Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 164
Filter
1.
Article in English | MEDLINE | ID: mdl-39082481

ABSTRACT

Neonatal sepsis leads to severe morbidity and occasionally death among neonates within the first week following birth, particularly in low- and middle-income countries. Empirical therapy includes antibiotics recommended by WHO. However, these have been ineffective against antimicrobial multidrug-resistant bacterial strains such as Klebsiella spp, Escherichia coli, and Staphylococcus aureus species. To counter this problem, new molecules and alternative sources of compounds with antibacterial activity are sought as options. Actinobacteria, particularly pathogenic strains, have revealed a biotechnological potential still underexplored. This study aimed to determine the presence of biosynthetic gene clusters and the antimicrobial activity of actinobacterial strains isolated from clinical cases against multidrug-resistant bacteria implicated in neonatal sepsis. In total, 15 strains isolated from clinical cases of actinomycetoma were used. PCR screening for the PKS-I, PKS-II, NRPS-I, and NRPS-II biosynthetic systems determined their secondary metabolite-producing potential. The strains were subsequently assayed for antimicrobial activity by the perpendicular cross streak method against Escherichia fergusonii Sec 23, Klebsiella pneumoniae subsp. pneumoniae H1064, Klebsiella variicola H776, Klebsiella oxytoca H793, and Klebsiella pneumoniae subsp. ozaenae H7595, previously classified as multidrug-resistant. Finally, the strains were identified by 16S rRNA gene sequence analysis. It was found that 100% of the actinobacteria had biosynthetic systems. The most frequent biosynthetic system was NRPS-I (100%), and the most frequent combination was NRPS-I and PKS-II (27%). All 15 strains showed antimicrobial activity. The strain with the highest antimicrobial activity was Streptomyces albus 94.1572, as it inhibited the growth of the five multidrug-resistant bacteria evaluated.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Microbial Sensitivity Tests , Neonatal Sepsis , Nocardia , Streptomyces , Anti-Bacterial Agents/pharmacology , Humans , Infant, Newborn , Neonatal Sepsis/microbiology , Nocardia/drug effects , Nocardia/genetics , Nocardia/isolation & purification , Streptomyces/genetics , Klebsiella/drug effects , Klebsiella pneumoniae/drug effects , Escherichia/drug effects , Polymerase Chain Reaction
2.
Int J Food Microbiol ; 421: 110790, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38878707

ABSTRACT

The objective of this study was to evaluate the occurrence of E. coli in hunted wild boars in Sardinia (Italy) and to further characterize the isolates with Whole Genome Sequencing to assess the genetic relatedness and the presence of virulence and antimicrobial resistance (AMR) genes. Samples were taken from 66 wild boars between 2020 and 2022 slaughtered in five hunting houses. A total of 181 samples were tested, including 66 samples from mesenteric lymph nodes, 66 samples from colon content and 49 samples from carcass surface. Isolates referable to Escherichia species were detected in all of the wild boars sampled. On a selection of 61 isolates, sequencing was conducted and antimicrobial susceptibility was tested. Among these, three isolates were confirmed to be two Escherichia marmotae (cryptic clade V) and one Escherichia ruysiae (cryptic clade III). E. coli pathotypes identified were UPEC (13 %), ExPEC-UPEC (5.6 %) and ETEC (3.7 %). Moreover, 3/6 E. marmotae isolates had typical ExPEC genes. Genetic similarity was observed in isolates collected from animals slaughtered in the same hunting house; this suggests epidemiological links deriving from the presence of animals infected with closely related strains or the result of cross-contamination. Antimicrobial resistance genes were detected in three non-pathogenic E. coli isolates: one isolate had sul2, tet(B), aph(6)-ld and aph(3″)-lb resistance genes and two had the fosA7 gene. This study confirmed that wild boars can act as reservoirs and spreaders of pathogenic Escherichia species and it provides information for future comparative genomic analysis in wildlife. Although isolates showed a limited resistome, the detection of resistance in non-pathogenic isolates underlines the need to monitor antimicrobial resistance in the wild boar population. To the best of our knowledge, this is the first detection of E. mamotae and E. ruysiae isolates in wild boars in Italy and the presence of this pathogen in wildlife and livestock need to be investigated further.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Escherichia coli , Sus scrofa , Animals , Italy , Sus scrofa/microbiology , Swine , Escherichia coli/genetics , Escherichia coli/isolation & purification , Escherichia coli/drug effects , Escherichia coli/pathogenicity , Anti-Bacterial Agents/pharmacology , Escherichia/genetics , Escherichia/isolation & purification , Escherichia/drug effects , Escherichia/pathogenicity , Swine Diseases/microbiology , Swine Diseases/epidemiology , Microbial Sensitivity Tests , Virulence/genetics , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Escherichia coli Infections/epidemiology , Whole Genome Sequencing
3.
Environ Int ; 186: 108606, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38554502

ABSTRACT

This study is focused on Escherichia spp. isolates resistant to critically important antibiotics (cefotaxime, ciprofloxacin and colistin) among Caspian gull's (Larus cachinnans) chicks nesting in the Nove Mlyny Water Reservoir, Czech Republic. The prevalence of antimicrobial resistance (AMR) in bacteria within wild birds is commonly evaluated using a single sampling event, capturing only a brief and momentary snapshot at a particular location. Therefore, the Caspian gulls in our study were sampled in May 2018 (n = 72) and May 2019 (n = 45), and a water sample was taken from the reservoir (2019). We obtained 197 isolates identified as E. coli by MALDI-TOF MS. A total of 158 representative isolates were whole-genome sequenced, 17 isolates were then reclassified to Escherichia albertii. We observed a higher (86 %; 62/72) occurrence of ESBL/AmpC-producing Escherichia spp. among gulls in 2018 compared to 38 % (17/45) in 2019 (p < 0.00001). The decrease in prevalence was linked to clonal lineage of E. coli ST11893 predominating in 2018 which carried blaCMY-2 and which was not recovered from the gulls in 2019. Oppositely, several Escherichia STs were found in gulls from both years as well as in the water sample including STs commonly recognized as internationally high-risk lineages such as ST10, ST58, ST88, ST117, ST648 or ST744. Phylogenetic analysis of E. coli from EnteroBase from countries where these particular gulls wander revealed that some STs are commonly found in various sources including humans and a portion of them is even closely related (up to 100 SNPs) to our isolates. We demonstrated that the occurrence of AMR in Escherichia can vary greatly in time in synanthropic birds and we detected both, a temporary prevalent lineage and several persistent STs. The close relatedness of isolates from gulls and isolates from EnteroBase highlights the need to further evaluate the risk connected to wandering birds.


Subject(s)
Anti-Bacterial Agents , Charadriiformes , Charadriiformes/microbiology , Animals , Anti-Bacterial Agents/pharmacology , Czech Republic , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli/isolation & purification , Escherichia/drug effects , Escherichia/genetics , Drug Resistance, Bacterial , Longitudinal Studies
5.
Microbiol Spectr ; 10(1): e0161721, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35138151

ABSTRACT

A total of 1,400 samples of food animals (pigs, chickens, and ducks) were collected between July and September 2019 in China to uncover the prevalence of E. fergusonii and its potential role in the evolution of antimicrobial resistance (AMR). An isolation of E. fergusonii was performed and pulsed-field gel electrophoresis (PFGE) was used to uncover the genetic relationship. The AMR of E. fergusonii isolates was comprehensively characterized using broth microdilution-based antimicrobial susceptibility testing, S1-PFGE, southern hybridization, whole-genome sequencing, and in-depth bioinformatics analysis. As a result, a total of 133 E. fergusonii isolates were obtained. These isolates could be grouped into 41 PFGE subclades, suggesting a diverse genetic relationship. The resistance phenotypes of sulfafurazole (97.74%) and tetracycline (94.74%) were the most frequently found. Of the E. fergusonii isolates, 51.88% were extended spectrum beta-lactamase (ESBL)-positive. Forty-three different AMR genes were revealed based on 25 genome sequences harboring mcr-1. Briefly, aph(6)-Id, aph(3'')-Ib and tet(A) genes were the most frequently observed, with the highest rate being 76.00% (19/25). Three mcr-1-harboring plasmids were identified after Nanopore sequencing, including pTB31P1 (IncHI2-IncHI2A, 184,652 bp), pTB44P3 (IncI2, 62,882 bp), and pTB91P1 (IncHI2-IncHI2A, 255,882 bp). Additionally, 25 E. fergusonii isolates harboring mcr-1 were clustered together with other E. fergusonii isolates from different regions and sources available in GenBank, suggesting a possible random process of mcr-1 transmission in E. fergusonii. In conclusion, E. fergusonii is widespread in food animals in China and might be an important reservoir of AMR genes, especially mcr-1, and facilitate the evolution of AMR. IMPORTANCEE. fergusonii, a member of the genus Escherichia, has been reported to transmit via the food chain and cause diseases in humans. However, the prevalence of multidrug-resistant E. fergusonii, especially mcr-1-positive E. fergusonii isolates, has rarely been reported. Here, we collected 1,400 samples from food animals in three provinces of China and obtained 133 E. fergusonii isolates (9.5%). We found that the prevalence of E. fergusonii isolates was diverse, with high levels of antimicrobial resistance. Among them, 18.8% E. fergusonii isolates carried the colistin resistance gene mcr-1. Thus, E. fergusonii may facilitate the evolution of colistin resistance as a reservoir of mcr-1. As far as we know, the prevalence and AMR of E. fergusonii in the food animals in this study was first reported in China. These findings increase our understanding of the role of E. fergusonii in public health and the evolution of antibiotic resistance.


Subject(s)
Anti-Bacterial Agents/pharmacology , Chickens/microbiology , Drug Resistance, Bacterial , Ducks/microbiology , Escherichia coli Infections/veterinary , Escherichia/drug effects , Swine/microbiology , Animals , China , Escherichia/classification , Escherichia/genetics , Escherichia/isolation & purification , Escherichia coli Infections/microbiology , Microbial Sensitivity Tests , Plasmids/genetics , Plasmids/metabolism , Sulfisoxazole/pharmacology , Tetracycline/pharmacology
6.
Microb Genom ; 7(12)2021 12.
Article in English | MEDLINE | ID: mdl-34882085

ABSTRACT

Escherichia albertii is a recently recognized species in the genus Escherichia that causes diarrhoea. The population structure, genetic diversity and genomic features have not been fully examined. Here, 169 E. albertii isolates from different sources and regions in China were sequenced and combined with 312 publicly available genomes (from additional 14 countries) for genomic analyses. The E. albertii population was divided into two clades and eight lineages, with lineage 3 (L3), L5 and L8 more common in China. Clinical isolates were observed in all clades/lineages. Virulence genes were found to be distributed differently among lineages: subtypes of the intimin encoding gene eae and the cytolethal distending toxin gene cdtB were lineage associated, and the second type three secretion system (ETT2) island was truncated in L3 and L6. Seven new eae subtypes and one new cdtB subtype (cdtB-VI) were identified. Alarmingly, 85.9 % of the Chinese E. albertii isolates were predicted to be multidrug-resistant (MDR) with 35.9 % harbouring genes capable of conferring resistance to 10 to 14 different drug classes. The majority of the MDR isolates were of poultry source from China and belonged to four sequence types (STs) [ST4638, ST4479, ST4633 and ST4488]. Thirty-four plasmids with some carrying MDR and virulence genes, and 130 prophages were identified from 17 complete E. albertii genomes. The 130 intact prophages were clustered into five groups, with group five prophages harbouring more virulence genes. We further identified three E. albertii specific genes as markers for the identification of this species. Our findings provided fundamental insights into the population structure, virulence variation and drug resistance of E. albertii.


Subject(s)
Drug Resistance, Multiple, Bacterial , Escherichia/classification , Poultry/microbiology , Sequence Analysis, DNA/methods , Virulence Factors/genetics , Africa , Animals , Canada , China , Escherichia/drug effects , Escherichia/genetics , Escherichia/pathogenicity , Europe , Genomics , High-Throughput Nucleotide Sequencing , Humans , Phylogeny , Plasmids/genetics , Prophages/genetics , United States
7.
Int J Biol Macromol ; 186: 897-908, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34273344

ABSTRACT

Ternary nanocomposites, including graphene oxide (GO), hydroxyapatite (HAP), and cadmium selenite (CdSe) have been encapsulated into nanofibrous scaffolds of polylactic acid. These compositions were indexed as HAP@PLA (C1), CdSe@PLA (C2), HAP/CdSe@PLA (C3), HAP/GO@PLA (C4), and HAP/CdSe/GO@PLA (C5). Structural confirmation is executed by XRD and XPS techniques, while FESEM performs morphological characteristics. CdSe and GO dopants cause a significant increase in nanofiber diameter, HAP/GO@PLA (C4), showing thin surface fibers with fiber diameter up to 3.1 µm, followed by HAP/CdSe/GO@PLA (C4) composite that belongs to filament size up to 2.1 µm. On the other hand, the mechanical properties reveal that the dual dopant composites HAP/CdSe@PLA (C3) and HAP/GO@PLA (C4) hit the maximum tensile fracture values with 1.49 ± 0.3 and 0.99 ± 0.2 MPa. Further, the ternary C5 composite represents the lowest contact angle of 86.1 ± 3.7°. The antibacterial activity increased from 32.4 ± 9.7 and 28.4 ± 6.5% to be 85.3 ± 4.6 and 88.1 ± 5.6% for C1 and C5, respectively, against both E. coli and S. aureus in dark conditions. Moreover, the antibacterial potency enhanced from 75.4 ± 7.6 to be 83.5 ± 6.5 from dark to light conditions against E. coli for the composition of PLA containing the binary composition of HAP/CdSe.


Subject(s)
Anti-Bacterial Agents/chemistry , Cadmium Compounds/chemistry , Durapatite/chemistry , Graphite/chemistry , Nanocomposites , Nanofibers , Polyesters/chemistry , Selenium Compounds/chemistry , Tissue Scaffolds , Wound Healing , Anti-Bacterial Agents/pharmacology , Cadmium Compounds/pharmacology , Cell Adhesion , Cell Line , Cell Proliferation , Drug Compounding , Escherichia/drug effects , Escherichia/growth & development , Fibroblasts/physiology , Humans , Nanotechnology , Selenium Compounds/pharmacology , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development , Surface Properties , Tensile Strength
8.
Microb Drug Resist ; 27(12): 1603-1615, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33956535

ABSTRACT

In this study, we report a high incidence of New Delhi metallo-ß-lactamase (NDM)-producing and ampicillin-catabolizing bacteria within carbapenem-resistant bacterial populations in the waters of two important rivers, Mahananda and Karala, bisecting two most populous towns, Siliguri and Jalpaiguri, respectively, in the northern West Bengal, India. Isolates producing NDM belonged to four genera, Acinetobacter, Escherichia, Proteus, and Pseudomonas; among which few were phylogenetically determined as putatively novel species. Class 1 integrons with the frequent presence of aadA and aac(6')-Ib gene cassettes in 50% of NDM-bearing isolates are indicative of possible selective pressures generated out of unregulated use of streptomycin, in agriculture practiced by the cultivators and tea planters living in locales drained by these two rivers, in their up- and downstream, and amikacin in the most crowded government-sponsored "sadar" and district hospitals of Siliguri and Jalpaiguri. NDM-delivering bacteria in rivers have genuine consequences for city inhabitants who are dependent on public water and sanitation facilities. Standard reconnaissance of antibiotic resistance, consolidating ecological sampling just as the assessment of clinical isolates, should be set up as a need.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/genetics , Rivers/microbiology , beta-Lactamases/genetics , Acinetobacter/drug effects , Escherichia/drug effects , Genes, Bacterial , India , Integrons , Microbial Sensitivity Tests , Proteus/drug effects , Pseudomonas/drug effects
9.
Braz J Microbiol ; 52(2): 989-1004, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33591555

ABSTRACT

Poultry originated Escherichia fergusonii (POEF), an emerging bacterial pathogen, causes a wide range of intestinal and extra-intestinal infections in the poultry industry which incurred significant economic losses worldwide. Chromosomal co-existence of antibiotics and metal resistance genes has recently been the focal point of POEF isolates besides its pathogenic potentials. This study reports the complete genome analysis of POEF strain OTSVEF-60 from the poultry originated samples of Bangladesh. The assembled draft genome of the strain was 4.2 Mbp containing 4503 coding sequences, 120 RNA (rRNA = 34, tRNA = 79, ncRNA = 7), and three intact phage signature regions. Forty-one broad range antibiotic resistance genes (ARGs) including dfrA12, qnrS1, blaTEM-1, aadA2, tet(A), and sul-2 along with multiple efflux pump genes were detected, which translated to phenotypic resistant patterns of the pathogen to trimethoprim, fluoroquinolones, ß-lactams, aminoglycoside, tetracycline, and sulfonamides. Moreover, 22 metal resistance genes were found co-existing within the genome of the POEF strain, and numerous virulence genes (VGs) coding for cit (AB), feo (AB), fep (ABCG), csg (ABCDEFG), fliC, ompA, gadA, ecpD, etc. were also identified throughout the genome. In addition, we detected a class I integron gene cassette harboring dfrA12, ant (3″)-I, and qacEΔ-sul2 genes; 42 copies of insertion sequence (IS) elements; and two CRISPR arrays. The genomic functional analysis predicted several metabolic pathways related to motility, flagellar assembly, epithelial cell invasion, quorum sensing, biofilm formation, and biosynthesis of vitamin, co-factors, and secondary metabolites. We herein for the first time detected multiple ARGs, VGs, mobile genetic elements, and some metabolic functional genes in the complete genome of POEF strain OTSVEF-60, which might be associated with the pathogenesis, spreading of ARGs and VGs, and subsequent treatment failure against this emerging avian pathogen with currently available antimicrobials.


Subject(s)
Escherichia/genetics , Genome, Bacterial/genetics , Animals , Anti-Bacterial Agents/pharmacology , CRISPR-Cas Systems/genetics , DNA Transposable Elements/genetics , Drug Resistance, Bacterial/drug effects , Drug Resistance, Bacterial/genetics , Escherichia/drug effects , Escherichia/isolation & purification , Genotype , Microbial Sensitivity Tests , Poultry/microbiology , Prophages/genetics , Virulence/genetics
10.
Microb Drug Resist ; 27(5): 721-725, 2021 May.
Article in English | MEDLINE | ID: mdl-33001761

ABSTRACT

Emergence of colistin-resistant bacteria harboring mobile colistin resistance genes (mcr genes) pose a threat for food-producing animals and humans. In this article, we aim to highlight the emergence of Escherichia fergusonii as an important new reservoir to mcr-1-harboring plasmid in poultry production. Three strains closely related were isolated from cloacal swabs. Their genome contains four plasmids, including a 182,869 bp IncHI2 plasmid harboring the colistin resistance gene mcr-1. These results will contribute to our understanding of plasmid-mediated mcr-1 gene presence and transmission in E. fergusonii.


Subject(s)
Anti-Bacterial Agents/pharmacology , Colistin/pharmacology , Drug Resistance, Bacterial/genetics , Escherichia/drug effects , Escherichia/genetics , Genes, Bacterial/genetics , Bacterial Proteins , Brazil , Plasmids
11.
Eur J Med Chem ; 200: 112444, 2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32497961

ABSTRACT

d-Alanyl-d-alanine ligase (Ddl) is a validated and attractive target among the bacterial enzymes involved in peptidoglycan biosynthesis. In the present work, we investigated the pharmacomodulations of the benzoylthiosemicarbazide scaffold to identify new Ddl inhibitors with antibacterial potency. Five novel series of thiosemicarbazide analogues, 1,2,4-thiotriazole-3-thiones, 1,3,4-thiadiazoles, phenylthiosemicarbazones, diacylthiosemicarbazides and thioureas were synthesized via straightforward procedures, then tested against Ddl and on susceptible or resistant bacterial strains. Among these, the thiosemicarbazone and thiotriazole were identified as the most promising scaffolds with Ddl inhibition potency in the micromolar range. Antimicrobial evaluation of salicylaldehyde-4(N)-(3,4-dichlorophenyl) thiosemicarbazone 33, one of the best compounds in our study, revealed interesting antimicrobial activities with values of 3.12-6.25 µM (1.06-2.12 µg/mL) against VRE strains and 12.5-25.0 µM (4.25-8.50 µg/mL) towards MRSA and VRSA strains. A detailed mechanistic study was conducted on the Ddl inhibitors 4-(3,4-dichlorophenyl)-5-(2-hydroxyphenyl)-2,4-dihydro-3H-1,2,4-triazole-3-thione 20 and compound 33, and revealed a bactericidal effect at 5 × MIC concentration after 7 h and 24 h, respectively, and a bacteriostatic effect at 1 × MIC or 2 × MIC without any sign of bacterial membrane disruption at these lower concentrations. Finally, 20 and 33 were proved to target Ddl in bacterio via intracellular LC-MS dosage of d-Ala, l-Ala and d-Ala-d-Ala. Although, at this stage, our results indicate that other mechanisms might be involved to explain the antimicrobial potency of our compounds, their ability to inhibit the growth of strains resistant to usual antibiotics, as well as strains that express alternative ligases, sets the stage for the development of new antimicrobial agents potentially less sensitive to resistance mechanisms.


Subject(s)
Anti-Bacterial Agents/pharmacology , Enzyme Inhibitors/pharmacology , Escherichia/drug effects , Peptide Synthases/antagonists & inhibitors , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Microbial Sensitivity Tests , Molecular Structure , Peptide Synthases/metabolism , Staphylococcus aureus/enzymology , Structure-Activity Relationship
12.
Eur J Med Chem ; 200: 112472, 2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32505852

ABSTRACT

Considering the world-wide problem of growing antibiotic resistance of bacteria, photodynamic inactivation (PDI) has a potential to become the treatment approach against some infectious diseases. In our study, four differently substituted porphycenes were compared in terms of their bactericidal activity against E. faecalis. All tested compounds had a similar photophysical characteristics, i.e., there were no significant differences in the location of absorption bands or molar absorption coefficients. Also, singlet oxygen generation quantum yields were very similar. Surprisingly, differently substituted porphycenes caused very diverse PDI effects. Special attention was drawn to the tert-butyl moieties. Our studies demonstrated that the presence of these substituents lowers the bactericidal potential significantly and can completely block the activity when more than one moiety is introduced to the molecule. The porphycenes lacking tert-butyl groups exhibited much higher PDI potential and we assign this effect to different interactions of the differently substituted porphycenes with the bacterial cells. Most likely, the presence of tert-butyls impairs cell penetration by the photosensitizer. These results remind that the favorable photophysical characteristics do not ensure that the compound considered as a potential PDI agent can reach the microbial cells.


Subject(s)
Anti-Bacterial Agents/pharmacology , Escherichia/drug effects , Photochemotherapy , Photosensitizing Agents/pharmacology , Porphyrins/pharmacology , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests , Molecular Structure , Photosensitizing Agents/chemistry , Porphyrins/chemistry
13.
Molecules ; 25(9)2020 Apr 28.
Article in English | MEDLINE | ID: mdl-32354035

ABSTRACT

The reactions of 2,4-bis(4-methoxyphenyl)-1,3-dithio-2,4-diphosphetane-2,4-disulfide (Lawesson's Reagent, LR) with benzylamine (BzNH2) and 4-phenylbutylamine (PhBuNH2) yield benzylammonium P-(4-methoxyphenyl)-N-benzyl-amidodithiophosphonate (BzNH3)(BzNH-adtp) and 4-phenylbutylammonium P-(4-methoxyphenyl)-N-(4-phenylbutyl)-amidodithiophosphonate (PhBuNH3)(PhBuNH-adtp). The relevant nickel complexes [Ni(BzNH-adtp)2] and [Ni(PhBuNH-adtp)2] and the corresponding hydrolysed derivatives (BzNH3)2[Ni(dtp)2] and (PhBuNH3)2[Ni(dtp)2] were prepared and fully characterized. The antimicrobial activity of the aforementioned amidodithiophosphonates against a set of Gram-positive and Gram-negative pathogen bacteria was evaluated, and [Ni(BzNH-adtp)2] and [Ni(PhBuNH-adtp)2] showed antiproliferative activity towards Staphylococcus aureus and Staphylococcus haemolyticus strains. density functional theory (DFT) calculations were performed to shed some light on the activity of reported compounds related to their tendency towards P-N bond cleavage.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Chemistry, Pharmaceutical/methods , Microbial Sensitivity Tests , Nickel/chemistry , Biofilms/drug effects , Candida/drug effects , Coordination Complexes/chemistry , Drug Design , Escherichia/drug effects , Hydrolysis , Ligands , Models, Molecular , Nitrogen/chemistry , Phosphorus/chemistry , Pseudomonas/drug effects , Quantum Theory , Spectroscopy, Fourier Transform Infrared , Staphylococcus aureus/drug effects , Staphylococcus haemolyticus/drug effects , X-Ray Diffraction
14.
Carbohydr Res ; 492: 107990, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32259706

ABSTRACT

Thieno[2,3-b]pyridine derivatives DATPa-c have been synthesized based on Thorpe-Ziegler Cyclization. The reaction of arylidene malononitrile derivatives (Ia-c) with thiocyanoacetamide (II) in basic medium (piperidine) followed by alkylation using ethyl chloroacetate and finally, cyclization in sodium ethoxide yielded DATPa-c. Thieno[2,3-b]pyridine-chitosan nanocomposites CS-DATPa-c were prepared from the DATPa-c and CS nanoparticles using sodium tripolyphosphate (TPP). CS-DATPa-c nanocomposites were characterized using FTIR, TEM and XRD techniques and showed a relatively narrow size distribution of monodispersed nanoparticles with the average size of 14-78 nm. The in vitro release studies of CS-DAΤPa-c nanocomposites were investigated and showed that the drug release rate is pH-dependent and the trend is as follows: basic > neutral > acidic. The faster release rate in basic medium effectively prolongs drug delivery in gastric pH. Additionally, the antibacterial investigation showed that DATPa-c and CS-DATPa-c nanocomposites exhibited antibacterial activity against both Gram-positive and Gram-negative bacteria but CS-DATPa-c nanocomposites showed much higher antibacterial activity compared to the DATPa-c, which in agreement with the particle size measurements as DATPa-c are in the bulky structure whereas, CS-DATPa-c are in the nanostructure. The results may have applications of drug design for colon targeting.


Subject(s)
Anti-Bacterial Agents/pharmacology , Chitosan/pharmacology , Colon/chemistry , Drug Delivery Systems , Nanocomposites/chemistry , Pyridines/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Chitosan/chemical synthesis , Chitosan/chemistry , Dose-Response Relationship, Drug , Drug Design , Drug Liberation , Escherichia/drug effects , Escherichia coli/drug effects , Microbial Sensitivity Tests , Molecular Structure , Particle Size , Pseudomonas aeruginosa/drug effects , Pyridines/chemical synthesis , Pyridines/chemistry , Staphylococcus aureus/drug effects , Surface Properties
16.
Org Lett ; 21(20): 8469-8472, 2019 10 18.
Article in English | MEDLINE | ID: mdl-31580084

ABSTRACT

Periconiastone A (1), an ergosterol with an unprecedented pentacyclo[8.7.0.01,5.02,14.010,15]heptadecane system, was isolated from Periconia sp. TJ403-rc01. Its structure was assigned by extensive spectroscopic analyses and quantum-chemical 13C NMR and ECD calculations. A vinylogous α-ketol rearrangement and an aldol condensation reaction during biosynthesis were proposed as key steps for the formation of 1. Compound 1 showed antibacterial activity against Gram-positive S. aureus and E. faecalis with MIC values of 4 and 32 µg/mL, respectively.


Subject(s)
Anti-Bacterial Agents/pharmacology , Ascomycota/chemistry , Ergosterol/pharmacology , Escherichia/drug effects , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Ergosterol/chemical synthesis , Ergosterol/chemistry , Microbial Sensitivity Tests , Molecular Conformation , Stereoisomerism
17.
Sci Rep ; 9(1): 4062, 2019 03 11.
Article in English | MEDLINE | ID: mdl-30858509

ABSTRACT

In this study, shotgun metagenomics was employed to monitor the effect of oxytetracycline, administered at a therapeutic dose, on the dynamics of the microbiota and resistome in the feces of weaned pigs. Sixteen weaning pigs were assigned to one of two treatments including standard starter diet for 21 days or antibiotic-supplemented diet (10 g oxytetracycline/100 kg body weight/day) for 7 days, followed by 14 days of standard starter diet. Feces were collected from the pigs on days 0, 8, and 21 for microbiota and resistome profiling. Pigs receiving oxytetracycline exhibited a significantly greater richness (ANOVA, P = 0.034) and diversity (ANOVA, P = 0.048) of antibiotic resistance genes (ARGs) than the control pigs. Antibiotic administration significantly enriched the abundances of 41 ARGs, mainly from the tetracycline, betalactam and multidrug resistance classes. Compositional shifts in the bacterial communities were observed following 7 days of antibiotic adminstration, with the medicated pigs showing an increase in Escherichia (Proteobacteria) and Prevotella (Bacteroidetes) populations compared with the nonmedicated pigs. This might be explained by the potential of these taxa to carry ARGs that may be transferred to other susceptible bacteria in the densely populated gut environment. These findings will help in the optimization of therapeutic schemes involving antibiotic usage in swine production.


Subject(s)
Feces/microbiology , Gastrointestinal Microbiome/genetics , Metagenomics , Oxytetracycline/pharmacology , Animals , Anti-Bacterial Agents/pharmacology , Bacteria , Bacteroidetes/drug effects , Bacteroidetes/genetics , Dietary Supplements , Drug Resistance, Microbial/drug effects , Drug Resistance, Microbial/genetics , Escherichia/drug effects , Escherichia/genetics , Gastrointestinal Microbiome/drug effects , Humans , Proteobacteria/drug effects , Proteobacteria/genetics , RNA, Ribosomal, 16S/genetics , Swine/genetics , Weaning
18.
J Hazard Mater ; 372: 85-93, 2019 06 15.
Article in English | MEDLINE | ID: mdl-30037565

ABSTRACT

Photo-Fenton is a solar disinfection technology widely demonstrated to be effective to inactivate microorganisms in water by the combined effect of photoactivated iron species and the direct action of solar photons. Nevertheless, the precipitation of iron as ferric hydroxide at basic pH is the main disadvantage of this process. Thus, challenge in photo-Fenton is looking for alternatives to iron salts. Polycarboxylic acids, such as Ethylendiamine-N',N'-disuccinic acid (EDDS), can form strong complex with Fe3+ and enhance the dissolution of iron in natural water through photochemical process. The aim of this study was to evaluate the disinfection effectiveness of solar photo-Fenton with and without EDDS in water. Several reagent concentrations were assessed, best bacterial (Escherichia coli and Enterococcus faecalis) inactivation was obtained with 0.1:0.2:0.3 mM (Fe3+:EDDS:H2O2) in isotonic water. The benefit of using EDDS complexes to increase the efficiency of kept dissolved iron in water at basic pH was proven. Solar disinfection and H2O2/solar with and without EDDS, and Fe3+:EDDS complexes were also investigated. Bacterial inactivation results in municipal wastewater effluents (MWWE) demonstrated that the competitive role of organic matter and inorganic compounds strongly affect the efficacy of Fe3+:EDDS at all concentrations tested, obtaining the fastest inactivation kinetics with H2O2/solar (0.3 mM).


Subject(s)
Disinfection/methods , Escherichia coli/drug effects , Escherichia/drug effects , Ethylenediamines/pharmacology , Hydrogen Peroxide/pharmacology , Iron/pharmacology , Succinates/pharmacology , Sunlight , Wastewater/microbiology , Escherichia/radiation effects , Escherichia coli/radiation effects , Ethylenediamines/chemistry , Hydrogen Peroxide/chemistry , Iron/chemistry , Succinates/chemistry , Wastewater/chemistry , Water Purification/methods
19.
Appl Microbiol Biotechnol ; 102(23): 10219-10230, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30302521

ABSTRACT

Phages, the most abundant species in the mammalian gut, have numerous advantages as biocontrol agent over antibiotics. In this study, mice were orally treated with the lytic gut phage PA13076 (group B), the temperate phage BP96115 (group C), no phage (group A), or streptomycin (group D) over 31 days. At the end of the experiment, fecal microbiota diversity and composition was determined and compared using high-throughput sequencing of the V3-V4 hyper-variable region of the 16S rRNA gene and virus-like particles (VLPs) were quantified in feces. There was high diversity and richness of microbiota in the lytic and temperate gut phage-treated mice, with the lytic gut phage causing an increased alpha diversity based on the Chao1 index (p < 0.01). However, the streptomycin treatment reduced the microbiota diversity and richness (p = 0.0299). Both phage and streptomycin treatments reduced the abundance of Bacteroidetes at the phylum level (p < 0.01) and increased the abundance of the phylum Firmicutes. Interestingly, two beneficial genera, Lactobacillus and Bifidobacterium, were enhanced by treatment with the lytic and temperate gut phage. The abundance of the genus Escherichia/Shigella was higher in mice after temperate phage administration than in the control group (p < 0.01), but lower than in the streptomycin group. Moreover, streptomycin treatment increased the abundance of the genera Klebsiella and Escherichia/Shigella (p < 0.01). In terms of the gut virome, fecal VLPs did not change significantly after phage treatment. This study showed that lytic and temperate gut phage treatment modulated the composition and diversity of gut microbiota and the lytic gut phage promoted a beneficial gut ecosystem, while the temperate phage may promote conditions enabling diseases to occur.


Subject(s)
Bacteriophages/physiology , Gastrointestinal Microbiome/drug effects , Animals , Bacteriolysis , Bacteroidetes/drug effects , Bacteroidetes/virology , Bifidobacterium/drug effects , Bifidobacterium/virology , Escherichia/drug effects , Escherichia/virology , Feces/microbiology , Female , Firmicutes/drug effects , Firmicutes/virology , High-Throughput Nucleotide Sequencing , Klebsiella/drug effects , Klebsiella/virology , Lactobacillus/drug effects , Lactobacillus/virology , Mice , Mice, Inbred C57BL , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Shigella/drug effects , Shigella/virology , Streptomycin/pharmacology
20.
Microbiome ; 6(1): 34, 2018 02 13.
Article in English | MEDLINE | ID: mdl-29439741

ABSTRACT

BACKGROUND: Antimicrobial agents have been widely used in animal farms to prevent and treat animal diseases and to promote growth. Antimicrobial agents may change the bacterial community and enhance the resistome in animal feces. We used metagenome-wide analysis to investigate the changes in bacterial community, variations in antibiotic resistance genes (ARGs), and their bacterial hosts in the feces of broiler chickens over a full-treatment course of chlortetracycline at low and therapeutic dose levels. RESULTS: The effects of chlortetracycline on resistome were dependent on the specific ARG subtypes and not simply the overall community-level ARGs. Therapeutic dose of chlortetracycline promoted the abundance of tetracycline resistance genes (tetA and tetW) and inhibited multidrug resistance genes (mdtA, mdtC, mdtK, ompR, and TolC). The therapeutic dose of chlortetracycline led to loss of Proteobacteria mainly due to the decrease of Escherichia/Shigella (from 72 to 58%). Inhibition of Escherichia by chlortetracycline was the primary reason for the decrease of genes resistant to multiple drugs in the therapeutic dose group. The ARG host Bifidobacterium were enriched due to tetW harbored by Bifidobacterium under chlortetracycline treatment. Escherichia was always the major host for multidrug resistance genes, whereas the primary host was changed from Escherichia to Klebsiella for aminoglycoside resistance genes with the treatment of therapeutic dose of chlortetracycline. CONCLUSIONS: We provided the first metagenomic insights into antibiotic-mediated alteration of ARG-harboring bacterial hosts at community-wide level in chicken feces. These results indicated that the changes in the structure of antibiotic-induced feces microbial communities accompany changes in the abundance of bacterial hosts carrying specific ARGs in the feces microbiota. These findings will help to optimize therapeutic schemes for the effective treatment of antibiotic resistant pathogens in poultry farms. Resistome variations in faecal microbiome of chickens exposed to chlortetracycline.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/classification , Bacterial Proteins/genetics , Drug Resistance, Bacterial , Feces/microbiology , Animals , Bacteria/drug effects , Bacteria/genetics , Bacteria/isolation & purification , Bifidobacterium/classification , Bifidobacterium/drug effects , Bifidobacterium/genetics , Bifidobacterium/isolation & purification , Chickens , Chlortetracycline/pharmacology , Escherichia/classification , Escherichia/drug effects , Escherichia/genetics , Escherichia/isolation & purification , Gene Regulatory Networks , Klebsiella/classification , Klebsiella/drug effects , Klebsiella/genetics , Klebsiella/isolation & purification , Metagenomics , Microbiota/drug effects , RNA, Ribosomal, 16S/genetics
SELECTION OF CITATIONS
SEARCH DETAIL