Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 542
Filter
1.
Phytochemistry ; 222: 114070, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38574957

ABSTRACT

Ten ergostane-type steroids, including seven undescribed ones named spectasteroids A-G, were obtained from Aspergillus spectabilis. Their structures and absolute configurations were determined based on HRESIMS, NMR, ECD calculations, and single-crystal X-ray diffraction analyses. Structurally, spectasteroid A was a unique example of aromatic ergostane-type steroid that featured a rare peroxide ring moiety; spectasteroid B contained a rare oxetane ring system formed between C-9 and C-14; and spectasteroid C was an unusual 3,4-seco-ergostane steroid with an extra lactone ring between C-3 and C-9. Spectasteroids F and G specifically showed inhibitory effects against concanavalin A-induced T lymphocyte proliferation and lipopolysaccharide-induced B lymphocyte proliferation, with IC50 values ranging from 2.33 to 4.22 µM. Spectasteroid F also showed excellent antimultidrug resistance activity, which remarkable enhanced the inhibitory activity of PTX on the colony formation of SW620/Ad300 cells.


Subject(s)
Aspergillus , Immunosuppressive Agents , Peroxides , Aspergillus/chemistry , Immunosuppressive Agents/pharmacology , Immunosuppressive Agents/chemistry , Immunosuppressive Agents/isolation & purification , Peroxides/chemistry , Peroxides/pharmacology , Peroxides/isolation & purification , Molecular Structure , Humans , Lactones/chemistry , Lactones/pharmacology , Lactones/isolation & purification , Ergosterol/chemistry , Ergosterol/pharmacology , Ergosterol/isolation & purification , Ergosterol/analogs & derivatives , Cell Proliferation/drug effects , Ethers, Cyclic/chemistry , Ethers, Cyclic/pharmacology , Ethers, Cyclic/isolation & purification , Structure-Activity Relationship , Dose-Response Relationship, Drug , Mice , T-Lymphocytes/drug effects
2.
Phytochemistry ; 222: 114052, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38518849

ABSTRACT

A chemical investigation on the fruiting bodies of Ganoderma lucidum led to the isolation and identification of five undescribed ergosteroids including two des-D-steroids (3 and 4) and one rare 6/6/7/5-fused carbon skeletal ergosterol (5) along with one 19-nor labdane-type diterpenoid (6). Their structures including their absolute configurations, were assigned by spectroscopic methods, ECD calculations, and X-ray diffraction analysis. In addition, the anti-inflammatory activities of all the isolates were evaluated. The results indicated that compound 1 can significantly down-regulate the protein expression of iNOS and COX-2 at 20 µM in LPS- stimulated RAW264.7 cells.


Subject(s)
Diterpenes , Ergosterol , Reishi , Mice , Diterpenes/pharmacology , Diterpenes/chemistry , Diterpenes/isolation & purification , Animals , RAW 264.7 Cells , Reishi/chemistry , Ergosterol/pharmacology , Ergosterol/analogs & derivatives , Ergosterol/chemistry , Ergosterol/isolation & purification , Molecular Structure , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Lipopolysaccharides/pharmacology , Lipopolysaccharides/antagonists & inhibitors , Cyclooxygenase 2/metabolism , Structure-Activity Relationship , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type II/antagonists & inhibitors , Dose-Response Relationship, Drug , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/isolation & purification , Down-Regulation/drug effects
3.
Int J Food Microbiol ; 415: 110639, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38417281

ABSTRACT

Aflatoxin B1 (AFB1) is one of the most hazardous mycotoxins for humans and livestock that mainly produced by members of the genus Aspergillus in a variety of food commodities. In this study, the effect of S. rosmarinus, T. fruticulosum, and T. caucasicum essential oils (EOs) was studied on fungal growth, AFB1 production and aflR gene expression in toxigenic A. flavus IPI 247. The AFB1 producer A. flavus strain was cultured in YES medium in presence of various two-fold concentrations of the plant EOs (62.5-500 µg/mL) for 4 days at 28 °C. EO composition of plants was analyzed by Gas Chromatography/Mass Spectrometry (GC/MS). The amount of fungal growth, ergosterol content of fungal mycelia and AFB1 content of EO-treated and non-treated controls were measured. The expression of aflR gene was evaluated using Real-time PCR in the fungus exposed to minimum inhibitory concentration (MIC50) of EOs. The main constituents of the oils analyzed by GC/MS analysis were elemicin (33.80 %) and 2,3-dihydro farnesol (33.19 %) in T. caucasicum, 1,8-cineole (17.87 %), trans-caryophyllene (11.14 %), α and ẞ-pinene (10.92 and 8.83 %) in S. rosmarinus, and camphor (17.65 %), bornyl acetate (15.08 %), borneol (12.48 %) and camphene (11.72 %) in T. fruticulosum. The results showed that plant EOs at the concentration of 500 µg/mL suppressed significantly the fungal growth by 35.24-71.70 %, while mycelial ergosterol content and AFB1 production were inhibited meaningfully by 36.20-65.51 % and 20.61-89.16 %. T. caucasicum was the most effective plant, while T. fruticulosum showed the lowest effectiveness on fungal growth and AFB1 production. The expression of aflR in T. caucasicum and S. rosmarinus -treated fungus was significantly down-regulated by 2.85 and 2.12 folds, respectively, while it did not change in T. fruticulosum-treated A. flavus compared to non-treated controls. Our findings on the inhibitory activity of T. caucasicum and S. rosmarinus EOs toward A. flavus growth and AFB1 production could promise these plants as good candidates to control fungal contamination of agricultural crops and food commodities and subsequent contamination by AFB1. Down-regulation of aflR as the key regulatory gene in AF biosynthesis pathway warrants the use of these plants in AF control programs. Further studies to evaluate the inhibitory activity of studied plants EOs in food model systems are recommended.


Subject(s)
Oils, Volatile , Rosmarinus , Salvia , Tripleurospermum , Humans , Aspergillus flavus/metabolism , Aflatoxin B1 , Oils, Volatile/pharmacology , Rosmarinus/chemistry , Tripleurospermum/genetics , Gene Expression , Ergosterol/metabolism , Ergosterol/pharmacology , Antifungal Agents/pharmacology
4.
Pest Manag Sci ; 80(4): 1981-1990, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38087429

ABSTRACT

BACKGROUND: Sclerotinia stem rot caused by Sclerotinia sclerotiorum seriously endangers oilseed rape production worldwide, and the occurrence of fungicide-resistant mutants of S. sclerotiorum leads to control decline. Thus, it is critical to explore new green substitutes with different action mechanisms and high antifungal activity. Herein, the activity and the action mechanism of natamycin against S. sclerotiorum were evaluated. RESULTS: Natamycin showed potent inhibition on the mycelial growth of S. sclerotiorum, and half-maximal effective concentration (EC50 ) values against 103 S. sclerotiorum strains ranged from 0.53 to 4.04 µg/mL (mean 1.44 µg/mL). Natamycin also exhibited high efficacy against both carbendazim- and dimethachlone-resistant strains of S. sclerotiorum on detached oilseed rape leaves. No cross-resistance was detected between natamycin and carbendazim. Natamycin markedly disrupted hyphal form, sclerotia formation, integrity of the cell membrane, and reduced the content of oxalic acid and ergosterol, whereas it increased the reactive oxygen species (ROS) and malondialdehyde content. Interestingly, exogenous addition of ergosterol could reduce the inhibition of natamycin against S. sclerotiorum. Importantly, natamycin significantly inhibited expression of the Cyp51 gene, which is contrary to results for the triazole fungicide flusilazole, indicating a different action mechanism from triazole fungicides. CONCLUSION: Natamycin is a promising effective candidate for the resistance management of S. sclerotiorum. © 2023 Society of Chemical Industry.


Subject(s)
Ascomycota , Benzimidazoles , Biological Products , Brassica napus , Carbamates , Fungicides, Industrial , Natamycin/pharmacology , Natamycin/metabolism , Biological Products/pharmacology , Fungicides, Industrial/pharmacology , Fungicides, Industrial/metabolism , Ergosterol/metabolism , Ergosterol/pharmacology , Triazoles/pharmacology
5.
J Asian Nat Prod Res ; 26(1): 52-58, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37947812

ABSTRACT

Two previously undescribed ergosterols containing a highly conjugated ring system, psathrosterols A and B (1 and 2), have been isolated from the fungus Psathyrella rogueiana. Their structures with absolute configurations were established by extensive spectroscopic methods, as well as single crystal X-ray diffraction. Compounds 1 and 2 showed inhibitory activity against NO production with IC50 values of 22.3 and 16.4 µM, respectively.


Subject(s)
Agaricales , Molecular Structure , Anti-Inflammatory Agents/pharmacology , Crystallography, X-Ray , Ergosterol/pharmacology
6.
Int Microbiol ; 27(2): 423-434, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37481507

ABSTRACT

Candida spp. is a significant cause of topical and fungal infections in humans. In addition to Candida albicans, many non-albicans species such as C. krusei, C. glabrata, C. parapsilosis, C. tropicalis, C. guilliermondii cause severe infections. The main antifungal agents belong to three different classes, including azoles, polyenes, and echinocandins. However, resistance to all three categories of drugs has been reported. Therefore, there is an urgent need to search for other alternatives with antifungal activity. Many herbal extracts and compounds from natural sources show excellent antifungal activity. In this study, we used an oil extract from the fruits of Zanthoxylum armatum, which showed significant antifungal activity against various Candida spp. by two different methods-minimum inhibitory concentration (MIC) and agar diffusion. In addition, we attempted to explore the possible mechanism of action in C. albicans. It was found that the antifungal activity of Z. armatum oil is fungicidal and involves a decrease in the level of ergosterol in the cell membrane. The decrease in ergosterol level resulted in increased passive diffusion of a fluorescent molecule, rhodamine6G, across the plasma membrane, indicating increased membrane fluidity. The oil-treated cells showed decreased germ tube formation, an important indicator of C. albicans' virulence. The fungal cells also exhibited decreased attachment to the buccal epithelium, the first step toward invasion, biofilm formation, and damage to oral epithelial cells. Interestingly, unlike most antifungal agents, in which the generation of reactive oxygen species is responsible for killing, no significant effect was observed in the present study.


Subject(s)
Antifungal Agents , Zanthoxylum , Humans , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Candida , Reactive Oxygen Species , Fruit , Candida albicans , Microbial Sensitivity Tests , Candida glabrata , Ergosterol/pharmacology , Drug Resistance, Fungal
7.
Eur J Pharmacol ; 963: 176269, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38096966

ABSTRACT

This study aimed to comparatively investigate the anti-tumor mechanisms of steroids including ergosterol, ß-sitosterol, cholesterol, and fucosterol. The model of H22 tumor-bearing mice was constructed based on histopathological data and biochemical parameters, while serums were subjected to metabolomics analysis to study the potential anti-tumor mechanisms. The results indicated that the four steroids exhibited different degrees of anti-tumor effects on H22 mice. The tumor inhibition rates were 63.25% for ergosterol, 56.41% for ß-sitosterol, 61.54% for cholesterol, and 72.65% for fucosterol. Metabolomic analyses revealed that 87, 71, and 129 differential metabolites were identified in ergosterol, cholesterol, and fucosterol treatment groups, respectively. The fucosterol treatment group had the highest number of differential metabolites. At the same time, it mainly inhibited purine and amino acid metabolism to exert anti-tumor effects. Ergosterol enhanced immunity and affected pyruvate metabolism, and cholesterol inhibited purine metabolism. The chemical structure difference among ergosterol, cholesterol, and fucosterol is mainly at the number and position of sterol double bonds and the number and length of side chain carbons. Therefore, there is a structure-activity relationship between the structure of steroid compounds and their efficacy. This study provides a key foundation for the exploitation of the anti-tumor effects of steroids derived from different organisms.


Subject(s)
Cholesterol , Steroids , Mice , Animals , Steroids/pharmacology , Steroids/therapeutic use , Cholesterol/metabolism , Ergosterol/pharmacology , Ergosterol/therapeutic use , Ergosterol/chemistry , Structure-Activity Relationship , Purines
8.
PLoS One ; 18(12): e0295922, 2023.
Article in English | MEDLINE | ID: mdl-38153954

ABSTRACT

Candidal infections, particularly vulvovaginal candidiasis (VVC), necessitate effective therapeutic interventions in clinical settings owing to their intricate clinical nature and elusive understanding of their etiological mechanisms. Given the challenges in developing effective antifungal therapies, the strategy of repurposing existing pharmaceuticals has emerged as a promising approach to combat drug-resistant fungi. In this regard, the current study investigates molecular insights on the anti-candidal efficacy of a well-proven anticancer small molecule -3-bromopyruvate (3BP) against three clinically significant VVC causing Candida species viz., C. albicans, C. tropicalis and C. glabrata. Furthermore, the study validates 3BP's therapeutic application by developing it as a vaginal cream for the treatment of VVC. 3BP exhibited phenomenal antifungal efficacy (killing >99%) with minimum inhibitory concentrations (MIC) and minimum fungicidal concentrations (MFC) of 256 µg/mL against all tested Candida spp. Time killing kinetics experiment revealed 20 min as the minimum time required for 3BP at 2XMIC to achieve complete-killing (99.9%) in all Candida strains. Moreover, the ergosterol or sorbitol experiment explicated that the antifungal activity of 3BP does not stem from targeting the cell wall or the membrane component ergosterol. Instead, 3BP was observed to instigate a sequence of pre-apoptotic cascade events, such as phosphatidylserine (PS) externalization, nuclear condensation and ROS accumulations, as evidenced by PI, DAPI and DCFH-DA staining methods. Furthermore, 3BP demonstrated a remarkable efficacy in eradicating mature biofilms of Candida spp., achieving a maximum eradication level of 90%. Toxicity/safety profiling in both in vitro erythrocyte lysis and in vivo Galleria mellonella survival assay authenticated the non-toxic nature of 3BP up to 512 µg/mL. Finally, a vaginal cream formulated with 3BP was found to be effective in VVC-induced female mice model, as it significantly decreasing fungal load and protecting vaginal mucosa. Concomitantly, the present study serves as a clear demonstration of antifungal mechanistic action of anticancer drug -3BP, against Candida species. This finding holds significant potential for mitigating candidal infections, particularly VVC, within healthcare environments.


Subject(s)
Candidiasis, Vulvovaginal , Candidiasis , Female , Mice , Humans , Animals , Candidiasis, Vulvovaginal/drug therapy , Candidiasis, Vulvovaginal/prevention & control , Candidiasis, Vulvovaginal/microbiology , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Reactive Oxygen Species/pharmacology , Vaginal Creams, Foams, and Jellies/pharmacology , Candida , Candidiasis/drug therapy , Candidiasis/prevention & control , Candida glabrata , Candida tropicalis , Ergosterol/pharmacology , Candida albicans , Microbial Sensitivity Tests
9.
Biotechnol Lett ; 45(11-12): 1555-1563, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37910278

ABSTRACT

OBJECTIVES: The aim was to screen di- and triterpenes as potential biocides against fungal pathogens (Alternaria sp., Fusarium avenaceum, F. sambucinum, Botrytis cinerea, Botryotina fuckeliana, Mycocentrospora acerina, Cylindrocarpon sp.) and oomycetes (Phytophthora cactorum, P. fragariae). Results We measured the antifungal activity of terpenes by estimating the growth area, ergosterol content and level of lipid peroxidation. Fungi and oomycetes were grown on solid media in Petri dishes. As a positive control, we used a common synthetic fungicide, fosetyl-Al. Di- and triterpenes showed promising potential as biocides against most of the studied species. The responses of fungi and oomycetes were dependent on the specific type of terpenes and identity of the fungi. Compared to synthetic fungicide, terpenes were equally effective as antifungal agents and even more effective for some species, especially for oomycetes. The terpene mode of action includes inhibition of ergosterol synthesis and increased lipid peroxidation. Conclusions Di- and triterpenes, natural compounds that are very abundant in northern countries, are excellent candidates for biocides.


Subject(s)
Diterpenes , Fungicides, Industrial , Phytophthora , Triterpenes , Fungicides, Industrial/pharmacology , Triterpenes/pharmacology , Fungi , Antifungal Agents/pharmacology , Diterpenes/pharmacology , Ergosterol/pharmacology
10.
PLoS One ; 18(11): e0293290, 2023.
Article in English | MEDLINE | ID: mdl-37930969

ABSTRACT

Leishmaniasis is a vector-borne parasitic infection caused by the infective bite of female Phlebotomine sandflies. Treatment of leishmaniasis by conventional synthetic compounds is met by challenges pertaining to adverse effects which call for the discovery of newer anti-leishmanial molecules. This study was performed to evaluate the effect and modes of action of a sesquiterpene alcoholic molecule Farnesol on Leishmania major, the causative agent of Zoonotic CL. The cytotoxic effect of Farnesol against L.major promastigotes, amastigotes and macrophages was assessed by MTT test and counting. The IC50 on promastigotes by Farnesol on L.major was also evaluated by flow cytometry. In the findings, promastigotes were reduced at 167µM. The mean numbers of L.major amastigotes in macrophages were significantly decreased on exposure to Farnesol at 172µM. In addition, Farnesol induced significant apoptosis dose-dependent on L.major promastigotes. In silico protein-ligand_binding analyses indicated the effect of Farnesol in perturbation of the ergosterol synthesis pathway of Leishmania with attributes suggesting inhibition of Lanosterol-α-demethylase, the terminal enzyme of ergosterol synthesis machinery. Findings from flow cytometry reveal the role of Farnesol in apoptosis-induced killing in promastigotes. Farnesol was effective at very lower concentrations when compared to Paromomycin. Further studies are crucial to evaluate the therapeutic potential of Farnesol alone or in combination with other conventional drugs in animal models.


Subject(s)
Anti-Infective Agents , Antiprotozoal Agents , Leishmania major , Leishmaniasis , Animals , Female , Antiparasitic Agents/pharmacology , Farnesol/pharmacology , Anti-Infective Agents/pharmacology , Leishmaniasis/drug therapy , Ergosterol/pharmacology , Antiprotozoal Agents/pharmacology
11.
Biol Pharm Bull ; 46(12): 1683-1691, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37779053

ABSTRACT

Dyslipidemia is a lifestyle-related (physical inactivity or obesity) disease; therefore, dietary foods that can easily be consumed in daily life is important to prevent dyslipidemia. Ergosterol, a precursor of vitamin D2, is a fungal sterol present in the membranes of edible mushrooms and other fungi. Ergosterol is converted to brassicasterol by 7-dehydrocholesterol reductase (DHCR7), a cholesterol biosynthesis enzyme that converts 7-dehydrocholesterol (a precursor of vitamin D3) into cholesterol. Previously, we reported that ergosterol increases 7-dehydrocholesterol, decreases cholesterol levels by competitive effect of DHCR7, and reduces DHCR7 mRNA and protein levels in human HepG2 hepatoma cells. Here, we investigated the effects of long-term high ergosterol intake on the cholesterol, vitamin D2, and D3 biosynthetic pathways of rats fed a high-fat and high-sucrose (HFHS) diet using GC-MS and LC with tandem mass spectrometry. In HFHS rats, oral ergosterol administration for 14 weeks significantly decreased plasma low-density lipoprotein cholesterol, total bile acid, and cholesterol precursor (squalene and desmosterol) levels and increased 7-dehydrocholesterol levels compared to HFHS rats without ergosterol. Ergosterol, brassicasterol, and vitamin D2 were detected, cholesterol levels were slightly decreased, and levels of vitamin D3 and its metabolites were slightly increased in rats fed HFHS with ergosterol. These results showed that ergosterol increased vitamin D2 levels, inhibited the cholesterol biosynthetic pathway, and possibly promoted vitamin D3 biosynthesis in vivo. Therefore, daily ergosterol intake may aid in the prevention of dyslipidemia.


Subject(s)
Dyslipidemias , Vitamin D , Rats , Humans , Animals , Ergosterol/pharmacology , Biosynthetic Pathways , Sucrose , Vitamins/pharmacology , Cholesterol/metabolism , Cholecalciferol , Diet , Diet, High-Fat/adverse effects
12.
Phytochemistry ; 213: 113785, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37393972

ABSTRACT

Quadristerols A-G, seven undescribed ergosterols, were obtained from Aspergillus quadrilineata. Their structures and absolute configurations were determined based on HRESIMS, NMR, quantum-chemical calculations, and single-crystal X-ray diffraction analyses. Quadristerols A-G featured ergosterol skeletons with different attachments; quadristerols A-C were three diastereoisomers possessing a 2-hydroxy-propionyloxy group at C-6, and quadristerols D-G were two pairs of epimers with a 2,3-butanediol group at C-6. All of these compounds were evaluated for their immunosuppressive activities in vitro. Quadristerols B and C showed excellent inhibitory effects against concanavalin A-induced T lymphocyte proliferation with IC50 values of 7.43 and 3.95 µM, respectively, and quadristerols D and E strongly inhibited lipopolysaccharide-induced B lymphocyte proliferation with IC50 values of 10.96 and 7.47 µM, respectively.


Subject(s)
Aspergillus , Ergosterol , Crystallography, X-Ray , Magnetic Resonance Spectroscopy , Ergosterol/pharmacology , Aspergillus/chemistry , Molecular Structure
13.
Anal Chem ; 95(26): 9901-9913, 2023 07 04.
Article in English | MEDLINE | ID: mdl-37310727

ABSTRACT

Candida albicans (C. albicans), a major fungal pathogen, causes life-threatening infections in immunocompromised individuals. Fluconazole (FLC) is recommended as first-line therapy for treatment of invasive fungal infections. However, the widespread use of FLC has resulted in increased antifungal resistance among different strains of Candida, especially C. albicans, which is a leading source of hospital-acquired infections. Here, by hyperspectral stimulated Raman scattering imaging of single fungal cells in the fingerprint window and pixel-wise spectral unmixing, we report aberrant ergosteryl ester accumulation in azole-resistant C. albicans compared to azole-susceptible species. This accumulation was a consequence of de novo lipogenesis. Lipid profiling by mass spectroscopy identified ergosterol oleate to be the major species stored in azole-resistant C. albicans. Blocking ergosterol esterification by oleate and suppressing sterol synthesis by FLC synergistically suppressed the viability of C. albicans in vitro and limited the growth of biofilm on mouse skin in vivo. Our findings highlight a metabolic marker and a new therapeutic strategy for targeting azole-resistant C. albicans by interrupting the esterified ergosterol biosynthetic pathway.


Subject(s)
Antifungal Agents , Candida albicans , Animals , Mice , Antifungal Agents/chemistry , Azoles/pharmacology , Azoles/metabolism , Spectrum Analysis, Raman , Esters/metabolism , Oleic Acid/metabolism , Microbial Sensitivity Tests , Fluconazole/metabolism , Ergosterol/pharmacology , Ergosterol/metabolism
14.
J Nat Prod ; 86(6): 1385-1391, 2023 06 23.
Article in English | MEDLINE | ID: mdl-37294628

ABSTRACT

Spectasterols A-E (1-5), aromatic ergosterols with unique ring systems, were isolated from Aspergillus spectabilis. Compounds 1 and 2 possess a 6/6/6/5/5 ring system with an additional cyclopentene, while 3 and 4 have an uncommon 6/6/6/6 ring system generated by the D-ring expansion via 1,2-alkyl shifts. Compound 3 exhibited cytotoxic activity (IC50 6.9 µM) and induced cell cycle arrest and apoptosis in HL60 cells. Compound 3 was anti-inflammatory; it decreased COX-2 levels at the transcription and protein levels and inhibited the nuclear translocation of NF-κB p65.


Subject(s)
Aspergillus , NF-kappa B , Humans , NF-kappa B/metabolism , Aspergillus/metabolism , Anti-Inflammatory Agents/pharmacology , Apoptosis , Ergosterol/pharmacology
15.
J Hosp Infect ; 137: 17-23, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37116661

ABSTRACT

BACKGROUND: Candida auris persists in the environment despite disinfection. Its survival on various environmental surfaces and the effect of sublethal concentrations of disinfectants on C. auris has not been studied. AIM: To investigate the survival of C. auris on environmental surfaces, and the effect of sublethal concentrations of disinfectants. METHODS: Surface material blocks were fabricated and artificially contaminated with C. auris. Viable counts were assessed for 3 weeks. In addition, C. auris cells were pulsed daily with disinfectants for 15 days, and minimum inhibitory concentrations (MICs) were determined. Ergosterol quantities and efflux pump assays were performed on disinfectant-exposed strains using standard methods. RESULTS: C. auris survived on all the surfaces for >3 weeks, with the lowest count of 2.3 log colony-forming units, regardless of wet or dry conditions. Wet wood supported the growth of C. auris (a 1 log increase), whereas dry wood inhibited this organism (both P<0.01). In the biofilm form, C. auris flourished on all surfaces. Although the MICs increased in C. auris cells pulsed with sodium dichloroisocyanurate and benzalkonium chloride, only C. auris exposed to benzalkonium chloride showed decreased ergosterol content and an activated efflux pump. CONCLUSIONS: Although C. auris survived on all tested surfaces, survival on wet wood was remarkable. C. auris pulsed with benzalkonium chloride developed some degree of tolerance to disinfectant and showed efflux pump activation, suggesting the development of low-level resistance.


Subject(s)
Disinfectants , Humans , Disinfectants/pharmacology , Candida , Candida auris , Benzalkonium Compounds/pharmacology , Ergosterol/pharmacology , Microbial Sensitivity Tests , Antifungal Agents/pharmacology
16.
J Biomol Struct Dyn ; 41(23): 14473-14483, 2023.
Article in English | MEDLINE | ID: mdl-36974957

ABSTRACT

Visceral leishmaniasis (VL) is an infectious disease caused by Leishmania donovani parasite in Indian subcontinent and is life-threatening. It primarily inflicts the malnourished population. There is little therapeutic advancement in the last one decade or more, as the available drugs show adverse effects, complex long treatment, high cost and drug resistance. Here, in a concerted approach, we intended to address the malnutrition as well as the parasite load with a single modality. Our earlier findings show the protective effects of retinoic acid (RA) in controlling the parasite load in infected macrophages (mφ) and restores their M1 phenotype. RA also restores the levels of cellular cholesterol in infected mφ. In this process, we observed loss of ergosterol in the parasite upon treatment with RA. Hence, we hypothesized that RA, besides boosting the parasiticidal mechanism in mφ, may also target the sterol pathway in the parasite by targeting sterol 24-C methyltransferase (SMT). SMT plays an essential role in the formation of ergosterol, required for growth and viability in Leishmania species. Therefore, we predicted as well as validated the 3D structure of SMT protein and performed the quality check. RA showed -9.9 free binding energy towards SMT which is higher than any of its derivatives. The molecular dynamics showed stable conjugate and the in vitro testing showed a reduction by ∼ twofold in the parasite number upon RA treatment. Importantly, it showed a loss of ergosterol possibly due to the inhibition of SMT protein. Our finding showed direct parasiticidal function of RA which is of significance in terms of therapeutic advancement.Communicated by Ramaswamy H. Sarma.


Subject(s)
Leishmania donovani , Leishmaniasis, Visceral , Humans , Tretinoin/pharmacology , Ergosterol/pharmacology , Ergosterol/metabolism , Ergosterol/therapeutic use , Leishmaniasis, Visceral/drug therapy , Leishmaniasis, Visceral/parasitology , Cholesterol
17.
Pest Manag Sci ; 79(8): 2801-2810, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36929618

ABSTRACT

BACKGROUND: Phytopathogenic fungi can cause a direct loss in economic value of agriculture. Especially Valsa mali Miyabe et Yamada, a devastating phytopathogenic disease especially threatening global apple production, is very difficult to control and manage. To discover new potential antifungal agents, a series of thiosemicarbazone derivatives of 3-acetyl-N-benzylindoles were prepared. Their antifungal activities were first tested against six typically phytopathogenic fungi including Curvularia lunata, Valsa mali, Alternaria alternate, Fusarium graminearum, Botrytis cinerea and Fusarium solani. Then their mechanism of action against V. mali was investigated. RESULTS: Derivatives displayed potent antifungal activity against V. mali. Notably, 3-acetyl-N-benzylindole thiosemicarbazone (IV-1: EC50 : 0.59 µg mL-1 ), whose activity was comparable to that of a commercial fungicide carbendazim (EC50 : 0.33 µg mL-1 ), showed greater than 98-fold antifungal activity of the precursor indole. Moreover, compound IV-1 displayed good protective and therapeutic effects on apple Valsa canker disease. By scanning electron microscope (SEM) and RNA-Seq analysis, it was demonstrated that compound IV-1 can destroy the hyphal structure and regulate the homeostasis of metabolism of V. mali via the ergosterol biosynthesis and autophagy pathways. CONCLUSION: 3-Acetyl-N-(un)substituted benzylindoles thiosemicarbazones (IV-1-IV-5) can be studied as leads for further structural modification as antifungal agents against V. mali. Particularly, these ergosterol biosynthesis and autophagy pathways can be used as target receptors for design of novel green pesticides for management of congeneric phytopathogenic fungi. © 2023 Society of Chemical Industry.


Subject(s)
Ascomycota , Biological Products , Fungicides, Industrial , Thiosemicarbazones , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Thiosemicarbazones/pharmacology , Biological Products/pharmacology , Crop Protection , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Ergosterol/pharmacology , Structure-Activity Relationship
18.
Steroids ; 191: 109157, 2023 03.
Article in English | MEDLINE | ID: mdl-36549636

ABSTRACT

Four ergosterol derivatives, named tricholosterols A-D (1-4), have been isolated from the fruiting bodies of Tricholoma terreum. Their chemical structures have been determined using a combination of spectroscopic analysis as well as computational methods. Compound 1 possesses a rare D-ring opening ergosterol skeleton, while compounds 2-4 are rare degraded ergosterols. Compounds 1 and 4 exhibited moderate inhibitory activity against NO production with IC50 values of 27.6 and 31.8 µM, respectively. This is the first report of steroids from T. terreum.


Subject(s)
Ergosterol , Nitric Oxide , Tricholoma , Ergosterol/chemistry , Ergosterol/isolation & purification , Ergosterol/pharmacology , Fruiting Bodies, Fungal/chemistry , Tricholoma/chemistry , Tricholoma/metabolism , Nitric Oxide/antagonists & inhibitors
19.
Phytochemistry ; 206: 113552, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36481313

ABSTRACT

In this study, we described the isolation of an 8,14-secoergostane-type, a 9,11-secoergostane-type, and three ergostane-type steroids from the fruiting bodies of Pleurotus cornucopiae var. citrinopileatus. The structure of (22Z)-3ß,5α,11-trihydroxy-9,11-secoergosta-7,22-diene-6,9-dione, previously reported, have been revised to (22E). Their structures were established using NMR, UV, IR, and mass spectroscopic analyses. Three of the isolated compounds were found to exhibit inhibitory activity on the production of nitric oxide in lipopolysaccharide-stimulated RAW264.7 macrophages with IC50 values of 21.3, 17.6, and 23.1 µM, respectively.


Subject(s)
Ergosterol , Pleurotus , Ergosterol/pharmacology , Ergosterol/chemistry , Steroids/pharmacology , Steroids/chemistry , Pleurotus/chemistry
20.
Pest Manag Sci ; 79(4): 1324-1330, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36424479

ABSTRACT

BACKGROUND: Fusarium fujikuroi is the pathogenic agent of rice bakanae disease and has developed serious resistance to prochloraz, a 14α-demethylase inhibitor (DMI). Prochloraz resistance in F. fujikuroi is caused by cooperation between FfCyp51B with Cyp51A and shows cross-resistance only to prothioconazole but not to tebuconazole, difenoconazole, propiconazole, metconazole, hexaconazole, and triadimefon. This study aimed to analyze the functions of the three Cyp51s in F. fujikuroi, especially their role in determining sensitivity to DMIs. RESULTS: The respective deletion of FfCyp51A, Cyp51B, and Cyp51C had no obvious effect on morphology, conidium germination, or pathogenicity. The involvement of growth, growth and ergosterol biosynthesis, and conidium production and ergosterol biosynthesis was observed for FfCyp51A, Cyp51B, and Cyp51C, respectively. Compared with the sensitive isolate of F. fujikuroi, the effect on sensitivity to the tested DMIs was divided into four groups: (i) both of Cyp51A and Cyp51B positively regulate the sensitivity to prochloraz and prothioconazole; (ii) Cyp51B positively regulate the sensitivity to tebuconazole and metconazole, but negatively regulate the sensitivity to difenoconazole; (iii) Cyp51A and Cyp51B play opposite roles in the sensitivity to triadimefon. Therefore, deletion of Cyp51A in F. fujikuroi confers a higher sensitivity to triadimefon, while deletion of Cyp51B results in a triadimefon-resistant mutant isolate; (iv) deletion of Cyp51B yielded a mutant isolate that was more resistant to propiconazole and hexaconazole. CONCLUSION: Sophisticated interactions exist within the three Cyp51 genes to DMIs fungicides sensitivity in F. fujikuroi, and Cyp51B probably plays a more critical role than Cyp51A and Cyp51C. © 2022 Society of Chemical Industry.


Subject(s)
Fungicides, Industrial , Fusarium , Fungicides, Industrial/pharmacology , Ergosterol/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...