Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.955
Filter
1.
J Appl Oral Sci ; 32: e20230440, 2024.
Article in English | MEDLINE | ID: mdl-38775557

ABSTRACT

This study aimed to compare the quality of root canal obturation (ratio of area occupied by gutta-percha (G), sealer (S), and presence of voids (V)) in different anatomical irregularities (intercanal communications, lateral irregularities, and accessory canals) located at different thirds of the root canal system of mandibular molar replicas. Sixty-seven 3D printed replicas of an accessed mandibular molar were prepared using ProGlider and ProTaper Gold rotatory systems. Three specimens were randomly selected to be used as controls and did not receive further treatment. The rest were randomly distributed in 4 experimental groups to be obturated using either cold lateral compaction (LC), continuous wave of condensation (CW), and core-carrier obturation (ThermafilPlus (TH) or GuttaCore (GC)) (n=16 per group). AHPlus® sealer was used in all groups. The three controls and a specimen from each experimental group were scanned using micro-computed tomography. The rest of the replicas were sectioned at the sites of anatomical irregularities and examined at 30× magnification. The G, S, and V ratios were calculated dividing the area occupied with each element by the total root canal area and then compared among groups using the Kruskal-Wallis test. Voids were present in all obturation techniques with ratios from 0.01 to 0.15. CW obtained a significantly higher G ratio in the irregularity located in the coronal third (0.882) than LC (0.681), TH (0.773), and GC (0.801) (p<0.05). TH and GC achieved significantly higher G ratios in those located in the apical third (p<0.05). The worst quality of obturation was observed in the loop accessory canal with all obturation techniques. Whitin the limitations of this study, it can be concluded that CW and core-carrier obturation are respectively the most effective techniques for obturating anatomical irregularities located in the coronal and the apical third.


Subject(s)
Dental Pulp Cavity , Gutta-Percha , Materials Testing , Root Canal Filling Materials , Root Canal Obturation , X-Ray Microtomography , Root Canal Obturation/methods , Root Canal Filling Materials/chemistry , X-Ray Microtomography/methods , Gutta-Percha/chemistry , Dental Pulp Cavity/anatomy & histology , Dental Pulp Cavity/diagnostic imaging , Humans , Reproducibility of Results , Reference Values , Molar/anatomy & histology , Epoxy Resins/chemistry , Printing, Three-Dimensional , Surface Properties , Statistics, Nonparametric , Random Allocation
2.
Int J Biol Macromol ; 271(Pt 1): 132565, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38782327

ABSTRACT

There is a growing demand for the development of epoxy resin modified with biomaterials, aiming to achieve high toughness. Herein, chitosan crosslinked epoxy resin (CE) was synthesized by diisocyanate as a bridge. With 4,4'-diamino-diphenylmethane (DDM) as the curing agent, thanks to the unique cross-linking structure of the CE resin and the presence of carbamate groups, the cured CE/DDM exhibited superior properties compared to commercially available epoxy resin (E51). The tensile strength of the cured CE-3/DDM reached 90.17 MPa, the elongation at break was 11.2 %, and the critical stress intensity factor (KIC) measured 1.78 MPa m1/2. These values were 21.4 %, 151.6 %, and 81.6 % higher than those of the cured E51/DDM, respectively. It is worth noting that the addition of biomass material chitosan did not reduce the thermal stability of the resin. Additionally, the CE coatings on the metal substrate exhibited exceptional corrosion resistance, as evidenced by higher impedance values in electrochemical impedance spectroscopy (EIS) and polarization voltages in the Tafel curve compared to those of the E51 coating. This study opens up a novel approach to modifying epoxy resin with biomass materials with high toughness and corrosion resistance, without sacrificing other performance.


Subject(s)
Chitosan , Cross-Linking Reagents , Epoxy Resins , Epoxy Resins/chemistry , Chitosan/chemistry , Corrosion , Cross-Linking Reagents/chemistry , Materials Testing , Tensile Strength , Mechanical Phenomena
3.
Int J Biol Macromol ; 270(Pt 2): 132500, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38763234

ABSTRACT

Bamboo, as a renewable bioresource, exhibits advantages of fast growth cycle and high strength. Bamboo-based composite materials are a promising alternative to load-bearing structural materials. It is urgent to develop high-performance glued-bamboo composite materials. This study focused on the chemical bonding interface to achieve high bonding strength and water resistance between bamboo and dialdehyde cellulose-polyamine (DAC-PA4N) adhesive by activating the bamboo surface. The bamboo surface was initially modified in a directional manner to create an epoxy-bamboo interface using GPTES. The epoxy groups on the interface were then chemically crosslinked with the amino groups of the DAC-PA4N adhesive, forming covalent bonds within the adhesive layer. The results demonstrated that the hot water strength of the modified bamboo was improved by 75.8 % (from 5.17 to 9.09 MPa), and the boiling water strength was enhanced by 232 % (from 2.10 to 6.99 MPa). The bonding and flexural properties of this work are comparable to those of commercial phenolic resin. The activation modification of the bamboo surface offers a novel approach to the development of low-carbon, environmentally friendly, and sustainable bamboo engineering composites.


Subject(s)
Adhesives , Cellulose , Sasa , Cellulose/chemistry , Cellulose/analogs & derivatives , Adhesives/chemistry , Sasa/chemistry , Surface Properties , Water/chemistry , Epoxy Resins/chemistry
4.
Clin Oral Investig ; 28(6): 344, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809444

ABSTRACT

OBJECTIVES: The aim of the present study was to assess the cytocompatibility of epoxy resin-based AH Plus Jet (Dentsply De Trey, Konstanz, Germany), Sealer Plus (MK Life, Porto Alegre, Brazil), calcium silicate-based Bio-C Sealer (Angelus, Londrina, PR, Brazil), Sealer Plus BC (MK Life) and AH Plus BC (Dentsply) through a tridimensional (3D) culture model of human osteoblast-like cells. METHODS: Spheroids of MG-63 cells were produced and exposed to fresh root canal sealers extracts by 24 h, and the cytotoxicity was assessed by the Lactate Dehydrogenase assay (LDH). The distribution of dead cells within the microtissue was assessed by fluorescence microscopy, and morphological effects were investigated by histological analysis. The secreted inflammatory mediators were detected in cell supernatants through flow luminometry (XMap Luminex). RESULTS: Cells incubated with AH Plus Jet, AH Plus BC, Sealer Plus BC and Bio-C Sealer extracts showed high rates of cell viability, while the Sealer Plus induced a significant reduction of cell viability, causing reduction on the spheroid structure. Sealer Plus and Seaker Plus BC caused alterations on 3D microtissue morphology. The AH Plus BC extract was associated with the downregulation of secretion of pro-inflammatory cytokines IL-5, IL-7, IP-10 and RANTES. CONCLUSIONS: The new AH Plus BC calcium silicate-based endodontic sealer did not reduce cell viability in vitro, while led to the downregulation of pro-inflammatory cytokines. CLINICAL SIGNIFICANCE: Choosing the appropriate endodontic sealer is a crucial step. AH Plus BC demonstrated high cell viability and downregulation of pro-inflammatory cytokines, appearing reliable for clinical use, while Sealer Plus presented lower cytocompatibility.


Subject(s)
Calcium Compounds , Cell Survival , Epoxy Resins , Materials Testing , Root Canal Filling Materials , Silicates , Root Canal Filling Materials/pharmacology , Humans , Calcium Compounds/pharmacology , Silicates/pharmacology , Cell Survival/drug effects , Cell Culture Techniques, Three Dimensional/methods , Inflammation Mediators/metabolism , Microscopy, Fluorescence , Osteoblasts/drug effects
5.
J Contemp Dent Pract ; 25(3): 231-235, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38690695

ABSTRACT

AIM: This study aimed to compare the bond strength of AH Plus sealer to root canal dentin when used with or without various antibiotics including amoxicillin, clindamycin, and triple antibiotic mixture (TAM). MATERIALS AND METHODS: A total of 80 single-rooted extracted human teeth were instrumented and obturated with gutta-percha and four different sealer-antibiotic combinations (n = 20). Group I: AH Plus without any antibiotics, Group II: AH Plus with amoxicillin, Group III: AH Plus with clindamycin, and Group IV: AH Plus with TAM. After seven days, the roots were sectioned perpendicular to their long axis and 1 mm thick slices were obtained from the midroots. The specimens were subjected to a push-out bond strength test and failure modes were also evaluated. Data was analyzed using Kruskal-Wallis and Dunn's post hoc tests. RESULTS: Group IV had significantly higher bond strength compared to other groups (p ≤ 0.05). No significant differences were found between other groups. While the sealer-antibiotic groups predominantly showed cohesive failure modes, the control group displayed both cohesive and mixed failure modes. CONCLUSION: Within the limitations of this study, the addition of TAM increased the push-out bond strength of AH Plus. CLINICAL SIGNIFICANCE: Amoxicillin, clindamycin, or TAM can be added to AH Plus for increased antibacterial efficacy without concern about their effects on the bond strength of the sealer. How to cite this article: Adl A, Shojaei NS, Ranjbar N. The Effect of Adding Various Antibiotics on the Push-out Bond Strength of a Resin-based Sealer: An In Vitro Study. J Contemp Dent Pract 2024;25(3):231-235.


Subject(s)
Amoxicillin , Anti-Bacterial Agents , Dental Bonding , Epoxy Resins , Root Canal Filling Materials , Humans , Root Canal Filling Materials/chemistry , In Vitro Techniques , Clindamycin , Materials Testing , Dental Stress Analysis , Root Canal Obturation/methods
6.
Int J Biol Macromol ; 269(Pt 1): 132075, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705317

ABSTRACT

Carbonic anhydrase (CA) has a promising application as a green and efficient biocatalyst for CO2 capture, and many successful cases of immobilizing CA have been reported. However, CA antifouling coatings on metal for CO2 sequestration have rarely been reported. Herein, dimeric CA from Sulfurihydrogenibium azorense (SazCA) with a ferritin tag, which was prepared by low-speed centrifugation with high yield, was adopted as a free enzyme and encapsulated in the sol-gel silica. The silica-immobilized CAs were dispersed into the commercialized metal-antifouling epoxy resin paint to obtain CA coated nickel foams, which had excellent stability, with 90 % and 67 % residual activity after 28 days of incubation at 30 °C and 60 °C, respectively. The CA coated nickel foams remained 60 % original activity after 6 cycles of use within 28 days. Then, a CA-microalgae carbon capture device was constructed using the CA coated nickel foams and Chlorella. The growth rate of Chlorella was significantly increased and the biomass of Chlorella increased by 29 % compared with control after 7 days of incubation. Due to the simple and cost-effective preparation process, sustainable and efficient CO2 absorption, this easy-to-scale up CA coated nickel foam has great potential in CA assisted microalgae-based CO2 capture and carbon neutrality.


Subject(s)
Carbon Dioxide , Carbonic Anhydrases , Enzymes, Immobilized , Microalgae , Silicon Dioxide , Carbon Dioxide/chemistry , Silicon Dioxide/chemistry , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Carbonic Anhydrases/metabolism , Carbonic Anhydrases/chemistry , Nickel/chemistry , Epoxy Resins/chemistry , Biofouling/prevention & control
7.
Dent Mater J ; 43(3): 420-429, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38644213

ABSTRACT

This study investigated the wettability and consistency of various endodontic sealers, both inorganic and organic, and evaluated their sealing ability of root canals using the single-cone obturation technique, with and without ethylenediaminetetraacetic acid (EDTA) treatment. Bovine root canals were endodontically prepared and filled in preparation for the dye penetration test with toluidine blue solution. All sealers exhibited contact angles similar to or lower than dentin and displayed superior consistency. Among the sealers, organic sealers used without EDTA treatment showed reduced dye penetration compared to inorganic sealers. However, some inorganic and organic sealers showed dye penetration in the sealer and dentin of root canals subjected to EDTA treatment. In conclusion, the single-cone obturation technique, combined with these endodontic sealers, achieved close contact with root canal dentin due to their wettability and consistency. However, the sealing ability of certain sealers was influenced by EDTA treatment.


Subject(s)
Edetic Acid , Materials Testing , Root Canal Filling Materials , Root Canal Obturation , Wettability , Root Canal Filling Materials/chemistry , Animals , Cattle , Root Canal Obturation/methods , Drug Combinations , Dental Leakage , Dental Pulp Cavity , Silicates/chemistry , Surface Properties , Calcium Compounds/chemistry , Epoxy Resins/chemistry , Dental Bonding/methods , Aluminum Compounds/chemistry , In Vitro Techniques , Oxides/chemistry , Calcium Hydroxide/chemistry , Root Canal Preparation/methods , Gutta-Percha/chemistry , Dentin/drug effects , Coloring Agents
8.
Photodiagnosis Photodyn Ther ; 47: 104088, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38631620

ABSTRACT

AIM: Assessment of contemporary canal medicaments (Triple antibiotic paste (TAP), Bio-C Temp, and Nano silver gel activated by visible blue light on the dentin microhardness (MH) and push-out bond strength (PBS) of AH plus endodontic sealer. METHOD: Sixty extracted premolars were obtained and decontaminated. Canal cleaning and shaping were performed. The samples were randomly allocated into four groups based on the intracanal medicaments. Group 1= CH paste, Group 2= TAP, Group 3= Bio-C Temp, and Group 4= Nano-silver gel activated by visible blue light. MH assessment was performed using a Vickers Microhardness tester. Forty specimens, ten from each group underwent root canal obturation. PBS and failure mode evaluation were performed. ANOVA and Post Hoc Tukey test were utilized to conduct intra and inter-group comparisons. RESULTS: The maximum outcome of surface hardness was presented by Group-3 (Bio-C Temp®) specimens. However, minimum scores of MH were displayed by Group 1 (CH) treated teeth. The highest outcomes of EBS were exhibited by the cervical third of Group 3 (Bio-C Temp®) samples. The apical section of Group 4 Teeth with Nano Silver gel activated by visible blue light revealed the lowest scores of bond integrity. CONCLUSION: Bio-C Temp and TAP proved to be better intracanal medicament than other tested groups in terms of the push-out bond strength of the sealer. TAP displayed lower microhardness as compared to the Bio-C Temp.


Subject(s)
Anti-Bacterial Agents , Dentin , Root Canal Filling Materials , Silver , Humans , Silver/pharmacology , Silver/chemistry , Anti-Bacterial Agents/pharmacology , Root Canal Filling Materials/chemistry , Root Canal Filling Materials/pharmacology , Dentin/drug effects , Epoxy Resins/pharmacology , Epoxy Resins/chemistry , Microscopy, Electron, Scanning , Root Canal Irrigants/pharmacology , Bicuspid , Metal Nanoparticles/chemistry , Hardness , Dental Bonding/methods , Light , Materials Testing , Blue Light
9.
Biomed Mater ; 19(4)2024 May 10.
Article in English | MEDLINE | ID: mdl-38688325

ABSTRACT

Bone fracture plates are usually made from steel or titanium, which are much stiffer than cortical bone. This may cause bone 'stress shielding' (i.e. bone resorption leading to plate loosening) and delayed fracture healing (i.e. fracture motion is less than needed to stimulate callus formation at the fracture). Thus, the authors previously designed, fabricated, and mechanically tested novel 'hybrid' composites made from inorganic and organic materials as potential bone fracture plates that are more flexible to reduce these negative effects. This is the first study to measure the cytotoxicity of these composites via the survival of rat cells. Cubes of carbon fiber/flax fiber/epoxy and glass fiber/flax fiber/epoxy had better cell survival vs. Kevlar fiber/flax fiber/epoxy (57% and 58% vs. 50%). Layers and powders made of carbon fiber/epoxy and glass fiber/epoxy had higher cell survival than Kevlar fiber/epoxy (96%-100% and 100% vs. 39%-90%). The presence of flax fibers usually decreased cell survival. Thus, carbon and glass fiber composites (with or without flax fibers), but not Kevlar fiber composites (with or without flax fibers), may potentially be used for bone fracture plates.


Subject(s)
Bone Plates , Carbon Fiber , Cell Survival , Fractures, Bone , Glass , Materials Testing , Animals , Rats , Cell Survival/drug effects , Glass/chemistry , Carbon Fiber/chemistry , Biocompatible Materials/chemistry , Carbon/chemistry , Fracture Healing , Epoxy Resins/chemistry , Stress, Mechanical , Titanium/chemistry
10.
Int J Mol Sci ; 25(8)2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38673921

ABSTRACT

In this present study, the material science background of crosslinked gelatin (GEL) was investigated. The aim was to assess the optimal reaction parameters for the production of a water-insoluble crosslinked gelatin matrix suitable for heat sterilization. Matrices were subjected to enzymatic degradation assessments, and their ability to withstand heat sterilization was evaluated. The impact of different crosslinkers on matrix properties was analyzed. It was found that matrices crosslinked with butanediol diglycidyl ether (BDDE) and poly(ethylene glycol) diglycidyl ether (PEGDE) were resistant to enzymatic degradation and heat sterilization. Additionally, at 1 v/v % crosslinker concentration, the crosslinked weight was lower than the starting weight, suggesting simultaneous degradation and crosslinking. The crosslinked weight and swelling ratio were optimal in the case of the matrices that were crosslinked with 3% and 5% v/v BDDE and PEGDE. FTIR analysis confirmed crosslinking, and the reduction of free primary amino groups indicated effective crosslinking even at a 1% v/v crosslinker concentration. Moreover, stress-strain and compression characteristics of the 5% v/v BDDE crosslinked matrix were comparable to native gelatin. Based on material science measurements, the crosslinked matrices may be promising candidates for scaffold development, including properties such as resistance to enzymatic degradation and heat sterilization.


Subject(s)
Cross-Linking Reagents , Epoxy Resins , Gelatin , Water , Gelatin/chemistry , Cross-Linking Reagents/chemistry , Water/chemistry , Polyethylene Glycols/chemistry , Hot Temperature , Tissue Scaffolds/chemistry , Biocompatible Materials/chemistry , Materials Testing , Spectroscopy, Fourier Transform Infrared , Solubility , Sterilization/methods
11.
Dent Med Probl ; 61(2): 279-291, 2024.
Article in English | MEDLINE | ID: mdl-38686970

ABSTRACT

The correct obturation of the root canal system achieved by means of a core and a cement is essential for the success of endodontic treatment. There are several root canal cements (RCCs) on the market; however, because of their excellent characteristics, epoxy resin-based sealers (ERBSs) have been widely used. The main aim of this review was to analyze and integrate the available information on different ERBSs. An electronic search was performed in the PubMed and Scopus databases, using "epoxy resin" AND "root canal treatment", and "epoxy resin" AND "endodontics" as search terms. In general, ERBSs have good flow properties, film thickness, solubility, dimensional stability, sealing capacity, and radiopacity. They are also able to adhere to dentin while exhibiting low toxicity and some antibacterial effects. However, their main disadvantage is the lack of bioactivity and biomineralization capability. A large number of ERBSs are available on the market, and AH Plus keeps being the gold standard RCC. Yet, information on many of them is limited or non-existent, which could be due to the fact that some of them are relatively new. The latter emphasizes the need for relevant research on the physicochemical and biological properties of some ERBSs, with the aim of supporting their clinical use with sufficient evidence via prospective and long-term studies.


Subject(s)
Epoxy Resins , Root Canal Filling Materials , Root Canal Filling Materials/chemistry , Humans
12.
Mymensingh Med J ; 33(2): 605-612, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38557547

ABSTRACT

Accomplishment of an ideal root canal treatment is attributed to various essential factors such as proper instrumentation, chemomechanical preparation, obturation and post endodontic restoration. The main aim of this study is to test the null hypothesis that is the moisture condition of root dentin would not affect the bond strength and sealer penetration. This is an in vitro study conducted in Department of Conservative Dentistry and Endodontics, M A Rangoonwala Dental College, Pune, India over a period of two years (from 2021 to 2023). One hundred and twenty single-rooted Premolars with fully formed apices and similar root morphology were obtained and stored in 0.1% thymol solution. The specimens were randomly assigned to 3 broad experimental groups (n=40) according to the drying protocol such as Group A- Paper points (P), Group B- diode laser (L) and Group C- isopropyl alcohol (A). For each drying protocol, the specimens were further assigned to 2 subgroups (n=20) with respect to the sealers used: AH Plus (AH) and Apexit Plus sealers (APx). The effect of drying protocol using paper points, isopropyl alcohol and diode-lasers on the bond strength and tag penetration of two different sealers to the root dentin was evaluated. Maximum overall push-out Bond strength was seen in group AH+L and least in group APx+ L. Inter-site push-out bond Strength was highest in the coronal third followed by the middle and least in the apical third of all the groups. Maximum over all depth of penetration was seen in group AH+L and minimum in group APx+L. AH plus sealer showed better bond strength, sealer penetration and adaptation to the dentinal walls compared to Apexit plus sealer, irrespective of the drying protocol followed. All the drying protocols used did not show statistically significant results in the apical thirds of root canals of all the groups.


Subject(s)
Calcium Hydroxide , Root Canal Filling Materials , Humans , Root Canal Filling Materials/analysis , Root Canal Filling Materials/chemistry , Epoxy Resins/analysis , Epoxy Resins/chemistry , 2-Propanol/analysis , India , Dentin/chemistry
13.
Clin Oral Investig ; 28(3): 195, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38441709

ABSTRACT

OBJECTIVES: To evaluate the cytocompatibility, bioactivity, and anti-inflammatory potential of the new pre-mixed calcium silicate cement-based sealers Bioroot Flow (BrF) and AH Plus Bioceramic Sealer (AHPbcs) on human periodontal ligament stem cells (hPDLSCs) compared to the epoxy resin-based sealer AH Plus (AHP). MATERIALS AND METHODS: Standardized discs and 1:1, 1:2, and 1:4 eluates of BrF, AHPbcs and AHP after setting were prepared. The following assays were performed: cell attachment and morphology via SEM, cell viability via a MTT assay, cell migration/proliferation via a wound-healing assay, cytoskeleton organization via immunofluorescence staining; cytokine release via ELISA; osteo/cemento/odontogenic marker expression via RT-qPCR, and cell mineralized nodule formation via Alizarin Red S staining. HPDLSCs were isolated from extracted third molars from healthy patients. Comparisons were made with hPDLSCs cultured in unconditioned (negative control) or osteogenic (positive control) culture media. Statistical significance was established at p < 0.05. RESULTS: Both BrF and AHPbcs showed significantly positive results in the cytocompatibility assays (cell metabolic activity, migration, attachment, morphology, and cytoskeleton organization) compared with a negative control group, while AHP showed significant negative results. BrF exhibited an upregulation of at least one osteo/cementogenic marker compared to the negative and positive control groups. BrF showed a significantly higher calcified nodule formation than AHPbcs, the negative and positive control groups, while AHPbcs was higher than the negative control group. Both were also significantly higher than AHP group. CONCLUSION: BrF and AHPbcs exhibit adequate and comparable cytocompatibility on hPDLSCs. BrF also promoted the osteo/cementogenic differentiation of hPDLSCs. Both calcium silicate-based sealers favored the downregulation of the inflammatory cytokine IL-6 and the calcified nodule formation from hPDLSCs. BrF exerted a significantly higher influence on cell mineralization than AHPbcs. CLINICAL RELEVANCE: This is the first study to elucidate the biological properties and immunomodulatory potential of Bioroot Flow and AH Plus Bioceramic Sealer. The results act as supporting evidence for their use in root canal treatment.


Subject(s)
Alopecia/congenital , Calcium Compounds , Epoxy Resins , Periodontal Ligament , Root Canal Filling Materials , Silicates , Humans , Cytokines
14.
BMC Oral Health ; 24(1): 352, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38504287

ABSTRACT

BACKGROUND: AH Plus, an epoxy resin-based sealer, is widely used in endodontic practice, owing to its good physical properties that confers longstanding dimensional stability and good adhesion to dentin. Nevertheless, its propensity to trigger inflammation, especially in its freshly mixed state, has been extensively documented. Phytochemicals such as Petasin, Pachymic acid, Curcumin, and Shilajit are known for their anti-inflammatory and analgesic effects. This study aimed to analyze and determine the effect of these natural products on the physical properties of AH Plus sealer when incorporated with the sealer. METHODS: AH Plus (AHR) sealer was mixed with 10% petasin, 0.75% pachymic, 0.5% and 6%shilajit to obtain AHP, AHA, AHC and AHS in the ratio of 10:1 and 5:1 respectively. Five samples of each material were assessed for setting time, solubility, flow, and dimensional stability in accordance with the ISO 6876:2012 standardization. Sealers were characterized through scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy, X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. Statistical evaluation involved the Kolmogorov-Smirnov and Shapiro-Wilks tests for normality and the one-way ANOVA test for analysis. RESULTS: In this investigation, the characterisation analysis revealed a relatively similar microstructure in all the experimental root canal sealers. All experimental groups, excluding the control group, exhibited an increase in flow ranging from 11.9 to 31.4% at a 10:1 ratio. Similarly, for the 5:1 ratio, the increase ranged from 12.02 to 31.83%. In terms of dimensional stability, all groups at the 10:1 ratio showed a decrease compared to the control group. The addition of natural agents to AHR in 10:1 ratio led to a reduction in setting time by 8.9-31.6%, and at a 5:1 ratio, the reduction ranged from 8.1 to 31.5%. However, regarding solubility, the addition of natural agents did not induce any significant alterations. CONCLUSION: Based on the results of this study, it can be concluded that all tested root canal sealers exhibited properties that met the acceptable criteria outlined in the ISO 6876:2012 standardization.


Subject(s)
Curcumin , Minerals , Resins, Plant , Root Canal Filling Materials , Sesquiterpenes , Triterpenes , Humans , Root Canal Filling Materials/chemistry , Curcumin/pharmacology , Epoxy Resins , Materials Testing , Silicates/chemistry , Calcium Compounds/chemistry
15.
J Endod ; 50(5): 659-666, 2024 May.
Article in English | MEDLINE | ID: mdl-38431198

ABSTRACT

INTRODUCTION: To evaluate the push-out bond strength (POBS) of AH Plus sealer to root dentin and the adhesive interface quality after calcium hydroxide (Ca(OH)2) intracanal dressing removal with different final irrigation protocols. METHOD: After root canal instrumentation and irrigation, 40 root canals were filled with Ca(OH)2 and sealed. After 14 days, the specimens were randomly distributed according to the irrigation protocols for Ca(OH)2 removal (n = 10): GH2O (control) - distilled water; GNaOCl - 1% NaOCl; GEDTA - 17% EDTA; GEDTA + NaOCl - 17% EDTA + 1% NaOCl. The root canals were filled with AH Plus sealer and gutta-percha. After 7 days, the roots were sectioned into dentin slices and submitted to POBS test and analysis of the adhesive interface under scanning electron microscope. The POBS data were statistically evaluated (analysis of variance and Tukey test). The Kruskal-Wallis and Mann-Whitney tests were used to analyze the adhesive interface (α = 0.05). RESULTS: GH2O, GNaOCl, and GEDTA + NaOCl had similar POBS values, with higher values on the apical third, in comparison with other thirds (P < .05). A homogeneous and free-of-gaps adhesive interface was observed for GH2O, GNaOCl, and GEDTA + NaOCl, with difference between GH2O and GEDTA (P < .05). GH2O and GEDTA + NaOCl presented higher sealer tags formation (P < .05). CONCLUSION: The final rinse with EDTA for Ca(OH)2 dressing removal had a negative effect on the POBS of the filling material to root dentin. The use of EDTA followed by NaOCl had results similar to the distilled water, providing uniform and free-of-gaps adhesive interface, and a higher number of sealer tags.


Subject(s)
Calcium Hydroxide , Dental Bonding , Dentin , Epoxy Resins , Root Canal Filling Materials , Root Canal Irrigants , Therapeutic Irrigation , Calcium Hydroxide/chemistry , Humans , Dentin/drug effects , Root Canal Filling Materials/chemistry , Epoxy Resins/chemistry , Dental Bonding/methods , Therapeutic Irrigation/methods , Dental Pulp Cavity/drug effects , Microscopy, Electron, Scanning , Sodium Hypochlorite/chemistry , Edetic Acid , Root Canal Preparation/methods , Dental Stress Analysis , Materials Testing
16.
Int J Biol Macromol ; 267(Pt 1): 131189, 2024 May.
Article in English | MEDLINE | ID: mdl-38554924

ABSTRACT

The current study presents the synergistic effects of fibrillated cellulose (FC) and nickel-titanium (NiTi) alloy on the performance properties of smart composites. Epoxy resin was reinforced with loadings of 1 %, 3 %, and 5 % FC and 3 % NiTi. The composites were produced using the casting method. The morphological properties have been analyzed using scanning electron microscopy (SEM). For mechanical properties, yield strength, modulus of elasticity, hardness, and impact energy were determined. The corrosion rate was determined via electrochemical corrosion testing. The recovery test was used to measure the shape-memory of the composites. The self-healing of the artificial defect in the composites was observed using a thermal camera. The yield strength, modulus of elasticity, hardness, and impact energy of composites reinforced with 5 % FC and 3 % NiTi increased by 168.2 %, 290 %, 33.3 %, and 114.3 %, respectively, compared to pure epoxy resin. There has been a 56.3 % decrease in the corrosion rate. The percentage of composites that returned from the final state to the original state after a deformation was 4 %. Self-healing analysis revealed that the scratch defect in composites was healed after 24 h. It is concluded that smart composites can be used in the aviation and automotive industries.


Subject(s)
Alloys , Cellulose , Nickel , Titanium , Cellulose/chemistry , Nickel/chemistry , Titanium/chemistry , Alloys/chemistry , Corrosion , Materials Testing , Epoxy Resins/chemistry , Hardness
17.
Am J Dent ; 37(1): 35-38, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38458981

ABSTRACT

PURPOSE: To assess the push out bond strength (POBS) of a syringe-mixed resin sealer and a premixed bioceramic sealer to root dentin exposed to different gutta-percha (GP) solvents and to determine the mode of failure. METHODS: A total of 200 horizontal root slices (1 mm thickness) were prepared up to size 40, 0.04 taper and randomly divided into four main groups based on solvent (Endosolv, orange oil, chloroform) and control (saline), then subdivided into two subgroups based on sealer type (AH Plus Jet and iRoot SP). Samples were exposed to respective solvents for 5 minutes and after the final rinsing, canal spaces were filled with either AH Plus Jet or iRoot SP. POBS test was performed 2 weeks after incubation and mode of failure following POBS test was evaluated. Data were analyzed using two-way ANOVA and Dunnett post hoc analysis (P< 0.05). Failure mode patterns were categorized as adhesive, cohesive and mixed failures. RESULTS: There was no significant difference (P> 0.05) in POBS between all solvent groups against the control in both AH Plus Jet and iRoot SP groups. Regardless of the use of solvents, AH Plus Jet group had significantly higher bond strength (P< 0.001) compared to iRoot SP group. The predominant mode of failure was mixed failure in all groups irrespective of type of sealer and exposure to solvents. CLINICAL SIGNIFICANCE: This study showed that exposure to gutta-percha solvents (chloroform, orange oil and Endosolv) for 5 minutes did not affect the bond strengths of both iRoot SP (bioceramic sealer) and AH Plus (resin sealer) to root dentin.


Subject(s)
Dental Bonding , Root Canal Filling Materials , Silicates , Gutta-Percha/chemistry , Epoxy Resins/chemistry , Solvents , Chloroform , Syringes , Root Canal Filling Materials/chemistry , Dentin , Materials Testing
18.
BMC Oral Health ; 24(1): 307, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38443910

ABSTRACT

STATEMENT OF PROBLEM: CAD/CAM occlusal veneers have been developed for minimally invasive prosthetic restoration of eroded teeth. Marginal adaptation and fracture resistance are crucial for the long-term survivability and clinical success of such restorations. Virgilite-based lithium disilicate glass-ceramic is a newly introduced material with claims of high strength. However, constructing occlusal veneers from this material of varying thickness has not been investigated. PURPOSE: The current study aimed to assess the impact of CAD/CAM occlusal veneer thickness and materials on marginal adaptation and fracture resistance. MATERIALS AND METHODS: Thirty-two occlusal veneers were constructed and divided into two groups (n = 16) based on the CAD/CAM material into Brilliant Crios and CEREC Tessera. Each group was further subdivided into two subgroups (n = 8) according to the thickness: 0.6 and 0.9 mm. Occlusal veneers were bonded to epoxy resin dies. The marginal gap was evaluated before and after thermodynamic aging. Fracture resistance and failure mode were evaluated for the same samples after aging. Marginal adaptation was analyzed using the Mann-Whitney U test. Fracture resistance was analyzed using Weibull analysis (α = 0.05). RESULTS: The marginal gap was significantly increased following thermodynamic aging for tested groups (P < 0.001). CEREC Tessera showed a significantly higher marginal gap than Brilliant Crios before and after aging for both thicknesses (P < 0.05). CEREC Tessera recorded lower significant fracture load values compared to Brilliant Crios (P < 0.05). CONCLUSIONS: Both CEREC Tessera and Brilliant Crios demonstrated clinically accepted marginal gap values. All groups showed fracture resistance values higher than the average masticatory forces in the premolar region except for 0.6 mm CEREC Tessera. CLINICAL IMPLICATIONS: Reinforced composite occlusal veneers demonstrated more favorable outcomes in terms of marginal gap and fracture resistance at both tested thicknesses compared to virgilite-based lithium disilicate glass-ceramic. Additionally, caution should be exercised during the construction of occlusal veneers from virgilite-based lithium disilicate glass-ceramic with reduced thickness.


Subject(s)
Aging , Bite Force , Humans , Computer-Aided Design , Epoxy Resins , Statistics, Nonparametric
19.
J Contemp Dent Pract ; 25(1): 15-19, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38514426

ABSTRACT

AIM: The aim of this present study was to compare the dislodgement resistance of calcium silicate-based sealer, zinc oxide sealer, and a new sealer combining both zinc oxide and calcium silicate-based sealer in vitro. MATERIALS AND METHODS: 60 single-rooted human teeth were instrumented with F3 Protaper Gold. All endodontic canals were filled using gutta percha cones using the cold lateral condensation technique in combination using one of the mentioned sealers (n = 20 per group). The teeth were divided into three groups: group A consisted of Sealite® Ultra, group B consisted of K-Sealer®, and group C consisted of BioRoot® RC. After 2 months of incubation (37°C, 100% humidity) and after cutting out 2 mm from the most apical portion of the root apex, six slices of 1 mm thickness were generated. Mechanical dislodgement resistance was examined using a universal pressure-testing machine and the push-out bond strength (POBS) was calculated. Specimens were examined under 20× magnification to define the bond failure mode. Statistical analysis was executed using ANOVA, post hoc Turkey test for pairwise comparisons and Kruskal-Wallis tests. RESULTS: The POBS of BioRoot® was significantly higher than the POBS of the two other sealers with a mean of 10.54 MPa ± 2.10 and 5.73 MPa ± 2.34, respectively (p < 0.001). Sealite® and K-Sealer® showed similar results in the median and coronal part. K-Sealer® revealed highest POBS compared with Sealite® in the apical part (p < 0.05). CONCLUSION: The POBS of the zinc oxide and calcium silicate-based sealer was significantly lower compared with calcium silicate. Sealite® and K-Sealer® exhibited almost same results. BioRoot showed the highest POBS of all sealers. CLINICAL SIGNIFICANCE: The current study was needed to evaluate the bond strength of three different cements to dentinal walls, by evaluating their respective POBS in vitro. The findings of this study may provide guidance for the clinician in the selection of an adequate endodontic sealer that guarantees an enhanced adhesive seal between the Gutta-percha and the dentinal canal walls. How to cite this article: Makhlouf MP, El Helou JD, Zogheib CE, et al. Comparative Evaluation of Push-out Bond Strength of Three Different Root Canal Sealers: An In Vitro Study. J Contemp Dent Pract 2024;25(1):15-19.


Subject(s)
Calcium Compounds , Root Canal Filling Materials , Silicates , Zinc Oxide , Humans , Root Canal Filling Materials/chemistry , Epoxy Resins , Dental Pulp Cavity , Gutta-Percha
20.
PLoS One ; 19(3): e0299552, 2024.
Article in English | MEDLINE | ID: mdl-38483853

ABSTRACT

This research aimed to assess the stress distribution in lower premolars that were obturated with BioRoot RCS or AH Plus, with or without gutta percha (GP), and subjected to vertical and oblique forces. One 3D geometric model of a mandibular second premolar was created using SolidWorks software. Eight different scenarios representing different root canal filling techniques, single cone technique with GP and bulk technique with sealer only with occlusal load directions were simulated as follows: Model 1 (BioRoot RCS sealer and GP under vertical load [VL]), Model 2 (BioRoot RCS sealer and GP under oblique load [OL]), Model 3 (AH Plus sealer with GP under VL), Model 4 (AH Plus sealer with GP under OL), Model 5 (BioRoot RCS sealer in bulk under VL), Model 6 (BioRoot RCS in bulk under OL), Model 7 (AH Plus sealer in bulk under VL), and Model 8 (AH Plus sealer in bulk under OL). A static load of 200 N was applied at three occlusal contact points, with a 45° angle from lingual to buccal. The von Mises stresses in root dentin were higher in cases where AH Plus was used compared to BioRoot RCS. Furthermore, shifting the load to an oblique direction resulted in increased stress levels. Replacing GP with sealer material had no effect on the dentin maximum von Mises stress in BioRoot RCS cases. Presence of a core material resulted in lower stress in dentin for AH Plus cases, however, it did not affect the stress levels in dentin for cases filled with BioRoot RCS. Stress distribution in the dentin under oblique direction was higher regardless of sealer or technique used.


Subject(s)
Calcium Compounds , Root Canal Filling Materials , Epoxy Resins , Dental Pulp Cavity , Finite Element Analysis , Materials Testing , Gutta-Percha , Silicates
SELECTION OF CITATIONS
SEARCH DETAIL
...