Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 754
Filter
1.
Proc Natl Acad Sci U S A ; 119(11): e2119417119, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35263219

ABSTRACT

Colistin is considered the last-line antimicrobial for the treatment of multidrug-resistant gram-negative bacterial infections. The emergence and spread of superbugs carrying the mobile colistin resistance gene (mcr) have become the most serious and urgent threat to healthcare. Here, we discover that silver (Ag+), including silver nanoparticles, could restore colistin efficacy against mcr-positive bacteria. We show that Ag+ inhibits the activity of the MCR-1 enzyme via substitution of Zn2+ in the active site. Unexpectedly, a tetra-silver center was found in the active-site pocket of MCR-1 as revealed by the X-ray structure of the Ag-bound MCR-1, resulting in the prevention of substrate binding. Moreover, Ag+effectively slows down the development of higher-level resistance and reduces mutation frequency. Importantly, the combined use of Ag+ at a low concentration with colistin could relieve dermonecrotic lesions and reduce the bacterial load of mice infected with mcr-1­carrying pathogens. This study depicts a mechanism of Ag+ inhibition of MCR enzymes and demonstrates the potentials of Ag+ as broad-spectrum inhibitors for the treatment of mcr-positive bacterial infection in combination with colistin.


Subject(s)
Anti-Bacterial Agents , Colistin , Drug Resistance, Multiple, Bacterial , Escherichia coli Proteins , Escherichia coli , Silver , Anti-Bacterial Agents/pharmacology , Colistin/pharmacology , Drug Resistance, Multiple, Bacterial/drug effects , Drug Resistance, Multiple, Bacterial/genetics , Escherichia coli/drug effects , Escherichia coli/enzymology , Escherichia coli/genetics , Escherichia coli Proteins/antagonists & inhibitors , Escherichia coli Proteins/genetics , Microbial Sensitivity Tests , Plasmids/genetics , Silver/pharmacology
2.
Nat Commun ; 13(1): 115, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013254

ABSTRACT

Efflux transporters of the RND family confer resistance to multiple antibiotics in Gram-negative bacteria. Here, we identify and chemically optimize pyridylpiperazine-based compounds that potentiate antibiotic activity in E. coli through inhibition of its primary RND transporter, AcrAB-TolC. Characterisation of resistant E. coli mutants and structural biology analyses indicate that the compounds bind to a unique site on the transmembrane domain of the AcrB L protomer, lined by key catalytic residues involved in proton relay. Molecular dynamics simulations suggest that the inhibitors access this binding pocket from the cytoplasm via a channel exclusively present in the AcrB L protomer. Thus, our work unveils a class of allosteric efflux-pump inhibitors that likely act by preventing the functional catalytic cycle of the RND pump.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Outer Membrane Proteins/chemistry , Escherichia coli Proteins/chemistry , Escherichia coli/drug effects , Lipoproteins/chemistry , Membrane Transport Proteins/chemistry , Multidrug Resistance-Associated Proteins/chemistry , Piperazines/pharmacology , Pyridines/pharmacology , Allosteric Regulation/drug effects , Allosteric Site , Anti-Bacterial Agents/chemistry , Bacterial Outer Membrane Proteins/antagonists & inhibitors , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Biological Transport/drug effects , Crystallography, X-Ray , Drug Resistance, Multiple, Bacterial , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/antagonists & inhibitors , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Gene Expression , Lipoproteins/antagonists & inhibitors , Lipoproteins/genetics , Lipoproteins/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Molecular Dynamics Simulation , Multidrug Resistance-Associated Proteins/antagonists & inhibitors , Multidrug Resistance-Associated Proteins/genetics , Multidrug Resistance-Associated Proteins/metabolism , Mutation , Oligopeptides/chemistry , Oligopeptides/pharmacology , Oxacillin/chemistry , Oxacillin/pharmacology , Piperazines/chemical synthesis , Promoter Regions, Genetic , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Pyridines/chemical synthesis , Structure-Activity Relationship
3.
Cell Chem Biol ; 29(2): 276-286.e4, 2022 02 17.
Article in English | MEDLINE | ID: mdl-34990601

ABSTRACT

ß-Lactam antibiotics disrupt the assembly of peptidoglycan (PG) within the bacterial cell wall by inhibiting the enzymatic activity of penicillin-binding proteins (PBPs). It was recently shown that ß-lactam treatment initializes a futile cycle of PG synthesis and degradation, highlighting major gaps in our understanding of the lethal effects of PBP inhibition by ß-lactam antibiotics. Here, we assess the downstream metabolic consequences of treatment of Escherichia coli with the ß-lactam mecillinam and show that lethality from PBP2 inhibition is a specific consequence of toxic metabolic shifts induced by energy demand from multiple catabolic and anabolic processes, including accelerated protein synthesis downstream of PG futile cycling. Resource allocation into these processes is coincident with alterations in ATP synthesis and utilization, as well as a broadly dysregulated cellular redox environment. These results indicate that the disruption of normal anabolic-catabolic homeostasis by PBP inhibition is an essential factor for ß-lactam antibiotic lethality.


Subject(s)
Amdinocillin/pharmacology , Anti-Bacterial Agents/pharmacology , Escherichia coli Proteins/antagonists & inhibitors , Escherichia coli/drug effects , Penicillin-Binding Proteins/antagonists & inhibitors , Amdinocillin/chemistry , Anti-Bacterial Agents/chemistry , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Homeostasis/drug effects , Microbial Sensitivity Tests , Penicillin-Binding Proteins/metabolism
4.
Appl Biochem Biotechnol ; 194(1): 99-123, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34822060

ABSTRACT

Lifestyle complications are major health concerns around the globe and are recognized as a major factor for the development of various chronic diseases such as obesity, diabetes, inflammatory bowel diseases, cancer, and cardiac diseases. An unhealthy diet and poor lifestyle impose a serious threat to human health. Numerous studies have suggested the role of human microbiota in human health and diseases. Microbiota resides in the human body symbiotically and the composition of microorganisms is crucial for maintaining the healthy state of an individual. A dysbiotic gut microbiome is responsible for the release of toxic metabolites such as trimethylamine, lipopolysaccharides, bile acids, and uremic toxins and is associated with impaired organ functions. Dietary and herbal intervention of dysbiosis proposes a promising strategy to counteract gut alterations and repairing of the microbial ecosystem and health. The objective of the present comparative study was to observe the effect of therapeutic herbs in gut dysbiosis. In silico studies were performed to identify human microbiota associated with various diseases, ADME, and toxicity properties of phytoconstituents of "Tinospora cordifolia" and "Ocimum sanctum." Furthermore, co-interaction studies were performed to observe the affinity of selected phytochemicals against choline trimethylamine lyase, a critical enzyme involved in dysbiosis-induced human diseases. The antimicrobial potential of phytocompounds was done by the disc diffusion method. In conclusion, our work discusses the herbal intervention of gut dysbiosis and proposes a natural, safe, and effective herbal formulation to correct microbial dysbiosis and associated diseases.


Subject(s)
Dysbiosis , Enzyme Inhibitors , Escherichia coli Proteins/antagonists & inhibitors , Escherichia coli/enzymology , Ocimum sanctum/chemistry , Phytochemicals , Tinospora/chemistry , Animals , Dysbiosis/drug therapy , Dysbiosis/microbiology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Gastrointestinal Microbiome/drug effects , Humans , Lyases/antagonists & inhibitors , Phytochemicals/chemistry , Phytochemicals/pharmacology
5.
J Inorg Biochem ; 226: 111659, 2022 01.
Article in English | MEDLINE | ID: mdl-34801971

ABSTRACT

The synthesis of five neutral zinc(II) complexes of 3,5-dibromo-salicyladehyde (3,5-diBr-saloH) in the presence of nitrogen-donor co-ligands 2,2'-bipyridine (bipy), 1,10-phenanthroline (phen), 2,9-dimethyl-1,10-phenanthroline (neoc), or 2,2'-bipyridylamine (bipyam) was undertaken and complexes [Zn(3,5-diBr-salo)2(H2O)2] (1), [Zn(3,5-diBr-salo)2(bipy)] (2), [Zn(3,5-diBr-salo)2(phen)].3,5-diBr-saloΗ (3), [Zn(3,5-diBr-salo)2(neoc)] (4) and [Zn(3,5-diBr-salo)2(bipyam)] (5) were characterized by various techniques. The crystal structures of complexes 3 and 5 were determined by X-ray crystallography, revealing the co-existence of two different coordination modes of 3,5-diBr-salo- ligands. The new complexes show selective in vitro antibacterial activity against two Gram-positive and two Gram-negative bacterial strains. The complexes may scavenge 1,1-diphenyl-picrylhydrazyl and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radicals and reduce H2O2. The complexes may intercalate in-between the calf-thymus DNA-bases and have exhibited low-to-moderate ability to cleave supercoiled circular pBR322 plasmid DNA. The complexes may bind tightly and reversibly to bovine and human serum albumins. In order to explain the in vitro activity of the compounds, molecular docking studies were adopted on the crystal structure of calf-thymus DNA, human and bovine serum albumin, Escherichia coli and Staphylococcus aureus DNA-gyrase, 5-lipoxygenase, and 5-lipoxygenase activating protein. The employed in silico studies aimed to explore the ability of the compounds to bind to these target biomacromolecules, establishing a possible mechanism of action and were in accordance with the in vitro studies.


Subject(s)
Aldehydes/chemistry , Coordination Complexes , Enzyme Inhibitors , Escherichia coli Proteins , Escherichia coli/enzymology , Staphylococcus aureus/enzymology , Zinc/chemistry , Animals , Cattle , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Escherichia coli Proteins/antagonists & inhibitors , Escherichia coli Proteins/metabolism , Humans
6.
Sci Rep ; 11(1): 23852, 2021 12 13.
Article in English | MEDLINE | ID: mdl-34903826

ABSTRACT

Cytochrome bd-type oxidases play a crucial role for survival of pathogenic bacteria during infection and proliferation. This role and the fact that there are no homologues in the mitochondrial respiratory chain qualify cytochrome bd as a potential antimicrobial target. However, few bd oxidase selective inhibitors have been described so far. In this report, inhibitory effects of Aurachin C (AurC-type) and new Aurachin D (AurD-type) derivatives on oxygen reductase activity of isolated terminal bd-I, bd-II and bo3 oxidases from Escherichia coli were potentiometrically measured using a Clark-type electrode. We synthesized long- (C10, decyl or longer) and short-chain (C4, butyl to C8, octyl) AurD-type compounds and tested this set of molecules towards their selectivity and potency. We confirmed strong inhibition of all three terminal oxidases for AurC-type compounds, whereas the 4(1H)-quinolone scaffold of AurD-type compounds mainly inhibits bd-type oxidases. We assessed a direct effect of chain length on inhibition activity with highest potency and selectivity observed for heptyl AurD-type derivatives. While Aurachin C and Aurachin D are widely considered as selective inhibitors for terminal oxidases, their structure-activity relationship is incompletely understood. This work fills this gap and illustrates how structural differences of Aurachin derivatives determine inhibitory potency and selectivity for bd-type oxidases of E. coli.


Subject(s)
Bacterial Outer Membrane Proteins/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Escherichia coli Proteins/antagonists & inhibitors , Bacterial Outer Membrane Proteins/metabolism , Enzyme Inhibitors/pharmacology , Escherichia coli Proteins/metabolism , Protein Binding , Quinolones/chemistry , Quinolones/pharmacology
7.
J Microbiol Biotechnol ; 31(11): 1576-1582, 2021 11 28.
Article in English | MEDLINE | ID: mdl-34528918

ABSTRACT

Bacterial ß-glucuronidase in the intestine is involved in the conversion of 7-ethyl-10- hydroxycamptochecin glucuronide (derived from irinotecan) to 7-ethyl-10-hydroxycamptothecin, which causes intestinal bleeding and diarrhea (side effects of anti-cancer drugs). Twelve compounds (1-12) from Polygala tenuifolia were evaluated in terms of ß-glucuronidase inhibition in vitro. 4-O-Benzoyl-3'-O-(O-methylsinapoyl) sucrose (C3) was highly inhibitory at low concentrations. C3 (an uncompetitive inhibitor) exhibited a ki value of 13.4 µM; inhibitory activity increased as the substrate concentration rose. Molecular simulation revealed that C3 bound principally to the Gln158-Tyr160 enzyme loop. Thus, C3 will serve as a lead compound for development of new ß- glucuronidase inhibitors.


Subject(s)
Enzyme Inhibitors/pharmacology , Escherichia coli/enzymology , Glucuronidase/antagonists & inhibitors , Polygala/chemistry , Sucrose/pharmacology , Escherichia coli Proteins/antagonists & inhibitors , Irinotecan , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Structure, Tertiary
8.
Microbiol Spectr ; 9(2): e0091821, 2021 10 31.
Article in English | MEDLINE | ID: mdl-34494877

ABSTRACT

Gram-negative bacteria producing carbapenemases are resistant to a variety of ß-lactam antibiotics and pose a significant health risk. Given the dearth of new antibiotics, combinations of new broad-spectrum ß-lactamase inhibitors (BLIs) with approved ß-lactams have provided treatment options for resistant bacterial infections. Taniborbactam (formerly VNRX-5133) is an investigational BLI that is effective against both serine- and metallo-ß-lactamases, including the serine carbapenemase KPC. In the current study, we assessed the effectiveness of taniborbactam to restore antibacterial activity of cefepime against KPC-3-producing Escherichia coli by inhibiting the KPC-3-dependent hydrolysis of cefepime. Time-lapse microscopy revealed that cells treated with greater than 1× MIC of cefepime (128 µg/ml) and cefepime-taniborbactam (4 µg/ml cefepime and 4 µg/ml taniborbactam) exhibited significant elongation, whereas cells treated with taniborbactam alone did not owing to a lack of standalone antibacterial activity of the BLI. The elongated cells also had frequent cellular voids thought to be formed by attempted cell divisions and pinching of the cytoplasmic membrane. Additionally, the effect of taniborbactam continued even after its removal from the growth medium. Pretreatment with 4 µg/ml taniborbactam helped to restore the antibacterial action of cefepime by neutralizing the effect of the KPC-3 ß-lactamase. IMPORTANCE ß-lactam (BL) antibiotics are the most prescribed antimicrobial class. The efficacy of ß-lactams is threatened by the production of ß-lactamase enzymes, the predominant resistance mechanism impacting these agents in Gram-negative bacterial pathogens. This study visualizes the effects of a combination treatment of taniborbactam, a broad spectrum ß-lactamase inhibitor (BLI), and the BL antibiotic cefepime on a carbapenemase-producing E. coli strain. While this treatment has been described in the context of other cephalosporin-resistant bacteria, this is the first description of a microscopic evaluation of a KPC-3-producing strain of E. coli challenged by this BL-BLI combination. Live-cell microscopy analysis of cells treated with taniborbactam and cefepime demonstrated the antimicrobial effects on cellular morphology and highlighted the long-lasting inhibition of ß-lactamases by taniborbactam even after it was removed from the medium. This research speaks to the importance of taniborbactam in fighting BL-mediated antibiotic resistance.


Subject(s)
Anti-Bacterial Agents/pharmacology , Borinic Acids/pharmacology , Carbapenem-Resistant Enterobacteriaceae/drug effects , Carboxylic Acids/pharmacology , Cefepime/pharmacology , Escherichia coli/drug effects , beta-Lactamase Inhibitors/pharmacology , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/metabolism , Drug Resistance, Bacterial/genetics , Drug Therapy, Combination , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/antagonists & inhibitors , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , beta-Lactamases/genetics , beta-Lactamases/metabolism
9.
J Phys Chem Lett ; 12(37): 9020-9025, 2021 Sep 23.
Article in English | MEDLINE | ID: mdl-34516127

ABSTRACT

Ribonucleotide reductase (RNR), which supplies the building blocks for DNA biosynthesis and its repair, has been linked to human diseases and is emerging as a therapeutic target. Here, we present a mechanistic investigation of triapine (3AP), a clinically relevant small molecule that inhibits the tyrosyl radical within the RNR ß2 subunit. Solvent kinetic isotope effects reveal that proton transfer is not rate-limiting for inhibition of Y122· of E. coli RNR ß2 by the pertinent 3AP-Fe(II) adduct. Vibrational spectroscopy further demonstrates that unlike inhibition of the ß2 tyrosyl radical by hydroxyurea, a carboxylate containing proton wire is not at play. Binding measurements reveal a low nanomolar affinity (Kd ∼ 6 nM) of 3AP-Fe(II) for ß2. Taken together, these data should prompt further development of RNR inactivators based on the triapine scaffold for therapeutic applications.


Subject(s)
Enzyme Inhibitors/chemistry , Escherichia coli Proteins/metabolism , Escherichia coli/enzymology , Ferrous Compounds/chemistry , Pyridines/chemistry , Ribonucleotide Reductases/metabolism , Thiosemicarbazones/chemistry , Enzyme Inhibitors/metabolism , Escherichia coli Proteins/antagonists & inhibitors , Free Radicals/chemistry , Free Radicals/metabolism , Hydroxyurea/chemistry , Protein Binding , Protein Subunits/antagonists & inhibitors , Protein Subunits/chemistry , Protein Subunits/metabolism , Ribonucleotide Reductases/antagonists & inhibitors , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared
10.
Bioorg Med Chem ; 45: 116315, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34364222

ABSTRACT

Bacterial thiol-disulfide oxidoreductase DsbA is essential for bacterial virulence factor assembly and has been identified as a viable antivirulence target. Herein, we report a structure-based elaboration of a benzofuran hit that bound to the active site groove of Escherichia coli DsbA. Substituted phenyl groups were installed at the 5- and 6-position of the benzofuran using Suzuki-Miyaura coupling. HSQC NMR titration experiments showed dissociation constants of this series in the high µM to low mM range and X-ray crystallography produced three co-structures, showing binding in the hydrophobic groove, comparable with that of the previously reported benzofurans. The 6-(m-methoxy)phenyl analogue (2b), which showed a promising binding pose, was chosen for elaboration from the C-2 position. The 2,6-disubstituted analogues bound to the hydrophobic region of the binding groove and the C-2 groups extended into the more polar, previously un-probed, region of the binding groove. Biochemical analysis of the 2,6-disubsituted analogues showed they inhibited DsbA oxidation activity in vitro. The results indicate the potential to develop the elaborated benzofuran series into a novel class of antivirulence compounds.


Subject(s)
Benzofurans/pharmacology , Drug Design , Enzyme Inhibitors/pharmacology , Escherichia coli Proteins/antagonists & inhibitors , Protein Disulfide-Isomerases/antagonists & inhibitors , Benzofurans/chemical synthesis , Benzofurans/chemistry , Crystallography, X-Ray , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Escherichia coli Proteins/metabolism , Models, Molecular , Molecular Structure , Protein Disulfide-Isomerases/metabolism , Structure-Activity Relationship
11.
Bioorg Med Chem Lett ; 49: 128290, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34311087

ABSTRACT

While the biochemistry of rhomboid proteases has been extensively studied since their discovery two decades ago, efforts to define the physiological roles of these enzymes are ongoing and would benefit from chemical probes that can be used to manipulate the functions of these proteins in their native settings. Here, we describe the use of activity-based protein profiling (ABPP) technology to conduct a targeted screen for small-molecule inhibitors of the mitochondrial rhomboid protease PARL, which plays a critical role in regulating mitophagy and cell death. We synthesized a series of succinimide-containing sulfonyl esters and sulfonamides and discovered that these compounds serve as inhibitors of PARL with the most potent sulfonamides having submicromolar affinity for the enzyme. A counterscreen against the bacterial rhomboid protease GlpG demonstrates that several of these compounds display selectivity for PARL over GlpG by as much as two orders of magnitude. Both the sulfonyl ester and sulfonamide scaffolds exhibit reversible binding and are able to engage PARL in mammalian cells. Collectively, our findings provide encouraging precedent for the development of PARL-selective inhibitors and establish N-[(arylsulfonyl)oxy]succinimides and N-arylsulfonylsuccinimides as new molecular scaffolds for inhibiting members of the rhomboid protease family.


Subject(s)
Benzenesulfonates/pharmacology , Metalloproteases/antagonists & inhibitors , Mitochondrial Proteins/antagonists & inhibitors , Protease Inhibitors/pharmacology , Succinimides/pharmacology , Sulfonamides/pharmacology , Benzenesulfonates/chemical synthesis , DNA-Binding Proteins/antagonists & inhibitors , Endopeptidases , Escherichia coli/enzymology , Escherichia coli Proteins/antagonists & inhibitors , HEK293 Cells , Humans , Membrane Proteins/antagonists & inhibitors , Protease Inhibitors/chemical synthesis , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/pharmacology , Succinimides/chemical synthesis , Sulfonamides/chemical synthesis
12.
Am J Med Genet A ; 185(7): 2046-2055, 2021 07.
Article in English | MEDLINE | ID: mdl-33949097

ABSTRACT

Guanylate cyclase 2C (GC-C), encoded by the GUCY2C gene, is implicated in hereditary early onset chronic diarrhea. Several families with chronic diarrhea symptoms have been identified with autosomal dominant, gain-of-function mutations in GUCY2C. We have identified a Mennonite patient with a novel GUCY2C variant (c.2381A > T; p.Asp794Val) with chronic diarrhea and an extensive maternal family history of chronic diarrhea and bowel dilatation. Functional studies including co-segregation analysis showed that all family members who were heterozygous for this variant had GI-related symptoms. HEK-293 T cells expressing the Asp794Val GC-C variant showed increased cGMP production when stimulated with Escherichia coli heat-stable enterotoxin STp (HST), which was reversed when 5-(3-Bromophenyl)-5,11-dihydro-1,3-dimethyl-1H-indeno[2',1':5,6]pyrido[2,3-d]pyrimidine-2,4,6(3H)-trione (BPIPP; a GC-C inhibitor) was used. In addition, cystic fibrosis transmembrane conductance regulator (CFTR) activity measured with SPQ fluorescence assay was increased in these cells after treatment with HST, indicating a crucial role for CFTR activity in the pathogenesis of this disorder. These results support pathogenicity of the GC-C Asp794Val variant as a cause of chronic diarrhea in this family. Furthermore, this work identifies potential candidate drug, GC-C inhibitor BPIPP, to treat diarrhea caused by this syndrome.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Diarrhea/genetics , Genetic Predisposition to Disease , Receptors, Enterotoxin/genetics , Adolescent , Bacterial Toxins/antagonists & inhibitors , Bacterial Toxins/genetics , Child , Diarrhea/drug therapy , Diarrhea/pathology , Enterotoxins/antagonists & inhibitors , Enterotoxins/genetics , Escherichia coli Proteins/antagonists & inhibitors , Escherichia coli Proteins/genetics , Female , Gain of Function Mutation/genetics , HEK293 Cells , Heterocyclic Compounds, 4 or More Rings/pharmacology , Humans , Male , Pedigree , Young Adult
13.
Eur J Med Chem ; 219: 113418, 2021 Jul 05.
Article in English | MEDLINE | ID: mdl-33862516

ABSTRACT

The occurrence of resistances in Gram negative bacteria is steadily increasing to reach extremely worrying levels and one of the main causes of resistance is the massive spread of very efficient ß-lactamases which render most ß-lactam antibiotics useless. Herein, we report the development of a series of imino-analogues of ß-lactams (namely azetidinimines) as efficient non-covalent inhibitors of ß-lactamases. Despite the structural and mechanistic differences between serine-ß-lactamases KPC-2 and OXA-48 and metallo-ß-lactamase NDM-1, all three enzymes can be inhibited at a submicromolar level by compound 7dfm, which can also repotentiate imipenem against a resistant strain of Escherichia coli expressing NDM-1. We show that 7dfm can efficiently inhibit not only the three main clinically-relevant carbapenemases of Ambler classes A (KPC-2), B (NDM-1) and D (OXA-48) with Ki's below 0.3 µM, but also the cephalosporinase CMY-2 (class C, 86% inhibition at 10 µM). Our results pave the way for the development of a new structurally original family of non-covalent broad-spectrum inhibitors of ß-lactamases.


Subject(s)
Anti-Bacterial Agents/chemistry , Azetidines/chemistry , beta-Lactamase Inhibitors/chemistry , beta-Lactamases/chemistry , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Azetidines/metabolism , Binding Sites , Catalytic Domain , Cell Line , Cell Proliferation/drug effects , Escherichia coli Proteins/antagonists & inhibitors , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Gram-Negative Bacteria/drug effects , Humans , Inhibitory Concentration 50 , Microbial Sensitivity Tests , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Molecular Docking Simulation , Structure-Activity Relationship , beta-Lactamase Inhibitors/metabolism , beta-Lactamase Inhibitors/pharmacology , beta-Lactamases/genetics , beta-Lactamases/metabolism
14.
Nature ; 593(7857): 125-129, 2021 05.
Article in English | MEDLINE | ID: mdl-33854236

ABSTRACT

Antibiotics that target Gram-negative bacteria in new ways are needed to resolve the antimicrobial resistance crisis1-3. Gram-negative bacteria are protected by an additional outer membrane, rendering proteins on the cell surface attractive drug targets4,5. The natural compound darobactin targets the bacterial insertase BamA6-the central unit of the essential BAM complex, which facilitates the folding and insertion of outer membrane proteins7-13. BamA lacks a typical catalytic centre, and it is not obvious how a small molecule such as darobactin might inhibit its function. Here we resolve the mode of action of darobactin at the atomic level using a combination of cryo-electron microscopy, X-ray crystallography, native mass spectrometry, in vivo experiments and molecular dynamics simulations. Two cyclizations pre-organize the darobactin peptide in a rigid ß-strand conformation. This creates a mimic of the recognition signal of native substrates with a superior ability to bind to the lateral gate of BamA. Upon binding, darobactin replaces a lipid molecule from the lateral gate to use the membrane environment as an extended binding pocket. Because the interaction between darobactin and BamA is largely mediated by backbone contacts, it is particularly robust against potential resistance mutations. Our results identify the lateral gate as a functional hotspot in BamA and will allow the rational design of antibiotics that target this bacterial Achilles heel.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacterial Outer Membrane Proteins/antagonists & inhibitors , Escherichia coli Proteins/antagonists & inhibitors , Escherichia coli/drug effects , Escherichia coli/enzymology , Phenylpropionates/chemistry , Phenylpropionates/pharmacology , Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/metabolism , Binding Sites , Cryoelectron Microscopy , Crystallography, X-Ray , Drug Design , Escherichia coli/cytology , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Mass Spectrometry , Molecular Dynamics Simulation , Protein Structure, Secondary
15.
J Biol Chem ; 296: 100653, 2021.
Article in English | MEDLINE | ID: mdl-33845047

ABSTRACT

The transcription terminator Rho regulates many physiological processes in bacteria, such as antibiotic sensitivity, DNA repair, RNA remodeling, and so forth, and hence, is a potential antimicrobial target, which is unexplored. The bacteriophage P4 capsid protein, Psu, moonlights as a natural Rho antagonist. Here, we report the design of novel peptides based on the C-terminal region of Psu using phenotypic screening methods. The resultant 38-mer peptides, in addition to containing mutagenized Psu sequences, also contained plasmid sequences, fused to their C termini. Expression of these peptides inhibited the growth of Escherichia coli and specifically inhibited Rho-dependent termination in vivo. Peptides 16 and 33 exhibited the best Rho-inhibitory properties in vivo. Direct high-affinity binding of these two peptides to Rho also inhibited the latter's RNA-dependent ATPase and transcription termination functions in vitro. These two peptides remained functional even if eight to ten amino acids were deleted from their C termini. In silico modeling and genetic and biochemical evidence revealed that these two peptides bind to the primary RNA-binding site of the Rho hexamer near its subunit interfaces. In addition, the gene expression profiles of these peptides and Psu overlapped significantly. These peptides also inhibited the growth of Mycobacteria and inhibited the activities of Rho proteins from Mycobacterium tuberculosis, Xanthomonas, Vibrio cholerae, and Salmonella enterica. Our results showed that these novel anti-Rho peptides mimic the Rho-inhibition function of the ∼42-kDa dimeric bacteriophage P4 capsid protein, Psu. We conclude that these peptides and their C-terminal deletion derivatives could provide a basis on which to design novel antimicrobial peptides.


Subject(s)
Capsid Proteins/pharmacology , Drug Design , Escherichia coli Proteins/antagonists & inhibitors , Escherichia coli/metabolism , Mycobacterium tuberculosis/drug effects , Peptide Fragments/pharmacology , Terminator Regions, Genetic , Xanthomonas/drug effects , Amino Acid Sequence , Escherichia coli/genetics , Escherichia coli/growth & development , Mycobacterium tuberculosis/growth & development , Peptide Library , Plasmids , Protein Binding , Sequence Homology , Xanthomonas/growth & development
16.
Molecules ; 26(5)2021 Mar 02.
Article in English | MEDLINE | ID: mdl-33801316

ABSTRACT

A pharmacophore model for inhibitors of Escherichia coli's DNA Gyrase B was developed, using computer-aided drug design. Subsequently, docking studies showed that 2,5(6)-substituted benzimidazole derivatives are promising molecules, as they possess key hydrogen bond donor/acceptor groups for an efficient interaction with this bacterial target. Furthermore, 5(6)-bromo-2-(2-nitrophenyl)-1H-benzimidazole, selected as a core molecule, was prepared on a multi-gram scale through condensation of 4-bromo-1,2-diaminobenzene with 2-nitrobenzaldehyde using a sustainable approach. The challenging functionalization of the 5(6)-position was carried out via palladium-catalyzed Suzuki-Miyaura and Buchwald-Hartwig amination cross-coupling reactions between N-protected-5-bromo-2-nitrophenyl-benzimidazole and aryl boronic acids or sulfonylanilines, with yields up to 81%. The final designed molecules (2-(aminophen-2-yl)-5(6)-substituted-1H-benzimidazoles), which encompass the appropriate functional groups in the 5(6)-position according to the pharmacophore model, were obtained in yields up to 91% after acid-mediated N-boc deprotection followed by Pd-catalyzed hydrogenation. These groups are predicted to favor interactions with DNA gyrase B residues Asn46, Asp73, and Asp173, aiming to promote an inhibitory effect.


Subject(s)
Benzimidazoles/chemistry , DNA Gyrase/chemistry , Drug Design , Escherichia coli/drug effects , Palladium/chemistry , Topoisomerase II Inhibitors/chemical synthesis , Topoisomerase II Inhibitors/pharmacology , Escherichia coli/enzymology , Escherichia coli Proteins/antagonists & inhibitors
17.
Chem Biol Drug Des ; 97(6): 1170-1184, 2021 06.
Article in English | MEDLINE | ID: mdl-33764683

ABSTRACT

DNA alkylation damage, emanating from the exposure to environmental alkylating agents or produced by certain endogenous metabolic processes, affects cell viability and genomic stability. Fe(II)/2-oxoglutarate-dependent dioxygenase enzymes, such as Escherichia coli AlkB, are involved in protecting DNA from alkylation damage. Inspired by the natural product indenone derivatives reported to inhibit this class of enzymes, and a set of 2-chloro-3-amino indenone derivatives was synthesized and screened for their inhibitory properties against AlkB. The synthesis of 2-chloro-3-amino indenone derivatives was achieved from 2,3-dichloro indenones through addition-elimination method using alkyl/aryl amines under catalyst-free conditions. Using an in vitro reconstituted DNA repair assay, we have identified a 2-chloro-3-amino indenone compound 3o to be an inhibitor of AlkB. We have determined the binding affinity, mode of interaction, and kinetic parameters of inhibition of 3o and tested its ability to sensitize cells to methyl methanesulfonate that mainly produce DNA alkylation damage. This study established the potential of indenone-derived compounds as inhibitors of Fe(II)/2-oxoglutarate-dependent dioxygenase AlkB.


Subject(s)
Alkylating Agents/chemical synthesis , DNA Repair , Indenes/chemistry , Alkylating Agents/pharmacology , Binding Sites , DNA Damage , DNA Demethylation/drug effects , DNA Repair/drug effects , Escherichia coli/enzymology , Escherichia coli Proteins/antagonists & inhibitors , Escherichia coli Proteins/metabolism , Humans , Indenes/metabolism , Indenes/pharmacology , Kinetics , Mixed Function Oxygenases/antagonists & inhibitors , Mixed Function Oxygenases/metabolism , Molecular Docking Simulation , Protein Binding
18.
J Microbiol Methods ; 184: 106201, 2021 05.
Article in English | MEDLINE | ID: mdl-33713725

ABSTRACT

Enteropathogenic E. coli (EPEC) causes intestinal infections leading to severe diarrhea. EPEC attaches to the host cell causing lesions to the intestinal epithelium coupled with the effacement of microvilli. In the process, actin accumulates into a pedestal-like structure under bacterial microcolonies. We designed an automated fluorescence microscopy-based screening method for discovering compounds capable of inhibiting EPEC adhesion and virulence using aurodox, a type three secretion system (T3SS) inhibitor, as a positive control. The screening assay employs an EPEC strain (2348/69) expressing a fluorescent protein and actin staining for monitoring the bacteria and their pedestals respectively, analyzing these with a custom image analysis pipeline. The assay allows for the discovery of compounds capable of preventing the formation of pathogenic actin rearrangements. These compounds may be interfering with virulence-related molecular pathways relevant for developing antivirulence leads.


Subject(s)
Anti-Bacterial Agents/pharmacology , Automation/methods , Bacterial Adhesion/drug effects , Drug Evaluation, Preclinical/methods , Enteropathogenic Escherichia coli/drug effects , Enteropathogenic Escherichia coli/physiology , Microscopy, Fluorescence/methods , Enteropathogenic Escherichia coli/genetics , Enteropathogenic Escherichia coli/pathogenicity , Escherichia coli Infections/microbiology , Escherichia coli Proteins/antagonists & inhibitors , Escherichia coli Proteins/metabolism , Humans , Type III Secretion Systems/antagonists & inhibitors , Type III Secretion Systems/metabolism , Virulence/drug effects
19.
Eur J Med Chem ; 216: 113322, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33652353

ABSTRACT

In this paper, the 2,5-disubstituted furan derivatives containing 1,3,4-thiadiazole were synthesized and screened for their inhibitory activity against α-glucosidase and ß-glucuronidases to obtain potent α-glucosidase inhibitor 9 (IC50 = 0.186 µM) and E. coli ß-glucuronidase inhibitor 26 (IC50 = 0.082 µM), respectively. The mechanisms of the compounds were studied. The kinetic study revealed that compound 9 is a competitive inhibitor against α-glucosidase (Ki = 0.05 ± 0.003 µM) and molecular docking simulation showed several key interactions between 9 and the target including hydrogen bond and p-π stacking interaction. Derivative 26 (Ki = 0.06 ± 0.005 µM) displayed uncompetitive inhibition behavior against EcGUS. Furthermore, the result of docking revealed the furan ring of 26 may be a key moiety in obstructing the active domain of EcGUS. In addition, compound 15 exhibited significant inhibitory activity against these two enzymes, with potential therapeutic effects against diabetes and against CPT-11-induced diarrhea. At the same time, their low toxicity against normal liver tissue LO2 cells lays the foundation for in vivo studies and the development of bifunctional drug.


Subject(s)
Escherichia coli/enzymology , Furans/chemistry , Glycoproteins/chemistry , Glycoside Hydrolase Inhibitors/chemistry , Thiadiazoles/chemistry , Binding Sites , Catalytic Domain , Cell Line , Cell Survival , Escherichia coli Proteins/antagonists & inhibitors , Escherichia coli Proteins/metabolism , Furans/pharmacology , Glucuronidase/antagonists & inhibitors , Glucuronidase/metabolism , Glycoproteins/pharmacology , Glycoside Hydrolase Inhibitors/pharmacology , Humans , Kinetics , Molecular Docking Simulation , Structure-Activity Relationship
20.
Sci Rep ; 11(1): 2751, 2021 02 02.
Article in English | MEDLINE | ID: mdl-33531570

ABSTRACT

Enterotoxigenic Escherichia coli (ETEC) is estimated to cause approximately 380,000 deaths annually during sporadic or epidemic outbreaks worldwide. Development of vaccines against ETEC is very challenging due to the vast heterogeneity of the ETEC strains. An effective vaccines would have to be multicomponent to provide coverage of over ten ETEC strains with genetic variabilities. There is currently no vaccine licensed to prevent ETEC. Nanobodies are successful new biologics in treating mucosal infectious disease as they recognize conserved epitopes on hypervariable pathogens. Cocktails consisting of multiple nanobodies could provide even broader epitope coverage at a lower cost compared to monoclonal antibodies. Identification of conserved epitopes by nanobodies can also assist reverse engineering of an effective vaccine against ETEC. By screening nanobodies from immunized llamas and a naïve yeast display library against adhesins of colonization factors, we identified single nanobodies that show cross-protective potency against eleven major pathogenic ETEC strains in vitro. Oral administration of nanobodies led to a significant reduction of bacterial colonization in animals. Moreover, nanobody-IgA fusion showed extended inhibitory activity in mouse colonization compared to commercial hyperimmune bovine colostrum product used for prevention of ETEC-induced diarrhea. Structural analysis revealed that nanobodies recognized a highly-conserved epitope within the putative receptor binding region of ETEC adhesins. Our findings support further rational design of a pan-ETEC vaccine to elicit robust immune responses targeting this conserved epitope.


Subject(s)
Diarrhea/prevention & control , Enterotoxigenic Escherichia coli/immunology , Escherichia coli Infections/prevention & control , Escherichia coli Vaccines/administration & dosage , Single-Domain Antibodies/administration & dosage , Animals , Antibodies, Bacterial/administration & dosage , Antibodies, Bacterial/immunology , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/immunology , Caco-2 Cells , Camelids, New World , Cross Protection , Diarrhea/immunology , Diarrhea/microbiology , Disease Models, Animal , Drug Design , Epitope Mapping , Epitopes/immunology , Escherichia coli Infections/immunology , Escherichia coli Proteins/antagonists & inhibitors , Escherichia coli Proteins/immunology , Escherichia coli Vaccines/immunology , Fimbriae Proteins/antagonists & inhibitors , Fimbriae Proteins/immunology , Humans , Immunoconjugates/administration & dosage , Immunoconjugates/immunology , Male , Mice , Single-Domain Antibodies/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...