Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 372
Filter
1.
Nature ; 628(8009): 901-909, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38570679

ABSTRACT

Capsular polysaccharides (CPSs) fortify the cell boundaries of many commensal and pathogenic bacteria1. Through the ABC-transporter-dependent biosynthesis pathway, CPSs are synthesized intracellularly on a lipid anchor and secreted across the cell envelope by the KpsMT ABC transporter associated with the KpsE and KpsD subunits1,2. Here we use structural and functional studies to uncover crucial steps of CPS secretion in Gram-negative bacteria. We show that KpsMT has broad substrate specificity and is sufficient for the translocation of CPSs across the inner bacterial membrane, and we determine the cell surface organization and localization of CPSs using super-resolution fluorescence microscopy. Cryo-electron microscopy analyses of the KpsMT-KpsE complex in six different states reveal a KpsE-encaged ABC transporter, rigid-body conformational rearrangements of KpsMT during ATP hydrolysis and recognition of a glycolipid inside a membrane-exposed electropositive canyon. In vivo CPS secretion assays underscore the functional importance of canyon-lining basic residues. Combined, our analyses suggest a molecular model of CPS secretion by ABC transporters.


Subject(s)
Bacterial Capsules , Escherichia coli Proteins , Escherichia coli , Polysaccharides, Bacterial , Adenosine Triphosphate/metabolism , ATP-Binding Cassette Transporters/chemistry , ATP-Binding Cassette Transporters/metabolism , ATP-Binding Cassette Transporters/ultrastructure , Bacterial Capsules/metabolism , Bacterial Capsules/chemistry , Bacterial Capsules/ultrastructure , Cell Membrane/chemistry , Cell Membrane/metabolism , Cell Membrane/ultrastructure , Cryoelectron Microscopy , Escherichia coli/chemistry , Escherichia coli/metabolism , Escherichia coli/ultrastructure , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/ultrastructure , Glycolipids/chemistry , Glycolipids/metabolism , Hydrolysis , Microscopy, Fluorescence , Models, Molecular , Polysaccharides, Bacterial/metabolism , Polysaccharides, Bacterial/chemistry , Substrate Specificity
2.
Nature ; 614(7947): 367-374, 2023 02.
Article in English | MEDLINE | ID: mdl-36697824

ABSTRACT

Rho is a ring-shaped hexameric ATP-dependent molecular motor. Together with the transcription elongation factor NusG, Rho mediates factor-dependent transcription termination and transcription-translation-coupling quality control in Escherichia coli1-4. Here we report the preparation of complexes that are functional in factor-dependent transcription termination from Rho, NusG, RNA polymerase (RNAP), and synthetic nucleic acid scaffolds, and we report cryogenic electron microscopy structures of the complexes. The structures show that functional factor-dependent pre-termination complexes contain a closed-ring Rho hexamer; have RNA threaded through the central channel of Rho; have 60 nucleotides of RNA interacting sequence-specifically with the exterior of Rho and 6 nucleotides of RNA interacting sequence-specifically with the central channel of Rho; have Rho oriented relative to RNAP such that ATP-dependent translocation by Rho exerts mechanical force on RNAP; and have NusG bridging Rho and RNAP. The results explain five decades of research on Rho and provide a foundation for understanding Rho's function.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Transcription Factors , Transcription Termination, Genetic , Adenosine Triphosphate/metabolism , Cryoelectron Microscopy , DNA-Directed RNA Polymerases/chemistry , DNA-Directed RNA Polymerases/metabolism , DNA-Directed RNA Polymerases/ultrastructure , Escherichia coli/chemistry , Escherichia coli/enzymology , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/ultrastructure , RNA/chemistry , RNA/genetics , RNA/metabolism , RNA/ultrastructure , Transcription Factors/chemistry , Transcription Factors/metabolism , Transcription Factors/ultrastructure
3.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Article in English | MEDLINE | ID: mdl-35101979

ABSTRACT

The secondary active transporter CitS shuttles citrate across the cytoplasmic membrane of gram-negative bacteria by coupling substrate translocation to the transport of two Na+ ions. Static crystal structures suggest an elevator type of transport mechanism with two states: up and down. However, no dynamic measurements have been performed to substantiate this assumption. Here, we use high-speed atomic force microscopy for real-time visualization of the transport cycle at the level of single transporters. Unexpectedly, instead of a bimodal height distribution for the up and down states, the experiments reveal movements between three distinguishable states, with protrusions of ∼0.5 nm, ∼1.0 nm, and ∼1.6 nm above the membrane, respectively. Furthermore, the real-time measurements show that the individual protomers of the CitS dimer move up and down independently. A three-state elevator model of independently operating protomers resembles the mechanism proposed for the aspartate transporter GltPh Since CitS and GltPh are structurally unrelated, we conclude that the three-state elevators have evolved independently.


Subject(s)
Cell Membrane , Escherichia coli Proteins , Escherichia coli , Microscopy, Atomic Force , Symporters , Cell Membrane/genetics , Cell Membrane/metabolism , Cell Membrane/ultrastructure , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli/ultrastructure , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/ultrastructure , Symporters/genetics , Symporters/metabolism , Symporters/ultrastructure
4.
Nat Commun ; 13(1): 991, 2022 02 18.
Article in English | MEDLINE | ID: mdl-35181664

ABSTRACT

The homo-dimeric bacterial membrane protein EmrE effluxes polyaromatic cationic substrates in a proton-coupled manner to cause multidrug resistance. We recently determined the structure of substrate-bound EmrE in phospholipid bilayers by measuring hundreds of protein-ligand HN-F distances for a fluorinated substrate, 4-fluoro-tetraphenylphosphonium (F4-TPP+), using solid-state NMR. This structure was solved at low pH where one of the two proton-binding Glu14 residues is protonated. Here, to understand how substrate transport depends on pH, we determine the structure of the EmrE-TPP complex at high pH, where both Glu14 residues are deprotonated. The high-pH complex exhibits an elongated and hydrated binding pocket in which the substrate is similarly exposed to the two sides of the membrane. In contrast, the low-pH complex asymmetrically exposes the substrate to one side of the membrane. These pH-dependent EmrE conformations provide detailed insights into the alternating-access model, and suggest that the high-pH conformation may facilitate proton binding in the presence of the substrate, thus accelerating the conformational change of EmrE to export the substrate.


Subject(s)
Antiporters/metabolism , Escherichia coli Proteins/metabolism , Protons , Antiporters/ultrastructure , Drug Resistance, Multiple, Bacterial , Escherichia coli Proteins/ultrastructure , Hydrogen-Ion Concentration , Molecular Docking Simulation , Nuclear Magnetic Resonance, Biomolecular , Onium Compounds/metabolism , Organophosphorus Compounds/metabolism
5.
Nat Struct Mol Biol ; 29(1): 59-66, 2022 01.
Article in English | MEDLINE | ID: mdl-35013597

ABSTRACT

DNA mismatch repair detects and corrects mismatches introduced during DNA replication. The protein MutS scans for mismatches and coordinates the repair cascade. During this process, MutS undergoes multiple conformational changes in response to ATP binding, hydrolysis and release, but how ATP induces the various MutS conformations is incompletely understood. Here we present four cryogenic electron microscopy structures of Escherichia coli MutS at sequential stages of the ATP hydrolysis cycle that reveal how ATP binding and hydrolysis induce closing and opening of the MutS dimer, respectively. Biophysical analysis demonstrates how DNA binding modulates the ATPase cycle by prevention of hydrolysis during scanning and mismatch binding, while preventing ADP release in the sliding clamp state. Nucleotide release is achieved when MutS encounters single-stranded DNA that is produced during removal of the daughter strand. The combination of ATP binding and hydrolysis and its modulation by DNA enables MutS to adopt the different conformations needed to coordinate the sequential steps of the mismatch repair cascade.


Subject(s)
Adenosine Triphosphate/metabolism , Cryoelectron Microscopy , DNA Mismatch Repair , DNA/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/ultrastructure , MutS DNA Mismatch-Binding Protein/metabolism , MutS DNA Mismatch-Binding Protein/ultrastructure , Adenosine Diphosphate/metabolism , Catalytic Domain , Escherichia coli , Hydrolysis , Models, Molecular , Protein Binding , Protein Multimerization
6.
Biochim Biophys Acta Biomembr ; 1864(1): 183791, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34624277

ABSTRACT

Cell membranes provide an environment that is essential to the functions of membrane proteins. Cell membranes are mainly composed of proteins and highly diverse phospholipids. The influence of diverse lipid compositions of native cell membranes on the dynamics of the embedded membrane proteins has not been examined. Here we employ solid-state NMR to investigate the dynamics of E. coli Aquaporin Z (AqpZ) in its native inner cell membranes, and reveal the influence of diverse lipid compositions on the dynamics of AqpZ by comparing it in native cell membranes to that in POPC/POPG bilayers. We demonstrate that the dynamic rigidity of AqpZ generally conserves in both native cell membranes and POPC/POPG bilayers, due to its tightly packed tetrameric structure. In the gel and the liquid crystal phases of lipids, our experimental results show that AqpZ is more dynamic in native cell membranes than that in POPC/POPG bilayers. In addition, we observe that phase transitions of lipids in native membranes are less sensitive to temperature variations compared with that in POPC/POPG bilayers, which results in that the dynamics of AqpZ is less affected by the phase transitions of lipids in native cell membranes than that in POPC/POPG bilayers. This study provides new insights into the dynamics of membrane proteins in native cell membranes.


Subject(s)
Aquaporins/chemistry , Cell Membrane/chemistry , Escherichia coli Proteins/chemistry , Membrane Proteins/chemistry , Phospholipids/chemistry , Aquaporins/genetics , Aquaporins/ultrastructure , Cell Membrane/genetics , Cell Membrane/ultrastructure , Escherichia coli/chemistry , Escherichia coli Proteins/genetics , Escherichia coli Proteins/ultrastructure , Membrane Proteins/ultrastructure , Molecular Dynamics Simulation , Nuclear Magnetic Resonance, Biomolecular , Phospholipids/genetics
7.
Int J Mol Sci ; 22(22)2021 Nov 09.
Article in English | MEDLINE | ID: mdl-34829983

ABSTRACT

The BAM is a macromolecular machine responsible for the folding and the insertion of integral proteins into the outer membrane of diderm Gram-negative bacteria. In Escherichia coli, it consists of a transmembrane ß-barrel subunit, BamA, and four outer membrane lipoproteins (BamB-E). Using BAM-specific antibodies, in E. coli cells, the complex is shown to localize in the lateral wall in foci. The machinery was shown to be enriched at midcell with specific cell cycle timing. The inhibition of septation by aztreonam did not alter the BAM midcell localization substantially. Furthermore, the absence of late cell division proteins at midcell did not impact BAM timing or localization. These results imply that the BAM enrichment at the site of constriction does not require an active cell division machinery. Expression of the Tre1 toxin, which impairs the FtsZ filamentation and therefore midcell localization, resulted in the complete loss of BAM midcell enrichment. A similar effect was observed for YidC, which is involved in the membrane insertion of cell division proteins in the inner membrane. The presence of the Z-ring is needed for preseptal peptidoglycan (PG) synthesis. As BAM was shown to be embedded in the PG layer, it is possible that BAM is inserted preferentially simultaneously with de novo PG synthesis to facilitate the insertion of OMPs in the newly synthesized outer membrane.


Subject(s)
Bacterial Outer Membrane Proteins/ultrastructure , Bacterial Proteins/genetics , Cytoskeletal Proteins/genetics , Escherichia coli Proteins/genetics , Membrane Transport Proteins/genetics , Bacterial Outer Membrane Proteins/genetics , Bacterial Proteins/ultrastructure , Cell Division/genetics , Cytoskeletal Proteins/ultrastructure , Escherichia coli/chemistry , Escherichia coli/genetics , Escherichia coli Infections/genetics , Escherichia coli Infections/microbiology , Escherichia coli Proteins/ultrastructure , Gram-Negative Bacteria/genetics , Gram-Negative Bacteria/ultrastructure , Lipoproteins/genetics , Lipoproteins/ultrastructure , Membrane Transport Proteins/ultrastructure , Protein Folding , Protein Multimerization/genetics
8.
Biomolecules ; 11(10)2021 09 22.
Article in English | MEDLINE | ID: mdl-34680030

ABSTRACT

Bacterial flagella are cell surface protein appendages that are critical for motility and pathogenesis. Flagellar filaments are tubular structures constructed from thousands of copies of the protein flagellin, or FliC, arranged in helical fashion. Individual unfolded FliC subunits traverse the filament pore and are folded and sorted into place with the assistance of the flagellar capping protein complex, an oligomer of the FliD protein. The FliD filament cap is a stool-like structure, with its D2 and D3 domains forming a flat head region, and its D1 domain leg-like structures extending perpendicularly from the head towards the inner core of the filament. Here, using an approach combining bacterial genetics, motility assays, electron microscopy and molecular modeling, we define, in numerous Gram-negative bacteria, which regions of FliD are critical for interaction with FliC subunits and result in the formation of functional flagella. Our data indicate that the D1 domain of FliD is its sole functionally important domain, and that its flexible coiled coil region comprised of helices at its extreme N- and C-termini controls compatibility with the FliC filament. FliD sequences from different bacterial species in the head region are well tolerated. Additionally, head domains can be replaced by small peptides and larger head domains from different species and still produce functional flagella.


Subject(s)
Bacterial Proteins/genetics , Escherichia coli Proteins/genetics , Flagellin/genetics , Membrane Proteins/genetics , Bacterial Proteins/ultrastructure , Escherichia coli/genetics , Escherichia coli/pathogenicity , Escherichia coli/ultrastructure , Escherichia coli Proteins/ultrastructure , Flagella/chemistry , Flagella/genetics , Flagella/ultrastructure , Flagellin/ultrastructure , Gram-Negative Bacteria/genetics , Gram-Negative Bacteria/pathogenicity , Intermediate Filaments/genetics , Microscopy, Electron , Models, Molecular , Protein Domains/genetics , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/pathogenicity , Pseudomonas aeruginosa/ultrastructure
9.
Sci Rep ; 11(1): 18885, 2021 09 23.
Article in English | MEDLINE | ID: mdl-34556749

ABSTRACT

Since 1993, when the structure of Escherichia coli type II L-asparaginase (EcAII) in complex with L-aspartate was firstly reported, many structures of the wild type and mutated enzyme have been deposited in the Protein Data Bank. None of them report the full structure of the monomer in its ligand-free, open conformation, mainly because of the high dynamic and flexibility of the active site flexible loop. Here we report for the first time the structure of EcAII wild type in its open conformation comprising, for at least one protomer, clear electron density for the active site flexible loop (PDB ID: 6YZI). The structural element is highly mobile and it is transposed onto the rigid part of the active site upon substrate binding to allow completion of the enzyme catalytic center, thanks to key residues that serve as hinges and anchoring points. In the substrate binding pocket, several highly conserved water molecules are coordinated by residues involved in substrate binding, comprising two water molecules very likely involved in the enzyme catalytic process. We also describe, by molecular dynamics simulations, how the transposition of the loop, besides providing the proximity of residues needed for catalysis, causes a general stabilization of the protein.


Subject(s)
Asparaginase/ultrastructure , Escherichia coli Proteins/ultrastructure , Recombinant Proteins/ultrastructure , Asparaginase/isolation & purification , Catalytic Domain , Escherichia coli/enzymology , Escherichia coli Proteins/isolation & purification , Molecular Dynamics Simulation , Protein Stability , Recombinant Proteins/isolation & purification , X-Ray Diffraction
10.
Nucleic Acids Res ; 49(16): 9539-9547, 2021 09 20.
Article in English | MEDLINE | ID: mdl-34403461

ABSTRACT

In Escherichia coli, elevated levels of free l-tryptophan (l-Trp) promote translational arrest of the TnaC peptide by inhibiting its termination. However, the mechanism by which translation-termination by the UGA-specific decoding release factor 2 (RF2) is inhibited at the UGA stop codon of stalled TnaC-ribosome-nascent chain complexes has so far been ambiguous. This study presents cryo-EM structures for ribosomes stalled by TnaC in the absence and presence of RF2 at average resolutions of 2.9 and 3.5 Å, respectively. Stalled TnaC assumes a distinct conformation composed of two small α-helices that act together with residues in the peptide exit tunnel (PET) to coordinate a single L-Trp molecule. In addition, while the peptidyl-transferase center (PTC) is locked in a conformation that allows RF2 to adopt its canonical position in the ribosome, it prevents the conserved and catalytically essential GGQ motif of RF2 from adopting its active conformation in the PTC. This explains how translation of the TnaC peptide effectively allows the ribosome to function as a L-Trp-specific small-molecule sensor that regulates the tnaCAB operon.


Subject(s)
Escherichia coli Proteins/ultrastructure , Peptide Termination Factors/ultrastructure , Protein Biosynthesis , Ribosomes/ultrastructure , Codon, Terminator/genetics , Cryoelectron Microscopy , Escherichia coli/genetics , Escherichia coli/ultrastructure , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Peptide Termination Factors/chemistry , Peptide Termination Factors/genetics , Protein Conformation , Protein Conformation, alpha-Helical , Ribosomes/genetics , Tryptophan/genetics
11.
Int J Mol Sci ; 22(11)2021 Jun 03.
Article in English | MEDLINE | ID: mdl-34205216

ABSTRACT

Two independent, complementary methods of structural analysis were used to elucidate the effect of divalent magnesium and iron cations on the structure of the protective Dps-DNA complex. Small-angle X-ray scattering (SAXS) and cryo-electron microscopy (cryo-EM) demonstrate that Mg2+ ions block the N-terminals of the Dps protein preventing its interaction with DNA. Non-interacting macromolecules of Dps and DNA remain in the solution in this case. The subsequent addition of the chelating agent (EDTA) leads to a complete restoration of the structure of the complex. Different effect was observed when Fe cations were added to the Dps-DNA complex; the presence of Fe2+ in solution leads to the total complex destruction and aggregation without possibility of the complex restoration with the chelating agent. Here, we discuss these different responses of the Dps-DNA complex on the presence of additional free metal cations, investigating the structure of the Dps protein with and without cations using SAXS and cryo-EM. Additionally, the single particle analysis of Dps with accumulated iron performed by cryo-EM shows localization of iron nanoparticles inside the Dps cavity next to the acidic (hydrophobic) pore, near three glutamate residues.


Subject(s)
Bacterial Outer Membrane Proteins/ultrastructure , DNA/ultrastructure , Escherichia coli Proteins/ultrastructure , Iron/chemistry , Magnesium/chemistry , Amino Acid Sequence/drug effects , Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/genetics , Cations/chemistry , Cryoelectron Microscopy , DNA/chemistry , DNA/genetics , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/ultrastructure , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Scattering, Small Angle , X-Ray Diffraction
12.
Nat Commun ; 12(1): 4174, 2021 07 07.
Article in English | MEDLINE | ID: mdl-34234105

ABSTRACT

The folding of ß-barrel outer membrane proteins (OMPs) in Gram-negative bacteria is catalysed by the ß-barrel assembly machinery (BAM). How lateral opening in the ß-barrel of the major subunit BamA assists in OMP folding, and the contribution of membrane disruption to BAM catalysis remain unresolved. Here, we use an anti-BamA monoclonal antibody fragment (Fab1) and two disulphide-crosslinked BAM variants (lid-locked (LL), and POTRA-5-locked (P5L)) to dissect these roles. Despite being lethal in vivo, we show that all complexes catalyse folding in vitro, albeit less efficiently than wild-type BAM. CryoEM reveals that while Fab1 and BAM-P5L trap an open-barrel state, BAM-LL contains a mixture of closed and contorted, partially-open structures. Finally, all three complexes globally destabilise the lipid bilayer, while BamA does not, revealing that the BAM lipoproteins are required for this function. Together the results provide insights into the role of BAM structure and lipid dynamics in OMP folding.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Escherichia coli Proteins/metabolism , Hydrolases/metabolism , Liposomes/metabolism , Protein Folding , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/isolation & purification , Bacterial Outer Membrane Proteins/ultrastructure , Cryoelectron Microscopy , Dynamic Light Scattering , Escherichia coli Proteins/genetics , Escherichia coli Proteins/isolation & purification , Escherichia coli Proteins/ultrastructure , Hydrolases/genetics , Hydrolases/isolation & purification , Hydrolases/ultrastructure , Lipid Metabolism , Liposomes/ultrastructure , Molecular Dynamics Simulation , Protein Conformation, beta-Strand , Proteolipids/metabolism , Proteolipids/ultrastructure , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Recombinant Proteins/ultrastructure
13.
Nature ; 594(7863): 385-390, 2021 06.
Article in English | MEDLINE | ID: mdl-34135520

ABSTRACT

Understanding structural dynamics of biomolecules at the single-molecule level is vital to advancing our knowledge of molecular mechanisms. Currently, there are few techniques that can capture dynamics at the sub-nanometre scale and in physiologically relevant conditions. Atomic force microscopy (AFM)1 has the advantage of analysing unlabelled single molecules in physiological buffer and at ambient temperature and pressure, but its resolution limits the assessment of conformational details of biomolecules2. Here we present localization AFM (LAFM), a technique developed to overcome current resolution limitations. By applying localization image reconstruction algorithms3 to peak positions in high-speed AFM and conventional AFM data, we increase the resolution beyond the limits set by the tip radius, and resolve single amino acid residues on soft protein surfaces in native and dynamic conditions. LAFM enables the calculation of high-resolution maps from either images of many molecules or many images of a single molecule acquired over time, facilitating single-molecule structural analysis. LAFM is a post-acquisition image reconstruction method that can be applied to any biomolecular AFM dataset.


Subject(s)
Microscopy, Atomic Force/methods , Microscopy, Atomic Force/standards , Algorithms , Amino Acids/chemistry , Annexin A5/chemistry , Annexin A5/ultrastructure , Aquaporins/chemistry , Aquaporins/ultrastructure , Chloride Channels/chemistry , Chloride Channels/ultrastructure , Datasets as Topic , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/ultrastructure , Humans , Hydrogen-Ion Concentration , Molecular Dynamics Simulation
15.
PLoS Genet ; 17(4): e1009366, 2021 04.
Article in English | MEDLINE | ID: mdl-33857142

ABSTRACT

SEDS family peptidoglycan (PG) glycosyltransferases, RodA and FtsW, require their cognate transpeptidases PBP2 and FtsI (class B penicillin binding proteins) to synthesize PG along the cell cylinder and at the septum, respectively. The activities of these SEDS-bPBPs complexes are tightly regulated to ensure proper cell elongation and division. In Escherichia coli FtsN switches FtsA and FtsQLB to the active forms that synergize to stimulate FtsWI, but the exact mechanism is not well understood. Previously, we isolated an activation mutation in ftsW (M269I) that allows cell division with reduced FtsN function. To try to understand the basis for activation we isolated additional substitutions at this position and found that only the original substitution produced an active mutant whereas drastic changes resulted in an inactive mutant. In another approach we isolated suppressors of an inactive FtsL mutant and obtained FtsWE289G and FtsIK211I and found they bypassed FtsN. Epistatic analysis of these mutations and others confirmed that the FtsN-triggered activation signal goes from FtsQLB to FtsI to FtsW. Mapping these mutations, as well as others affecting the activity of FtsWI, on the RodA-PBP2 structure revealed they are located at the interaction interface between the extracellular loop 4 (ECL4) of FtsW and the pedestal domain of FtsI (PBP3). This supports a model in which the interaction between the ECL4 of SEDS proteins and the pedestal domain of their cognate bPBPs plays a critical role in the activation mechanism.


Subject(s)
Bacterial Proteins/ultrastructure , Escherichia coli Proteins/ultrastructure , Membrane Proteins/ultrastructure , Multiprotein Complexes/ultrastructure , Penicillin-Binding Proteins/ultrastructure , Peptidoglycan Glycosyltransferase/ultrastructure , Protein Conformation , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Membrane Proteins/chemistry , Membrane Proteins/genetics , Models, Molecular , Multiprotein Complexes/chemistry , Multiprotein Complexes/genetics , Penicillin-Binding Proteins/chemistry , Penicillin-Binding Proteins/genetics , Peptidoglycan/chemistry , Peptidoglycan/genetics , Peptidoglycan/ultrastructure , Peptidoglycan Glycosyltransferase/chemistry , Peptidoglycan Glycosyltransferase/genetics , Peptidyl Transferases/chemistry , Peptidyl Transferases/genetics , Peptidyl Transferases/ultrastructure
16.
mBio ; 12(2)2021 04 05.
Article in English | MEDLINE | ID: mdl-33820823

ABSTRACT

Gram-negative bacteria utilize the resistance-nodulation-cell division (RND) superfamily of efflux pumps to expel a variety of toxic compounds from the cell. The Escherichia coli CusA membrane protein, which recognizes and extrudes biocidal Cu(I) and Ag(I) ions, belongs to the heavy-metal efflux (HME) subfamily of RND efflux pumps. We here report four structures of the trimeric CusA heavy-metal efflux pump in the presence of Cu(I) using single-particle cryo-electron microscopy (cryo-EM). We discover that different CusA protomers within the trimer are able to bind Cu(I) ions simultaneously. Our structural data combined with molecular dynamics (MD) simulations allow us to propose a mechanism for ion transport where each CusA protomer functions independently within the trimer.IMPORTANCE The bacterial RND superfamily of efflux pumps mediate resistance to a variety of biocides, including Cu(I) and Ag(I) ions. Here we report four cryo-EM structures of the trimeric CusA pump in the presence of Cu(I). Combined with MD simulations, our data indicate that each CusA protomer within the trimer recognizes and extrudes Cu(I) independently.


Subject(s)
Cryoelectron Microscopy , Escherichia coli Proteins/chemistry , Escherichia coli/metabolism , Ion Transport , Membrane Transport Proteins/chemistry , Metals, Heavy/metabolism , Binding Sites , Biological Transport , Copper/metabolism , Escherichia coli/genetics , Escherichia coli/ultrastructure , Escherichia coli Proteins/ultrastructure , Membrane Transport Proteins/ultrastructure , Molecular Dynamics Simulation , Protein Binding , Silver/metabolism
17.
Nat Struct Mol Biol ; 28(4): 373-381, 2021 04.
Article in English | MEDLINE | ID: mdl-33820992

ABSTRACT

DNA mismatch repair detects and removes mismatches from DNA by a conserved mechanism, reducing the error rate of DNA replication by 100- to 1,000-fold. In this process, MutS homologs scan DNA, recognize mismatches and initiate repair. How the MutS homologs selectively license repair of a mismatch among millions of matched base pairs is not understood. Here we present four cryo-EM structures of Escherichia coli MutS that provide snapshots, from scanning homoduplex DNA to mismatch binding and MutL activation via an intermediate state. During scanning, the homoduplex DNA forms a steric block that prevents MutS from transitioning into the MutL-bound clamp state, which can only be overcome through kinking of the DNA at a mismatch. Structural asymmetry in all four structures indicates a division of labor between the two MutS monomers. Together, these structures reveal how a small conformational change from the homoduplex- to heteroduplex-bound MutS acts as a licensing step that triggers a dramatic conformational change that enables MutL binding and initiation of the repair cascade.


Subject(s)
DNA/ultrastructure , Escherichia coli Proteins/ultrastructure , MutL Proteins/ultrastructure , MutS DNA Mismatch-Binding Protein/ultrastructure , Protein Conformation , Cryoelectron Microscopy , DNA/genetics , DNA Mismatch Repair/genetics , DNA Repair/genetics , DNA Replication/genetics , Escherichia coli/genetics , Escherichia coli/ultrastructure , Escherichia coli Proteins/genetics , MutL Proteins/genetics , MutS DNA Mismatch-Binding Protein/genetics
18.
Nat Struct Mol Biol ; 28(4): 347-355, 2021 04.
Article in English | MEDLINE | ID: mdl-33782615

ABSTRACT

Lipoproteins in the outer membrane of Gram-negative bacteria are involved in various vital physiological activities, including multidrug resistance. Synthesized in the cytoplasm and matured in the inner membrane, lipoproteins must be transported to the outer membrane through the Lol pathway mediated by the ATP-binding cassette transporter LolCDE in the inner membrane via an unknown mechanism. Here, we report cryo-EM structures of Escherichia coli LolCDE in apo, lipoprotein-bound, LolA-bound, ADP-bound and AMP-PNP-bound states at a resolution of 3.2-3.8 Å, covering the complete lipoprotein transport cycle. Mutagenesis and in vivo viability assays verify features of the structures and reveal functional residues and structural characteristics of LolCDE. The results provide insights into the mechanisms of sorting and transport of outer-membrane lipoproteins and may guide the development of novel therapies against multidrug-resistant Gram-negative bacteria.


Subject(s)
ATP-Binding Cassette Transporters/ultrastructure , Escherichia coli Proteins/ultrastructure , Lipoproteins/ultrastructure , ATP-Binding Cassette Transporters/genetics , Adenosine Diphosphate/chemistry , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/ultrastructure , Cell Membrane/ultrastructure , Cryoelectron Microscopy , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Lipoproteins/genetics , Protein Transport/genetics
19.
Nat Struct Mol Biol ; 28(3): 310-318, 2021 03.
Article in English | MEDLINE | ID: mdl-33712813

ABSTRACT

Cellulose is frequently found in communities of sessile bacteria called biofilms. Escherichia coli and other enterobacteriaceae modify cellulose with phosphoethanolamine (pEtN) to promote host tissue adhesion. The E. coli pEtN cellulose biosynthesis machinery contains the catalytic BcsA-B complex that synthesizes and secretes cellulose, in addition to five other subunits. The membrane-anchored periplasmic BcsG subunit catalyzes pEtN modification. Here we present the structure of the roughly 1 MDa E. coli Bcs complex, consisting of one BcsA enzyme associated with six copies of BcsB, determined by single-particle cryo-electron microscopy. BcsB homo-oligomerizes primarily through interactions between its carbohydrate-binding domains as well as intermolecular beta-sheet formation. The BcsB hexamer creates a half spiral whose open side accommodates two BcsG subunits, directly adjacent to BcsA's periplasmic channel exit. The cytosolic BcsE and BcsQ subunits associate with BcsA's regulatory PilZ domain. The macrocomplex is a fascinating example of cellulose synthase specification.


Subject(s)
Cellulose/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Escherichia coli/enzymology , Multienzyme Complexes/chemistry , Multienzyme Complexes/metabolism , Biocatalysis , Cryoelectron Microscopy , Escherichia coli Proteins/ultrastructure , Models, Molecular , Multienzyme Complexes/ultrastructure , Protein Subunits/chemistry , Protein Subunits/metabolism , Reproducibility of Results
20.
Biochim Biophys Acta Proteins Proteom ; 1869(7): 140644, 2021 07.
Article in English | MEDLINE | ID: mdl-33716191

ABSTRACT

Microbacterium hydrocarbonoxydans has been isolated using an unnatural acylhydrazide compound as the sole carbon source. The compound is hydrolyzed by bacterial hydrazidase, and the gene expression of the enzyme is considered to be controlled by a transcription factor of the Isocitrate lyase Regulator (IclR) family, belonging to the one-component signaling systems. Recently, we reported the crystal structure of an unliganded IclR homolog from M. hydrocarbonoxydans, named putative 4-hydroxybenzoate response regulator (pHbrR), which has a unique homotetramer conformation. In this study, we report the crystal structure of pHbrR complexed with 4-hydroxybenzoic acid, the catalytic product of hydrazidase, at 2.0 Å resolution. pHbrR forms a homodimer with multimeric rearrangement in the unliganded state. Gel filtration column chromatography results suggested dimer-tetramer rearrangement. We observed conformational change in the loop region covering the ligand-binding site, and domain rearrangements in the monomer. This study reports the first liganded IclR family protein structure that demonstrates large structural rearrangements between liganded and unliganded proteins, which may represent a general model for IclRs.


Subject(s)
Isocitrate Lyase/metabolism , Transcription Factors/metabolism , Bacterial Proteins/chemistry , Binding Sites , Crystallography, X-Ray/methods , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/ultrastructure , Isocitrate Lyase/ultrastructure , Isocitrates , Ligands , Microbacterium/metabolism , Models, Molecular , Protein Conformation , Repressor Proteins/metabolism , Repressor Proteins/ultrastructure , Transcription Factors/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...