastic Cells, Circulating , Neoplastic Cells, Circulating/pathology , Neoplastic Cells, Circulating/metabolism , Humans , Magnetite Nanoparticles/chemistry , Cell Separation/methods , Cell Line, Tumor , Cell Membrane/metabolism , Cell Membrane/chemistry , Biomarkers, Tumor/blood , Receptor, ErbB-2 , Epithelial Cell Adhesion Molecule/metabolism , ErbB Receptors/genetics , ErbB Receptors/metabolism , Neoplasms
2.
Anal Chem ; 96(19): 7747-7755, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38691774

ABSTRACT

Accurate classification of tumor cells is of importance for cancer diagnosis and further therapy. In this study, we develop multimolecular marker-activated transmembrane DNA computing systems (MTD). Employing the cell membrane as a native gate, the MTD system enables direct signal output following simple spatial events of "transmembrane" and "in-cell target encounter", bypassing the need of multistep signal conversion. The MTD system comprises two intelligent nanorobots capable of independently sensing three molecular markers (MUC1, EpCAM, and miR-21), resulting in comprehensive analysis. Our AND-AND logic-gated system (MTDAND-AND) demonstrates exceptional specificity, allowing targeted release of drug-DNA specifically in MCF-7 cells. Furthermore, the transformed OR-AND logic-gated system (MTDOR-AND) exhibits broader adaptability, facilitating the release of drug-DNA in three positive cancer cell lines (MCF-7, HeLa, and HepG2). Importantly, MTDAND-AND and MTDOR-AND, while possessing distinct personalized therapeutic potential, share the ability of outputting three imaging signals without any intermediate conversion steps. This feature ensures precise classification cross diverse cells (MCF-7, HeLa, HepG2, and MCF-10A), even in mixed populations. This study provides a straightforward yet effective solution to augment the versatility and precision of DNA computing systems, advancing their potential applications in biomedical diagnostic and therapeutic research.


Subject(s)
DNA , Epithelial Cell Adhesion Molecule , MicroRNAs , Humans , Epithelial Cell Adhesion Molecule/metabolism , DNA/chemistry , MicroRNAs/analysis , MicroRNAs/metabolism , Mucin-1/metabolism , Mucin-1/analysis , Computers, Molecular , MCF-7 Cells , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/analysis , Cell Membrane/metabolism , Cell Membrane/chemistry , Hep G2 Cells
3.
Sci Rep ; 14(1): 12245, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38806508

ABSTRACT

Following the discovery of circulating tumor cells (CTCs) in the peripheral blood of cancer patients, CTCs were initially postulated to hold promise as a valuable prognostic tool through liquid biopsy. However, a decade and a half of accumulated data have revealed significant complexities in the investigation of CTCs. A challenging aspect lies in the reduced expression or complete loss of key epithelial markers during the epithelial-mesenchymal transition (EMT). This likely hampers the identification of a pathogenetically significant subset of CTCs. Nevertheless, there is a growing body of evidence regarding the prognostic value of such molecules as CD24 expressing in the primary breast tumor. Herewith, the exact relevance of CD24 expression on CTCs remains unclear. We used two epithelial markers (EpCAM and cytokeratin 7/8) to assess the count of CTCs in 57 breast cancer patients, both with (M0mts) and without metastasis (M0) during the follow-up period, as well as in M1 breast cancer patients. However, the investigation of these epithelial markers proved ineffective in identifying cell population expressing different combinations of EpCAM and cytokeratin 7/8 with prognostic significance for breast cancer metastases. Surprisingly, we found CD24+ circulating cells (CCs) in peripheral blood of breast cancer patients which have no epithelial markers (EpCAM and cytokeratin 7/8) but was strongly associated with distant metastasis. Namely, the count of CD45-EpCAM-CK7/8-CD24+ N-cadherin-CCs was elevated in both groups of patients, those with existing metastasis and those who developed metastases during the follow-up period. Simultaneously, an elevation in these cell counts beyond the established threshold of 218.3 cells per 1 mL of blood in patients prior to any treatment predicted a 12-fold risk of metastases, along with a threefold decrease in distant metastasis-free survival over a 90-month follow-up period. The origin of CD45-EpCAM-CK7/8-CD24+ N-cadherin-CCs remains unclear. In our opinion their existence can be explained by two most probable hypotheses. These cells could exhibit a terminal EMT phenotype, or it might be immature cells originating from the bone marrow. Nonetheless, if this hypothesis holds true, it's worth noting that the mentioned CCs do not align with any of the recognized stages of monocyte or neutrophil maturation, primarily due to the presence of CD45 expression in the myeloid cells. The results suggest the presence in the peripheral blood of patients with metastasis (both during the follow-up period and prior to inclusion in the study) of a cell population with a currently unspecified origin, possibly arising from both myeloid and tumor sources, as confirmed by the presence of aneuploidy.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms , CD24 Antigen , Epithelial Cell Adhesion Molecule , Neoplastic Cells, Circulating , Humans , Neoplastic Cells, Circulating/metabolism , Neoplastic Cells, Circulating/pathology , Epithelial Cell Adhesion Molecule/metabolism , CD24 Antigen/metabolism , Female , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/blood , Breast Neoplasms/mortality , Prognosis , Middle Aged , Biomarkers, Tumor/blood , Biomarkers, Tumor/metabolism , Aged , Adult , Epithelial-Mesenchymal Transition , Keratin-7/metabolism , Keratin-8/metabolism
4.
J Colloid Interface Sci ; 668: 335-342, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38678888

ABSTRACT

Membrane receptors perform a diverse range of cellular functions, accounting for more than half of all drug targets. The mechanical microenvironment regulates cell behaviors and phenotype. However, conventional analysis methods of membrane receptors often ignore the effects of the extracellular matrix stiffness, failing to reveal the heterogeneity of cell membrane receptors expression. Herein, we developed an in-situ surface-enhanced Raman scattering (SERS) imaging method to visualize single-cell membrane receptors on substrates with different stiffness. Two SERS substrates, Au@4-mercaptobenzonitrile@Ag@Sgc8c and Au@4-pethynylaniline@Ag@SYL3c, were employed to specifically target protein tyrosine kinase-7 (PTK7) and epithelial cell adhesion molecule (EpCAM), respectively. The polyacrylamide (PA) gels with tunable stiffness (2.5-25 kPa) were constructed to mimic extracellular matrix. The simultaneous SERS imaging of dual membrane receptors on single cancer cells on substrates with different stiffness was achieved. Our findings reveal decreased expression of PTK7 and EpCAM on cells cultured on stiffer substrates and higher migration ability of the cells. The results elucidate the heterogeneity of membrane receptors expression of cells cultured on the substrates with different stiffness. This single-cell analysis method offers an in-situ platform for investigating the impacts of extracellular matrix stiffness on the expression of membrane receptors, providing insights into the role of cell membrane receptors in cancer metastasis.


Subject(s)
Epithelial Cell Adhesion Molecule , Extracellular Matrix , Single-Cell Analysis , Spectrum Analysis, Raman , Extracellular Matrix/metabolism , Humans , Epithelial Cell Adhesion Molecule/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Gold/chemistry , Acrylic Resins/chemistry , Silver/chemistry , Surface Properties , Cell Line, Tumor , Aniline Compounds/chemistry , Particle Size , Cell Adhesion Molecules
5.
Pathol Res Pract ; 257: 155317, 2024 May.
Article in English | MEDLINE | ID: mdl-38657558

ABSTRACT

Lung cancer (LC) remains a leading cause of cancer-related mortality worldwide, necessitating the exploration of innovative therapeutic strategies. This study delves into the in vitro potential of liposomal therapeutics utilizing Curcumin-loaded PlexoZome® (CUR-PLXZ) in targeting EpCAM/TROP1 and Estrogen Receptor Alpha (ERα) signalling pathways for LC management. The prevalence of LC, particularly non-small cell lung cancer (NSCLC), underscores the urgent need for effective treatments. Biomarkers like EpCAM/TROP1 and ERα/NR3A1 play crucial roles in guiding targeted therapies and influencing prognosis. EpCAM plays a key role in cell-cell adhesion and signalling along with ERα which is a nuclear receptor that binds estrogen and regulates gene expression in response to hormonal signals. In LC, both often get overexpressed and are associated with tumour progression, metastasis, and poor prognosis. Curcumin, a phytochemical with diverse therapeutic properties, holds promise in targeting these pathways. However, its limited solubility and bioavailability necessitate advanced formulations like CUR-PLXZ. Our study investigates the biological significance of these biomarkers in the A549 cell line and explores the therapeutic potential of CUR-PLXZ, which modulates the expression of these two markers. An in vitro analysis of the A549 human lung adenocarcinoma cell line identified that CUR-PLXZ at a dose of 5 µM effectively inhibited the expression of EpCAM and ERα. This finding paves the way for targeted intervention strategies in LC management.


Subject(s)
Curcumin , Epithelial Cell Adhesion Molecule , Estrogen Receptor alpha , Liposomes , Lung Neoplasms , Humans , Epithelial Cell Adhesion Molecule/metabolism , Curcumin/pharmacology , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Estrogen Receptor alpha/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , A549 Cells , Antineoplastic Agents/pharmacology
6.
ACS Sens ; 9(4): 2043-2049, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38520356

ABSTRACT

Extracellular vesicles, especially exosomes, have attracted attention in the last few decades as novel cancer biomarkers. Exosomal membrane proteins provide easy-to-reach targets and can be utilized as information sources of their parent cells. In this study, a MagLev-based, highly sensitive, and versatile biosensor platform for detecting minor differences in the density of suspended objects is proposed for exosome detection. The developed platform utilizes antibody-functionalized microspheres to capture exosomal membrane proteins (ExoMPs) EpCAM, CD81, and CD151 as markers for cancerous exosomes, exosomes, and non-small cell lung cancer (NSCLC)-derived exosomes, respectively. Initially, the platform was utilized for protein detection and quantification by targeting solubilized ExoMPs, and a dynamic range of 1-100 nM, with LoD values of 1.324, 0.638, and 0.722 nM for EpCAM, CD81, and CD151, were observed, respectively. Then, the sensor platform was tested using exosome isolates derived from NSCLC cell line A549 and MRC5 healthy lung fibroblast cell line. It was shown that the sensor platform is able to detect and differentiate exosomal biomarkers derived from cancerous and non-cancerous cell lines. Overall, this innovative, simple, and rapid method shows great potential for the early diagnosis of lung cancer through exosomal biomarker detection.


Subject(s)
Epithelial Cell Adhesion Molecule , Exosomes , Lung Neoplasms , Exosomes/chemistry , Humans , Lung Neoplasms/pathology , Epithelial Cell Adhesion Molecule/metabolism , Tetraspanin 28/metabolism , Tetraspanin 28/analysis , Biosensing Techniques/methods , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/diagnosis , Biomarkers, Tumor/analysis , Tetraspanin 24 , A549 Cells
7.
Cancer Sci ; 115(5): 1646-1655, 2024 May.
Article in English | MEDLINE | ID: mdl-38433331

ABSTRACT

The clinical features of sporadic mismatch repair deficiency (MMRd) and Lynch syndrome (LS) in Japanese patients with endometrial cancer (EC) were examined by evaluating the prevalence and prognostic factors of LS and sporadic MMRd in patients with EC. Targeted sequencing of five LS susceptibility genes (MLH1, MSH2, MSH6, PMS2, and EPCAM) was carried out in 443 patients with EC who were pathologically diagnosed with EC at the National Cancer Center Hospital between 2011 and 2018. Pathogenic variants in these genes were detected in 16 patients (3.7%). Immunohistochemistry for MMR proteins was undertaken in 337 of the 433 (77.9%) EC patients, and 91 patients (27.0%) showed absent expression of at least one MMR protein. The 13 cases of LS with MMR protein loss (93.8%) showed a favorable prognosis with a 5-year overall survival (OS) rate of 100%, although there was no statistically significant difference between this group and the sporadic MMRd group (p = 0.27). In the MMRd without LS group, the 5-year OS rate was significantly worse in seven patients with an aberrant p53 expression pattern than in those with p53 WT (53.6% vs. 93.9%, log-rank test; p = 0.0016). These results suggest that p53 abnormalities and pathogenic germline variants in MMR genes could be potential biomarkers for the molecular classification of EC with MMRd.


Subject(s)
Colorectal Neoplasms, Hereditary Nonpolyposis , DNA-Binding Proteins , Endometrial Neoplasms , MutS Homolog 2 Protein , Tumor Suppressor Protein p53 , Humans , Female , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/pathology , Middle Aged , Tumor Suppressor Protein p53/genetics , Aged , Endometrial Neoplasms/genetics , Endometrial Neoplasms/pathology , Adult , MutS Homolog 2 Protein/genetics , Prognosis , DNA-Binding Proteins/genetics , DNA Mismatch Repair/genetics , MutL Protein Homolog 1/genetics , Mismatch Repair Endonuclease PMS2/genetics , Aged, 80 and over , Epithelial Cell Adhesion Molecule/genetics , Epithelial Cell Adhesion Molecule/metabolism , Uterine Neoplasms/genetics , Uterine Neoplasms/pathology , Neoplastic Syndromes, Hereditary/genetics , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/mortality , Japan/epidemiology
8.
J Cell Biochem ; 125(4): e30541, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38372186

ABSTRACT

Epithelial cells (ECs) have been proposed to contribute to myofibroblasts or fibroblasts through epithelial-mesenchymal transition (EMT) during renal fibrosis. However, since EMT may occur dynamically, transiently, and reversibly during kidney fibrosis, conventional lineage tracing based on Cre-loxP recombination in renal ECs could hardly capture the transient EMT activity, yielding inconsistent results. Moreover, previous EMT research has primarily focused on renal proximal tubule ECs, with few reports of distal tubules and collecting ducts. Here, we generated dual recombinases-mediated genetic lineage tracing systems for continuous monitoring of transient mesenchymal gene expression in E-cadherin+ and EpCAM+ ECs of distal tubules and collecting ducts during renal fibrosis. Activation of key EMT-inducing transcription factor (EMT-TF) Zeb1 and mesenchymal markers αSMA, vimentin, and N-cadherin, were investigated following unilateral ureteral obstruction (UUO). Our data revealed that E-cadherin+ and EpCAM+ ECs did not transdifferentiate into myofibroblasts, nor transiently expressed these mesenchymal genes during renal fibrosis. In contrast, in vitro a large amount of cultured renal ECs upregulated mesenchymal genes in response to TGF-ß, a major inducer of EMT.


Subject(s)
Epithelial-Mesenchymal Transition , Kidney Diseases , Humans , Epithelial Cell Adhesion Molecule/genetics , Epithelial Cell Adhesion Molecule/metabolism , Fibrosis , Kidney Diseases/metabolism , Epithelial Cells/metabolism , Cadherins/genetics , Cadherins/metabolism , Transforming Growth Factor beta1/metabolism
9.
Cancer Cytopathol ; 132(5): 297-308, 2024 May.
Article in English | MEDLINE | ID: mdl-38373107

ABSTRACT

BACKGROUND: Circulating tumor cells (CTCs) shed into blood provide prognostic and/or predictive information. Previously, the authors established an assay to detect carcinoma cells from pleural fluid, termed effusion tumor cells (ETCs), by employing an immunofluorescence-based CTC-identification platform (RareCyte) on air-dried unstained ThinPrep (TP) slides. To facilitate clinical integration, they evaluated different slide processing and storage conditions, hypothesizing that alternative comparable conditions for ETC detection exist. METHODS: The authors enumerated ETCs on RareCyte, using morphology and mean fluorescence intensity (MFI) cutoffs of >100 arbitrary units (a.u.) for epithelial cellular adhesion molecule (EpCAM) and <100 a.u. for CD45. They analyzed malignant pleural fluid from three patients under seven processing and/or staining conditions, three patients after short-term storage under three conditions, and seven samples following long-term storage at -80°C. MFI values of 4',6-diamidino-2-phenylindol, cytokeratin, CD45, and EpCAM were compared. RESULTS: ETCs were detected in all conditions. Among the different processing conditions tested, the ethanol-fixed, unstained TP was most similar to the previously established air-dried, unstained TP protocol. All smears and Pap-stained TPs had significantly different marker MFIs from the established condition. After short-term storage, the established condition showed comparable results, but ethanol-fixed and Pap-stained slides showed significant differences. ETCs were detectable after long-term storage at -80°C in comparable numbers to freshly prepared slides, but most marker MFIs were significantly different. CONCLUSIONS: It is possible to detect ETCs under different processing and storage conditions, lending promise to the application of this method in broader settings. Because of decreased immunofluorescence-signature distinctions between cells, morphology may need to play a larger role.


Subject(s)
Epithelial Cell Adhesion Molecule , Neoplastic Cells, Circulating , Pleural Effusion, Malignant , Humans , Neoplastic Cells, Circulating/pathology , Neoplastic Cells, Circulating/metabolism , Pleural Effusion, Malignant/pathology , Pleural Effusion, Malignant/diagnosis , Epithelial Cell Adhesion Molecule/metabolism , Specimen Handling/methods , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/analysis , Leukocyte Common Antigens/metabolism , Leukocyte Common Antigens/analysis , Fluorescent Antibody Technique/methods
10.
Life Sci Alliance ; 7(3)2024 Mar.
Article in English | MEDLINE | ID: mdl-38171596

ABSTRACT

The mouse cortical collecting duct cell line presents a tight epithelium with regulated ion and water transport. The epithelial sodium channel (ENaC) is localized in the apical membrane and constitutes the rate-limiting step for sodium entry, thereby enabling transepithelial transport of sodium ions. The membrane-bound serine protease Tmprss2 is co-expressed with the alpha subunit of ENaC. αENaC gene expression followed the Tmprss2 expression, and the absence of Tmprss2 resulted not only in down-regulation of αENaC gene and protein expression but also in abolished transepithelial sodium transport. In addition, RNA-sequencing analyses unveiled drastic down-regulation of the membrane-bound protease CAP3/St14, the epithelial adhesion molecule EpCAM, and the tight junction proteins claudin-7 and claudin-3 as also confirmed by immunohistochemistry. In summary, our data clearly demonstrate a dual role of Tmprss2 in maintaining not only ENaC-mediated transepithelial but also EpCAM/claudin-7-mediated paracellular barrier; the tight epithelium of the mouse renal mCCD cells becomes leaky. Our working model proposes that Tmprss2 acts via CAP3/St14 on EpCAM/claudin-7 tight junction complexes and through regulating transcription of αENaC on ENaC-mediated sodium transport.


Subject(s)
Claudins , Sodium , Animals , Mice , Biological Transport/physiology , Claudins/genetics , Claudins/metabolism , Epithelial Cell Adhesion Molecule/metabolism , Ion Transport , Sodium/metabolism
11.
Biochem Biophys Res Commun ; 696: 149512, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38224664

ABSTRACT

Epithelial cell adhesion molecules (EpCAMs) have been identified as surface markers of proliferating ductal cells, which are referred to as liver progenitor cells (LPCs), during liver regeneration and correspond to malignancies. These cells can differentiate into hepatocytes and biliary epithelial cells (BECs) in vitro. EpCAM-positive LPCs are involved in liver regeneration following severe liver injury; however, the in vivo function of EpCAMs in the regenerating liver remains unclear. In the present study, we used a zebrafish model of LPC-driven liver regeneration to elucidate the function of EpCAMs in the regenerating liver in vivo. Proliferating ductal cells were observed after severe hepatocyte loss in the zebrafish model. Analyses of the liver size as well as hepatocyte and BEC markers revealed successful conversion of LPCs to hepatocytes and BECs in epcam mutants. Notably, epcam mutants exhibited severe defects in intrahepatic duct maturation and bile acid secretion in regenerating hepatocytes, suggesting that epcam plays a critical role in intrahepatic duct reconstruction during LPC-driven liver regeneration. Our findings provide insights into human diseases involving non-parenchymal cells, such as primary biliary cholangitis, by highlighting the regulatory effect of epcam on intrahepatic duct reconstruction.


Subject(s)
Cholangitis , Zebrafish , Animals , Humans , Epithelial Cell Adhesion Molecule/genetics , Epithelial Cell Adhesion Molecule/metabolism , Liver/metabolism , Bile Ducts, Intrahepatic/metabolism , Hepatocytes/metabolism , Epithelial Cells/metabolism , Cholangitis/pathology , Liver Regeneration
12.
Microb Pathog ; 188: 106549, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38281605

ABSTRACT

The five epidermal growth factor-like domains (EGF) of Eimeria tenella microneme protein 8 (EtMIC8) (EtMIC8-EGF) plays a vital role in host cell attachment and invasion. These processes require interactions between parasite proteins and receptors on the surface of host cells. In this study, five chicken membrane proteins potentially interacting with EtMIC8-EGF were identified using the GST pull-down assay and mass spectrometry analysis, and only chicken (Gallus gallus) epithelial cell adhesion molecule (EPCAM) could bind to EtMIC8-EGF. EPCAM-specific antibody and recombinant EPCAM protein (rEPCAM) inhibited the EtMIC8-EGF binding to host cells in a concentration-dependent manner. Furthermore, the rEPCAM protein showed a binding activity to sporozoites in vitro, and a significant reduction of E. tenella invasion in DF-1 cells was further observed after pre-incubation of sporozoites with rEPCAM. The specific anti-EPCAM antibody further significantly decreased weight loss, lesion score and oocyst output during E. tenella infection, displaying partial inhibition of E. tenella infection. These results indicate that chicken EPCAM is an important EtMIC8-interacting host protein involved in E. tenella-host cell adhesion and invasion. The findings will contribute to a better understanding of the role of adhesion-associated microneme proteins in E. tenella.


Subject(s)
Coccidiosis , Eimeria tenella , Poultry Diseases , Animals , Eimeria tenella/chemistry , Eimeria tenella/metabolism , Epithelial Cell Adhesion Molecule/metabolism , Chickens , Protozoan Proteins , Epidermal Growth Factor/metabolism , Recombinant Proteins , Sporozoites/metabolism , Coccidiosis/veterinary , Coccidiosis/parasitology , Poultry Diseases/parasitology
13.
Clin Chim Acta ; 552: 117651, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37980974

ABSTRACT

PURPOSE: Despite its limitations, the cytology of body fluids is widely used in diagnosing neoplastic cells. Flow cytometry detects and identifies individual cells, enabling the detection of circulating tumor cells and facilitating diagnosis. This study compared the diagnostic utility of flow cytometry and cytology for detecting cancer cells in peritoneal and pleural fluids. METHODOLOGY: We used flow cytometry and cytology to examine 119 pleural and peritoneal effusions received for routine screening. Antibodies against clusters of differentiation 45 (CD45), 14 (CD14), and Epithelial cell adhesion molecule (EpCAM) were used to detect malignant cells. Based on combined clinical and diagnostic information, 37 fluid specimens were malignant, and 77 were benign. RESULTS: Flow cytometry correctly identified 34 cancers, while cytology identified 26 cancers (sensitivity 91.89 % vs. 70.27, respectively). Both methods had equal specificity (98.7 %). At a cut-off of > 0.29 % EpCAM(+) cells to all cells in the samples, flow cytometry accurately detected cancer cells, achieving 89.2 % sensitivity, 90.9 % specificity, and an AUC of 0.959 (p < 0.001). CONCLUSION: Flow cytometry improves the detection of epithelial cancer cells in peritoneal and pleural fluids compared to conventional cytology. Due to similar specificity and higher sensitivity, flow cytometry offers a promising alternative to cytology for patient screening.


Subject(s)
Neoplastic Cells, Circulating , Pleural Effusion, Malignant , Humans , Epithelial Cell Adhesion Molecule/metabolism , Neoplastic Cells, Circulating/pathology , Flow Cytometry/methods , Ascitic Fluid , Pleural Effusion, Malignant/diagnosis
14.
BMC Cancer ; 23(1): 1220, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38082377

ABSTRACT

OBJECTIVE: The aim of this study is to evaluate an AAV vector that can selectively target breast cancer cells and to investigate its specificity and anti-tumor effects on breast cancer cells both in vitro and in vivo, offering a new therapeutic approach for the treatment of EpCAM-positive breast cancer. METHODS: In this study, a modified AAV2 viral vector was used, in which EpCAM-specific DARPin EC1 was fused to the VP2 protein of AAV2, creating a viral vector that can target breast cancer cells. The targeting ability and anti-tumor effects of this viral vector were evaluated through in vitro and in vivo experiments. RESULTS: The experimental results showed that the AAV2MEC1 virus could specifically infect EpCAM-positive breast cancer cells and accurately deliver the suicide gene HSV-TK to tumor tissue in mice, significantly inhibiting tumor growth. Compared to the traditional AAV2 viral vector, the AAV2MEC1 virus exhibited reduced accumulation in liver tissue and had no impact on tumor growth. CONCLUSION: This study demonstrates that AAV2MEC1 is a gene delivery vector capable of targeting breast cancer cells and achieving selective targeting in mice. The findings offer a potential gene delivery system and strategies for gene therapy targeting EpCAM-positive breast cancer and other tumor types.


Subject(s)
Breast Neoplasms , Designed Ankyrin Repeat Proteins , Humans , Mice , Animals , Female , Epithelial Cell Adhesion Molecule/genetics , Epithelial Cell Adhesion Molecule/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/therapy , Breast Neoplasms/pathology , Gene Transfer Techniques , Genetic Therapy/methods , Genetic Vectors/genetics , Dependovirus/genetics , Dependovirus/metabolism
15.
Med Oncol ; 41(1): 35, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38151631

ABSTRACT

The epithelial cell adhesion molecule (EpCAM) is a critical glycoprotein involved in cell cycle progression, proliferation, differentiation, migration, and immune evasion. Its role as a target for bispecific antibodies has shown promise in annihilating cancer cells. EpCAM's potential as a biomarker for tumor-initiating cells, characterized by self-renewal and tumorigenic capabilities, underscores its value in early cancer detection, immunotherapy, and targeted drug delivery. While EpCAM monotherapies have been met with limited success, bispecific antibodies targeting both EpCAM and other proteins have exhibited encouraging results in colorectal cancer (CRC) research. The integration of EpCAM-directed nanotechnology in drug delivery systems has emerged as a pivotal innovation in CRC treatment. Moreover, developing chimeric antigen receptor (CAR) T-cell and CAR natural killer (NK) cell therapies opens promising therapeutic avenues for EpCAM-positive CRC patients. Although preliminary, this review sets the stage for future advances. Additionally, this study advances our understanding of the role of non-coding RNAs in CRC, which may be pivotal in gene regulation and could provide insights into the molecular underpinning. The findings suggest that lncRNA, miRNA, and circRNA could serve as novel therapeutic targets or biomarkers, further enriching the landscape of CRC diagnostics and therapeutics.


Subject(s)
Antibodies, Bispecific , Colorectal Neoplasms , Humans , Epithelial Cell Adhesion Molecule/genetics , Epithelial Cell Adhesion Molecule/metabolism , Killer Cells, Natural , Immunotherapy, Adoptive/methods , Biomarkers , Colorectal Neoplasms/genetics , Colorectal Neoplasms/therapy
16.
Clin Epigenetics ; 15(1): 180, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37941056

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the global health concerns. Hepatitis B virus (HBV) is one of the major causes of HCC. Poor clinical outcome of HCC patients is attributed to a small population of cancer cells known as cancer stem cells (CSCs). In this work, we studied the effect of inhibiting the enhancer of zeste homologue 2 (EZH2), a histone methyltransferase known to be overexpressed in CSCs, using tazemetostat (Taz). The effect of Taz was assessed in the HCC cell line (HEPG2) and Hepatitis B virus-transfected HEPG2 (HBV/HEPG2) cells. MTT assay showed a significant decrease in HEPG2 cells viability after 48 h treatment with either 0.5, 1, 4 or 6 µM Taz. HEPG2 and HBV/HEPG2 cells were incubated with either 0.5 or 1 µM Taz for 48 h, and then, the cells and supernatants were collected for protein expression analysis of EZH2, CD13, epithelial cell adhesion molecule (EpCAM) and ß-catenin using enzyme-linked immunosorbent assay (ELISA). Taz showed a significant dose-dependent inhibition of EZH2, CD13 and ß-catenin in HEPG2 and HBV/HEPG2 cells. Also, EpCAM protein levels were significantly decreased in HBV/HEPG2 but not in HEPG2 cell line alone. Our results indicate that Taz inhibition of EZH2 leads to downregulation of ß-catenin signaling and eventually decreased expression of CD13 and EpCAM, which are characteristic for CSCs. The present study suggests that Taz could be a promising treatment for HCC including HBV-induced HCC that might be used in combination with radio/chemotherapy to target CSCs and prevent tumor relapse.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Hepatitis B virus , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , beta Catenin/genetics , Epithelial Cell Adhesion Molecule/metabolism , Cell Survival , DNA Methylation , Neoplasm Recurrence, Local , Cell Line, Tumor
17.
Elife ; 122023 Nov 17.
Article in English | MEDLINE | ID: mdl-37975646

ABSTRACT

Cancer stem cells (CSCs) undergo epithelial-mesenchymal transition (EMT) to drive metastatic dissemination in experimental cancer models. However, tumour cells undergoing EMT have not been observed disseminating into the tissue surrounding human tumour specimens, leaving the relevance to human cancer uncertain. We have previously identified both EpCAM and CD24 as CSC markers that, alongside the mesenchymal marker Vimentin, identify EMT CSCs in human oral cancer cell lines. This afforded the opportunity to investigate whether the combination of these three markers can identify disseminating EMT CSCs in actual human tumours. Examining disseminating tumour cells in over 12,000 imaging fields from 74 human oral tumours, we see a significant enrichment of EpCAM, CD24 and Vimentin co-stained cells disseminating beyond the tumour body in metastatic specimens. Through training an artificial neural network, these predict metastasis with high accuracy (cross-validated accuracy of 87-89%). In this study, we have observed single disseminating EMT CSCs in human oral cancer specimens, and these are highly predictive of metastatic disease.


When oral cancers metastasise ­ that is, when tumour cells invade other parts of the body ­ they typically do so by first colonizing the lymph nodes present in the neck. As this event significantly reduces chances of survival, oral cancer patients often have their neck lymph nodes removed to prevent the spread of the disease. However, this surgery carries risks and leads to longer hospital stays, stressing the need for better ways to predict which oral tumours will metastasise. Evidence from lab-grown cells and mice studies suggest that, in oral cancer, metastasis occurs when some cells in the original tumour go through a process called the epithelial-mesenchymal transition (EMT for short). This transformation allows the cells to detach from the tumour and become invasive. However, it has so far been difficult to observe this process in actual human tumours; this is partly because cells undergoing EMT stop producing the proteins that scientists rely on to distinguish cancer and healthy cells. To address this knowledge gap, Youssef et al. focused on three proteins: two tumour markers, EpCAM and CD24; and Vimentin, which is produced in greater quantities in the invasive mesenchymal state. Previous work had shown that a specific population of oral tumour cells can continue to express all three proteins even when adopting a mesenchymal identity through EMT. Based on this knowledge, Youssef et al. hypothesised that tracking Vimentin, EpCAM and CD24 using fluorescence microscopy would allow them to identify metastasising cells in human samples. An analysis of over 12,000 images from 74 tumours obtained from surgeries revealed that, in the metastatic samples, the cells detaching from primary tumours were more likely to express these three proteins. Finally, Youssef et al. used these images to train a machine learning algorithm. When applied to data from new oral cancer patients, the programme was able to predict whether their tumours were likely to spread with 89% accuracy. If confirmed by further work, and in particular on larger samples, these findings could in the future help clinicians decide which patients with oral cancer would benefit the most from surgery to remove neck lymph nodes.


Subject(s)
Epithelial-Mesenchymal Transition , Mouth Neoplasms , Humans , Epithelial Cell Adhesion Molecule/metabolism , Vimentin/metabolism , Cell Line, Tumor , Neoplastic Stem Cells/metabolism
18.
Sci Rep ; 13(1): 20071, 2023 11 16.
Article in English | MEDLINE | ID: mdl-37973964

ABSTRACT

Recently, there is a growing interest in the research based on extracellular vesicles (EVs) which represent paracrine factors secreted by almost all cell types. Both, normal and pathological cells are able to release various types of EVs with different physiological properties, functions and compositions. EVs play an important role in intercellular communication, mechanism and tissue repair. Moreover, EVs could help not only in the treatment of diseases but also in their diagnostics. This work focused on the evaluation of the potential of EVs being used as biomarkers for the diagnosis of osteoarthritis (OA) based on a comparison of the composition of EVs separated from platelet-poor plasma (PPP) of healthy donors and OA patients at different stages of OA. OA is established as a complex syndrome with extensive impact on multiple tissues within the synovial joint. It is a chronic disease of musculoskeletal system that mainly affects the elderly. Depending on the use of the Kellgren-Lawrence classification system, there are four grades of OA which have a negative impact on patients' quality of life. It is very difficult to detect OA in its early stages, so it is necessary to find a new diagnostic method for its timely detection. PPP samples were prepared from whole blood. PPP-EVs were separated from 3 groups of donors-healthy control, early stage OA, end-stage OA, and their content was compared and correlated. EVs from PPP were separated by size exclusion chromatography and characterized in terms of their size, yield and purity by NTA, western blotting, ELISA and flow cytometry. Detection of surface markers expression in EVs was performed using MACSPlex approach. Inflammatory and growth factors in EVs were analysed using MAGPix technology. Our study confirmed significant differences between EVs surface markers of patients and healthy controls correlating with the age of donor (CD63, CD31 and ROR1) and stage of OA (CD45, CD326 and CD56), respectively. Circulating EVs have been under extensive investigation for their capability to predict OA pathology diagnosis as potential targets for biomarker discovery. Taken together, obtained results indicated that PPP-EVs surface markers could be used as potential biomarkers in the early diagnosis of OA.


Subject(s)
Extracellular Vesicles , Osteoarthritis , Aged , Humans , Biomarkers/metabolism , Chromatography, Gel , Extracellular Vesicles/metabolism , Osteoarthritis/pathology , Quality of Life , Epithelial Cell Adhesion Molecule/metabolism
19.
Int J Mol Sci ; 24(22)2023 Nov 14.
Article in English | MEDLINE | ID: mdl-38003473

ABSTRACT

Cancer stem cells (CSCs) play an essential role in tumorigenesis, chemoresistance, and metastasis. Previously, we demonstrated that the development of hepatocellular carcinoma (HCC) is dictated by a subset of epithelial cell adhesion molecule-positive (EpCAM+) liver CSCs with the activation of Wnt signaling. In this study, we evaluated the expression of dUTP pyrophosphatase (dUTPase), which plays a central role in the development of chemoresistance to 5-fluorouracil, in EpCAM+ HCC cells. We further evaluated the effect of beta-hydroxyisovaleryl-shikonin (ß-HIVS), an ATP-noncompetitive inhibitor of protein tyrosine kinases, on HCC CSCs. EpCAM and dUTPase were expressed in hepatoblasts in human fetal liver, hepatic progenitors in adult cirrhotic liver, and a subset of HCC cells. Sorted EpCAM+ CSCs from HCC cell lines showed abundant nuclear accumulation of dUTPase compared with EpCAM-negative cells. Furthermore, treatment with the Wnt signaling activator BIO increased EpCAM and dUTPase expression. In contrast, ß-HIVS treatment decreased dUTPase expression. ß-HIVS treatment decreased the population of EpCAM+ liver CSCs in a dose-dependent manner in vitro and suppressed tumor growth in vivo compared with the control vehicle. Taken together, our data suggest that dUTPase could be a good target to eradicate liver CSCs resistant to 5-fluorouracil. ß-HIVS is a small molecule that could decrease dUTPase expression and target EpCAM+ liver CSCs.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Epithelial Cell Adhesion Molecule/metabolism , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/metabolism , Cell Line, Tumor , Neoplastic Stem Cells/metabolism , Fluorouracil/pharmacology , Fluorouracil/metabolism
20.
Int J Mol Sci ; 24(19)2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37834237

ABSTRACT

The epithelial cell-adhesion molecule (EpCAM) is hyperglycosylated in carcinoma tissue and the oncogenic function of EpCAM primarily depends on the degree of glycosylation. Inhibiting EpCAM glycosylation is expected to have an inhibitory effect on cancer. We analyzed the relationship of BAP31 with 84 kinds of tumor-associated antigens and found that BAP31 is positively correlated with the protein level of EpCAM. Triple mutations of EpCAM N76/111/198A, which are no longer modified by glycosylation, were constructed to determine whether BAP31 has an effect on the glycosylation of EpCAM. Plasmids containing different C-termini of BAP31 were constructed to identify the regions of BAP31 that affects EpCAM glycosylation. Antibodies against BAP31 (165-205) were screened from a human phage single-domain antibody library and the effect of the antibody (VH-F12) on EpCAM glycosylation and anticancer was investigated. BAP31 increases protein levels of EpCAM by promoting its glycosylation. The amino acid region from 165 to 205 in BAP31 plays an important role in regulating the glycosylation of EpCAM. The antibody VH-F12 significantly inhibited glycosylation of EpCAM which, subsequently, reduced the adhesion of gastric cancer cells, inducing cytotoxic autophagy, inhibiting the AKT-PI3K-mTOR signaling pathway, and, finally, resulting in proliferation inhibition both in vitro and in vivo. Finally, we clarified that BAP31 plays a key role in promoting N-glycosylation of EpCAM by affecting the Sec61 translocation channels. Altogether, these data implied that BAP31 regulates the N-glycosylation of EpCAM and may represent a potential therapeutic target for cancer therapy.


Subject(s)
Antibodies , Antigens, Neoplasm , Membrane Proteins , Humans , Antigens, Neoplasm/immunology , Carcinoma , Cell Line, Tumor , Epithelial Cell Adhesion Molecule/genetics , Epithelial Cell Adhesion Molecule/metabolism , Epithelial Cells/metabolism , Glycosylation , Receptors, Antigen, B-Cell/metabolism , SEC Translocation Channels/metabolism , Membrane Proteins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...