Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 368
Filter
1.
BMC Vet Res ; 20(1): 291, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965518

ABSTRACT

Eustrongylides excisus is a fish-borne zoonotic parasite known to infect various fish species, including Northern pike (Esox Lucius). This nematode, belonging to the family Dioctophymatidae, has a complex life cycle involving multiple hosts. This study aimed to investigate the occurrence of Eustrongylides nematodes in Northern pike (E. Lucius) collected from Mijran Dam (Ramsar, Iran). Between June and October 2023, an investigation was conducted on Northern pike from Mijran Dam in Ramsar, Iran, following reports of reddish parasites in their muscle tissues. Sixty fish were examined at the University of Tehran, revealing live parasites in the muscles, which were then analyzed microscopically and preserved for a multidisciplinary study. The skeletal muscle tissues of 85% (51/60) of fish specimens were infected by grossly visible larvae which were microscopically identified as Eustrongylides spp. In histopathological examination, the lesion was composed of encapsulated parasitic granulomatous myositis. Microscopically, the cystic parasitic granulomas compressed the adjacent muscle fibers, leading to their atrophy and Zenker's necrosis. Moreover, epithelioid macrophages, giant cells and mononuclear inflammatory cells were present around the larvae and between the muscle fibers. Finally, a molecular analysis by examining the ITS gene region, revealed that they belong to the species E. excisus. Eustrongylidiasis in northern Iran necessitates further research into the biology, epidemiology, and control of Eustrongylides nematodes, focusing on various hosts. This study is the first to comprehensively characterize E. excisus in Northern pike in Ramsar, Iran, raising concerns about possible zoonotic transmission.


Subject(s)
Esocidae , Fish Diseases , Animals , Iran/epidemiology , Fish Diseases/parasitology , Fish Diseases/epidemiology , Fish Diseases/pathology , Esocidae/parasitology , Dioctophymatoidea/isolation & purification , Muscle, Skeletal/parasitology , Muscle, Skeletal/pathology , Zoonoses/parasitology , Enoplida Infections/veterinary , Enoplida Infections/parasitology , Enoplida Infections/epidemiology , Enoplida Infections/pathology
2.
Glob Chang Biol ; 30(7): e17387, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38971982

ABSTRACT

Climate change is anticipated to cause species to shift their ranges upward and poleward, yet space for tracking suitable habitat conditions may be limited for range-restricted species at the highest elevations and latitudes of the globe. Consequently, range-restricted species inhabiting Arctic freshwater ecosystems, where global warming is most pronounced, face the challenge of coping with changing abiotic and biotic conditions or risk extinction. Here, we use an extensive fish community and environmental dataset for 1762 lakes sampled across Scandinavia (mid-1990s) to evaluate the climate vulnerability of Arctic char (Salvelinus alpinus), the world's most cold-adapted and northernly distributed freshwater fish. Machine learning models show that abiotic and biotic factors strongly predict the occurrence of Arctic char across the region with an overall accuracy of 89 percent. Arctic char is less likely to occur in lakes with warm summer temperatures, high dissolved organic carbon levels (i.e., browning), and presence of northern pike (Esox lucius). Importantly, climate warming impacts are moderated by habitat (i.e., lake area) and amplified by the presence of competitors and/or predators (i.e., northern pike). Climate warming projections under the RCP8.5 emission scenario indicate that 81% of extant populations are at high risk of extirpation by 2080. Highly vulnerable populations occur across their range, particularly near the southern range limit and at lower elevations, with potential refugia found in some mountainous and coastal regions. Our findings highlight that range shifts may give way to range contractions for this cold-water specialist, indicating the need for pro-active conservation and mitigation efforts to avoid the loss of Arctic freshwater biodiversity.


Subject(s)
Climate Change , Ecosystem , Lakes , Trout , Scandinavian and Nordic Countries , Animals , Trout/physiology , Arctic Regions , Esocidae/physiology
3.
J Agric Food Chem ; 72(22): 12788-12797, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38778779

ABSTRACT

Fish from the pike (Esox) genus are valued in gastronomy for their superior meat quality. However, they can cause allergic reactions in sensitive consumers. This work aimed to fill the gap in the detection of pike allergens using molecular-biological techniques. New, fast, and accurate loop-mediated isothermal amplification (LAMP) and real-time PCR (qPCR) assays were designed to detect pike DNA using the parvalbumin gene as a marker. LAMP was assessed by electrophoresis, SYBR green optical detection, and real-time fluorescence detection. The latter was the most sensitive, detecting as little as 0.78 ng of pike DNA; the qPCR detection limit was 0.1 ng. The LAMP analysis took 20-70 min, which is significantly faster than qPCR. The study provides reliable detection and quantification of the parvalbumin gene in both fresh and processed samples and further highlights the versatility of the use of the parvalbumin gene for the authentication of food products and consumer protection via refined allergen risk assessment that is independent of the type of tissue or food processing method used.


Subject(s)
Allergens , Esocidae , Food Hypersensitivity , Parvalbumins , Parvalbumins/genetics , Parvalbumins/immunology , Parvalbumins/analysis , Allergens/genetics , Allergens/analysis , Allergens/immunology , Animals , Food Hypersensitivity/immunology , Esocidae/genetics , Esocidae/immunology , Risk Assessment , Fish Proteins/genetics , Fish Proteins/immunology , Nucleic Acid Amplification Techniques/methods , Real-Time Polymerase Chain Reaction/methods , Humans , Food Contamination/analysis , Biomarkers/analysis , Molecular Diagnostic Techniques
4.
Sci Total Environ ; 931: 172703, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38703851

ABSTRACT

Methylmercury (MeHg) readily bioaccumulates and biomagnifies in aquatic food webs leading to elevated concentrations in fish and may thus induce toxicity. Oxidative stress is a suggested effect of MeHg bioaccumulation in fish. However, studies on how MeHg triggers oxidative stress in wild fish are scarce. The purpose of this study was to link the subcellular distribution of MeHg in the liver of northern pike from the St. Maurice River (Québec, Canada), affected by two run-of-river (RoR) dams, artificial wetlands, forest fires, and logging activity, to lipid peroxidation as an indicator of oxidative stress. We also evaluated the protective effects of the glutathione (GSH) system and selenium (Se), as they are known to alleviate MeHg toxicity. A customized subcellular partitioning protocol was used to separate the liver into metal-sensitive (mitochondria, microsome/lysosome and HDP - heat-denatured proteins) and metal-detoxified fractions (metal-rich granules and HSP - heat-stable proteins). We examined the relation among THg, MeHg, and Se concentration in livers and subcellular fractions, and the hepatic ratio of total GSH (GSHt) to oxidized glutathione (GSSG) on lipid peroxidation levels, using the concentrations of malondialdehyde (MDA), a product of lipid peroxidation. Results showed that hepatic MDA concentration was positively correlated with the combined MeHg and Se concentrations in northern pike liver (r2 = 0.88, p < 0.001) and that MDA concentrations were best predicted by MeHg associated with the mitochondria (r2 = 0.71, p < 0.001). This highlights the need for additional research on the MeHg influence on fish health and the interactions between Hg and Se in northern pike.


Subject(s)
Esocidae , Lipid Peroxidation , Liver , Methylmercury Compounds , Water Pollutants, Chemical , Animals , Lipid Peroxidation/drug effects , Liver/metabolism , Oxidative Stress , Mitochondria, Liver/metabolism , Mitochondria, Liver/drug effects , Quebec , Environmental Monitoring
5.
Acta Biomater ; 179: 164-179, 2024 04 15.
Article in English | MEDLINE | ID: mdl-38513725

ABSTRACT

Failure-resistant designs are particularly crucial for bones subjected to rapid loading, as is the case for the ambush-hunting northern pike (Esox lucius). These fish have slim and low-density osteocyte-lacking bones. As part of the swallowing mechanism, the cleithrum bone opens and closes the jaw. The cleithrum needs sufficient strength and damage tolerance, to withstand years of repetitive rapid gape-and-suck cycles of feeding. The thin wing-shaped bone comprises anisotropic layers of mineralized collagen fibers that exhibit periodic variations in mineral density on the mm and micrometer length scales. Wavy collagen fibrils interconnect these layers yielding a highly anisotropic structure. Hydrated cleithra exhibit Young's moduli spanning 3-9 GPa where the yield stress of ∼40 MPa increases markedly to exceed ∼180 MPa upon drying. This 5x observation of increased strength corresponds to a change to brittle fracture patterns. It matches the emergence of compressive residual strains of ∼0.15% within the mineral crystals due to forces from shrinking collagen layers. Compressive stresses on the nanoscale, combined with the layered anisotropic microstructure on the mm length scale, jointly confer structural stability in the slender and lightweight bones. By employing a range of X-ray, electron and optical imaging and mechanical characterization techniques, we reveal the structure and properties that make the cleithra impressively damage resistant composites. STATEMENT OF SIGNIFICANCE: By combining structural and mechanical characterization techniques spanning the mm to the sub-nanometer length scales, this work provides insights into the structural organization and properties of a resilient bone found in pike fish. Our observations show how the anosteocytic bone within the pectoral gridle of these fish, lacking any biological (remodeling) repair mechanisms, is adapted to sustain natural repeated loading cycles of abrupt jaw-gaping and swallowing. We find residual strains within the mineral apatite nanocrystals that contribute to forming a remarkably resilient composite material. Such information gleaned from bony structures that are different from the usual bones of mammals showcases how nature incorporates smart features that induce damage tolerance in bone material, an adaptation acquired through natural evolutionary processes.


Subject(s)
Esocidae , Animals , Esocidae/physiology , Bone and Bones/physiology , Stress, Mechanical , Nanoparticles/chemistry , Compressive Strength , Biological Evolution , Elastic Modulus , Collagen/chemistry
6.
Anim Reprod Sci ; 263: 107454, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38518685

ABSTRACT

This study aimed to compare the effectiveness of the ovarian lavage / artificial insemination method with the traditional hormonal administration and fertilization methods over the artificial reproduction of the northern pike (Esox lucius). For this purpose, groups of five females were treated as follows: intraperitoneal injection of saline (C1); ovarian lavage with saline (C2); intraperitoneal injection of carp pituitary extract (CPE, T1); ovarian lavage with CPE (T2); intraperitoneal injection of CPE and ovarian lavage with semen after 72 h (T3); ovarian lavage with CPE and ovarian lavage with semen after 72 h (T4). According to the results, no fish ovulated in the control groups (C1 and C2). There were no significant differences (n.s.) among experimental treatments (P > 0.05, n.s.) in the reproductive parameters, such as latency time, ovulation rate, stripped egg amount, and pseudo-gonadosomatic index. The lowest fertilization rate (54.8%) was observed in the T4 treatment and significantly differed from the T1 and T2 treatments (P < 0.05). Moreover, the highest survival at swim-up stage was measured in the T4 treatment with a significant difference compared to the T1 group (P < 0.05). The survival at the eyed-egg stage, hatching rate, and malformations were similar (P > 0.05, n.s.) in all applied strategies. The results demonstrated that the ovarian lavage / artificial insemination method could be applied to control northern pike reproduction, like the traditional fertilization method. Consequently, this novel technique can be suggested as an alternative strategy to facilitate the hatchery operations in the controlled reproduction of this species.


Subject(s)
Esocidae , Therapeutic Irrigation , Female , Animals , Therapeutic Irrigation/veterinary , Reproduction , Insemination, Artificial/veterinary , Fishes
7.
PLoS One ; 19(1): e0297070, 2024.
Article in English | MEDLINE | ID: mdl-38236915

ABSTRACT

Stable isotope analysis (SIA) is widely used to study trophic ecology and food webs in aquatic ecosystems. In the case of fish, muscle tissue is generally preferred for SIA, and the method is lethal in most cases. We tested whether blood and fin clips can be used as non-lethal alternatives to muscle tissue for examining the isotopic composition of two freshwater predatory fish, European catfish (Silurus glanis) and Northern pike (Esox lucius), species of high value for many freshwater systems as well as invasive species in many others. Blood samples from the caudal vein, anal fin clips, and dorsal muscle obtained by biopsy punch were collected from four catfish and pike populations (14-18 individuals per population). Subsequently, these samples were analyzed for δ13C and δ15N. The effects of alternative tissues, study site, and fish body mass on the isotopic offset were investigated. Both species showed a correlation between the isotopic offset and the tissue type, as well as the study site, but no significant relationship with the body mass. The isotopic offsets between tissues were used to calculate the conversion equations. The results demonstrated that both blood and fin clips are suitable and less invasive alternative to muscle in SIA studies focused on European catfish and Northern pike. Blood provided better correspondence to muscle isotope values. However, our results clearly demonstrated that isotopic offsets between tissues vary significantly among populations of the same species. Therefore, obtaining a muscle biopsy from several individuals in any population is advisable to gain initial insights and establish a possible population-specific inter-tissue conversion.


Subject(s)
Catfishes , Ecosystem , Animals , Nitrogen Isotopes/analysis , Carbon Isotopes/analysis , Muscles/chemistry , Esocidae/physiology , Fresh Water
8.
Parasitology ; 151(1): 24-44, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37953070

ABSTRACT

Hemiurid digeneans conspecific with Stomachicola muraenesocis Yamaguti, 1934 (the type species of the genus Stomachicola Yamaguti, 1934) were collected from the stomach of the daggertooth pike conger Muraenesox cinereus (Forsskål) off the Persian Gulf of Iran. This study aimed to provide a detailed characterization of Stom. muraenesocis, including measurements, illustrations and scanning electron microscopy (s.e.m.) representations. Comparisons with the original and previous descriptions revealed morphological and metrical variations in several features (i.e. body size and shape, arrangement of reproductive organs, soma to ecsoma length ratio, position of genital opening, number of vitelline tubules and extension of uterine coils) between Stom. muraenesocis from different hosts and localities. This study presents the first molecular sequence data associated with the small (18S) and large (28S) subunit nuclear ribosomal RNA genes (rDNA) for Stom. muraenesocis. Phylogenetic analyses of the 18S dataset placed Stom. muraenesocis as sister lineage to a clade formed of a group of species of Lecithaster Lühe, 1901 (Lecithasteridae Odhner, 1905). In contrast, phylogenetic analyses based on the 28S consistently recovered a sister relationship between Stom. muraenesocis and representatives of the Hemiuridae Looss, 1899. Further comprehensive phylogenetically based classification in light of morphology and taxonomic history of the Hemiuridae and Lecithasteridae is required to infer phylogenetic affinities and historical biogeography of Stomachicola. A comprehensive list of previously reported species of Stomachicola together with their associated hosts, localities and morphometric data is provided.


Subject(s)
Esocidae , Trematoda , Animals , Esocidae/genetics , Phylogeny , Fishes , Molecular Sequence Data , DNA, Ribosomal/genetics , RNA, Ribosomal, 28S/genetics
9.
Int J Biol Macromol ; 256(Pt 2): 128209, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37992940

ABSTRACT

Since fish metalloproteins are still not thoroughly characterized, the aim of this study was to investigate the acidic/basic nature of biomolecules involved in the sequestration of twelve selected metals in the soluble hepatic fraction of an important aquatic bioindicator organism, namely the fish species northern pike (Esox lucius). For this purpose, the hyphenated system HPLC-ICP-MS was applied, with chromatographic separation based on anion/cation-exchange principle at physiological pH (7.4). The results indicated predominant acidic nature of metal-binding peptides/proteins in the studied hepatic fraction. More than 90 % of Ag, Cd, Co, Cu, Fe, Mo, and Pb were eluted with negatively charged biomolecules, and >70 % of Bi, Mn, and Zn. Thallium was revealed to bind equally to negatively and positively charged biomolecules, and Cs predominantly to positively charged ones. The majority of acidic (negatively charged) metalloproteins/peptides were coeluted within the elution time range of applied standard proteins, having pIs clustered around 4-6. Furthermore, binding of several metals (Ag, Cd, Cu, Zn) to two MT-isoforms was assumed, with Cd and Zn preferentially bound to MT1 and Ag to MT2, and Cu evenly distributed between the two. The results presented here are the first of their kind for the important bioindicator species, the northern pike, as well as one of the rare comprehensive studies on the acidic/basic nature of metal-binding biomolecules in fish, which can contribute significantly to a better understanding of the behaviour and fate of metals in the fish organism, specifically in liver as main metabolic and detoxification organ.


Subject(s)
Metalloproteins , Water Pollutants, Chemical , Animals , Esocidae/metabolism , Cadmium/metabolism , Water Pollutants, Chemical/analysis , Metallothionein/metabolism , Metals/metabolism , Metalloproteins/metabolism , Peptides/metabolism , Liver/metabolism
10.
Sci Total Environ ; 902: 166037, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37544449

ABSTRACT

Invasive species can affect food web structure possibly modifying the transfer of pollutants in ecosystems but this facet of biological invasion remains largely unexplored. We examined how trophic and ontogenetic characteristics of the invasive European catfish could differ from its native counterpart, the Northern pike, possibly resulting in the amplification of PCB transfer to the higher trophic levels in a large lake food web. The PCB contents of catfish and pike were on average low (Æ©7 PCBi 42.4 ± 38.6 ng g-1 ww and 37.9 ± 49.4 ng g-1 ww respectively) and dominated by PCB153 (~35 % of the PCB contamination). Only the largest pike (126 cm) slightly exceeded the European sanitary threshold of 125 ng g-1 ww Æ©6 PCBi-NDL. Both species increased in trophic position with body size while catfish had clearly higher littoral reliance than pike indicating they exploited complementary trophic niches. PCB biomagnification was identified only for catfish (PCB153, Æ©7 PCBi) leading to trophic magnification factor of ~5. PCB ontogenetic bioaccumulation was pervasive for catfish (PCB101, PCB118, PCB153, PCB138 and Æ©7 PCBi) and identified for pike only regarding PCB101. The derived size accumulation factors (~1.02) indicated a size-doubling PCB contamination of ~40 cm for catfish. This finding suggested that catfish would exceed the European sanitary threshold at body size larger than 168 cm possibly constraining their commercial exploitation. Our results highlighted that the invasive catfish was a littoral-oriented apex predator occupying an alternative trophic niche as compared to pike thereby modifying the lake food web structure that resulted in an enhancement of PCB transfer to higher trophic levels. The biomagnification and ontogenetic bioaccumulation of catfish underlined the impact of this biological invasion on the fate of PCB in the ecosystem. Finally, the remarkable inter-individual PCB contamination suggested variable inter-individual PCB exposure likely associated to localized hotspots of PCB contamination in the lake.


Subject(s)
Catfishes , Water Pollutants, Chemical , Animals , Food Chain , Lakes/chemistry , Ecosystem , Water Pollutants, Chemical/analysis , Esocidae , Fishes , Environmental Monitoring/methods
11.
PLoS One ; 18(8): e0285890, 2023.
Article in English | MEDLINE | ID: mdl-37607193

ABSTRACT

Mercury (Hg) is a concerning contaminant due to its widespread distribution and tendency to accumulate to harmful concentrations in biota. We used a machine learning approach called random forest (RF) to test for different predictors of Hg concentrations in three species of Colorado reservoir sport fish. The RF approach indicated that the best predictors of 864 mm northern pike (Esox lucius) Hg concentrations were covariates related to salmonid stocking in each study system, while system-specific metrics related to productivity and forage base were the best predictors of Hg concentrations of 381 mm smallmouth bass (Micropterus dolomieu), and walleye (Sander vitreus). Protecting human and ecological health from Hg contamination requires an understanding of fish Hg concentrations and variability across the landscape and through time. The RF approach could be applied to identify potential areas/systems of concern, and predict whether sport fish Hg concentrations may change as a result of a variety of factors to help prioritize, focus, and streamline monitoring efforts to effectively and efficiently inform human and ecological health.


Subject(s)
Bass , Mercury , Perches , Salmonidae , Animals , Humans , Esocidae
12.
J Fish Biol ; 103(5): 939-949, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37395556

ABSTRACT

Predation is a major evolutionary force determining life-history traits in prey by direct and indirect mechanisms. This study focuses on life-history trait variation in crucian carp (Carassius carassius), a species well known for developing a deep body as an inducible morphological defence against predation risk. Here, the authors tested variation in growth and reproductive traits in 15 crucian carp populations in lakes along a predation risk gradient represented by increasingly efficient predator communities. Lakes were located in south-eastern Norway and were sampled in summer 2018 and 2019. The authors expected crucian carp to attain higher growth rate, larger size, and later age at maturity with increasing predation risk. In the absence of predators, they expected high adult mortality, early maturity and increased reproductive effort caused by strong intraspecific competition. They found that the life-history traits of crucian carp were clearly related to the presence of piscivores: with increasing predation risk, fish grew in body length and depth and attained larger asymptotic length and size at maturity. This growth was evident at young age, especially in productive lakes with pike, and it suggests that fish quickly outgrew the predation window by reaching a size refuge. Contrary to the authors' predictions, populations had similar age at maturity. High-predation lakes also presented low density of crucian carp. This suggests that fish from predator lakes may experience high levels of resource availability due to reduced intraspecific competition. Predation regulated life-history traits in crucian carp populations, where larger size, higher longevity and size at maturity were observed in lakes with large gaped predators.


Subject(s)
Carps , Life History Traits , Animals , Predatory Behavior , Lakes , Esocidae
13.
Food Chem ; 429: 136924, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37490819

ABSTRACT

Ferritin has a unique hollow spherical structure, which makes it a promising nanocarrier for food functional substances. In this study, a new ferritin was successfully extracted from the liver of Northern pike, purified, and identified. We used the reversible self-assembly characteristics of ferritin to fabricate chlorogenic acid (CA)-loaded apoferritin (Apo) complex (Apo-CA) and sodium alginate (SA)-apoferritin (Apo) co-encapsulate system. Apo-CA was encapsulated into the SA system to form SA-Apo-CA. The fabricated composites were analyzed using particle size, UV-Vis absorption spectroscopy, fluorescence spectroscopy, flourier transform infrared spectroscopy and transmission electron microscope. Physicochemical property of analysis confirmed th successful preparation of Apo-CA/SA-Apo-CA and improved thermal and UV radiation stability. The effect of sustained-release of CA were tested in vitro of simulated gastrointestinal tract digestion. SA-Apo-CA exhibited greater release ability than unencapsulated CA and Apo-CA. This study provides a new strategy for designing a multilayer delivery system with improved stability and sustained-release property.


Subject(s)
Chlorogenic Acid , Ferritins , Animals , Ferritins/chemistry , Chlorogenic Acid/chemistry , Delayed-Action Preparations/chemistry , Esocidae , Apoferritins , Alginates/chemistry , Liver
14.
J Fish Biol ; 103(5): 1178-1189, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37492948

ABSTRACT

There is a pressing need for more-holistic approaches to fisheries assessments along with growing demand to reduce the health impacts of sample collections. Metabolomic tools enable the use of sample matrices that can be collected with minimal impact on the organism (e.g., blood, urine, and mucus) and provide high-throughput, untargeted biochemical information without the requirement of a sequenced genome. These qualities make metabolomics ideal for monitoring a wide range of fish species, particularly those under protected status. In the current study, we surveyed the relative abundances of 120 endogenous metabolites in epidermal mucus across eight freshwater fish species belonging to seven phylogenetic orders. Principal component analysis was used to provide an overview of the data set, revealing strong interspecies relationships in the epidermal mucous metabolome. Normalized relative abundances of individual endogenous metabolites were then used to identify commonalities across multiple species, as well as those metabolites that showed notable species specificity. For example, taurine was measured in high relative abundance in the epidermal mucus of common carp (Cyprinus carpio), northern pike (Esox lucius), golden shiner (Notemigonus crysoleucas), rainbow trout (Oncorhynchus mykiss), and rainbow smelt (Osmerus mordax), whereas γ-amino butyric acid (GABA) exhibited a uniquely high relative abundance in flathead catfish (Pylodictis olivaris). Finally, hierarchical cluster analysis was used to evaluate species relatedness as characterized by both the epidermal mucous metabolome (phenotype) and genetic phylogeny (genotype). This comparison revealed species for which relatedness in the epidermal mucous metabolome composition closely aligns with phylogenetic relatedness (e.g., N. crysoleucas and C. carpio), as well as species for which these two measures are not well aligned (e.g., P. olivaris and Polyodon spathula). These, and other findings reported here, highlight novel areas for future research with fish, including development of epidermal mucous-based markers for non-invasive health monitoring, sex determination, and hypoxia tolerance.


Subject(s)
Carps , Cyprinidae , Ictaluridae , Oncorhynchus mykiss , Osmeriformes , Animals , Phylogeny , Metabolome , Esocidae , Mucus , Fresh Water , Oncorhynchus mykiss/metabolism
15.
Parasit Vectors ; 16(1): 182, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37277780

ABSTRACT

BACKGROUND: The genus Huffmanela Moravec, 1987 (Nematoda, Trichosomoididae, Huffmanelinae), represents a group of nematodes that infect both marine and freshwater fish, and the main gross feature of infection with different species of the genus is the presence of noticeable dark spots or tracks within the parasitized tissues. The purpose of this study was to describe morphologically and morphometrically the eggs of a new marine species of Huffmanela (Huffmanela persica sp. nov.), which was found in the form of black spots in the ovary and the tunica serosa of the stomach of the daggertooth pike conger (Muraenesox cinereus). The new species differs from Huffmanela hamo, another species reported from musculature of this host in Japan, in egg metrics, eggshell features and targeted organ. Molecular identification and pathological examination of the lesions caused by the new species are also reported. METHODS: Nematode eggs with varying degrees of development were separated from the infected tissues (ovary and tunica serosa of stomach) and investigated using light and scanning electron microscopy. Different species-specific markers (small subunit ribosomal DNA, 18S; large subunit ribosomal DNA, 28S; internal transcribed spacer, ITS) were used for molecular identification and phylogenetic study of the new species. Infected tissues were fixed in buffered formalin for pathological investigations. RESULTS: The fully developed eggs of H. persica sp. nov. are distinguished from those previously described from this host on the basis of their measurements (size, 54-68 × 31-43 µm; polar plugs, 6.4-9.7 × 8.4-12 µm; shell thickness, 3.5-6.1 µm) and a delicate but ornate uterine layer (UL) covering the entire eggshell including the polar plugs. Histopathological examination revealed a fibro-granulomatous inflammation in the ovary and the serosal layer of the stomach of infected fish. Maximum-likelihood (ML) phylogenetic analysis recovered a sister relationship between the new species of marine origin and Huffmanela species previously collected from freshwater hosts. CONCLUSIONS: The present study is the first to report the molecular characterization and phylogenetic position of a teleost-associated marine species of the genus Huffmanela. A comprehensive list of nominal and innominate populations of Huffmanela is also provided.


Subject(s)
Fish Diseases , Nematoda , Animals , Female , Esocidae , Phylogeny , Fishes , Eels
16.
Environ Res ; 233: 116511, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37369304

ABSTRACT

Mercury is a highly toxic element for consumers, but its relation to amino acids and physiology of wild fish is not well known. The main aim of this study was to evaluate how total mercury content (THg) of northern pike (Esox lucius) is related to amino acids and potentially important environmental and biological factors along a climate-productivity gradient of ten subarctic lakes. Linear regression between THg and sixteen amino acids content [nmol mg-1 dry weight] from white dorsal muscle of pike from these lakes were tested. Lastly, a general linear model (GLM) for age-corrected THg was used to test which factors are significantly related to mercury content of pike. There was a positive relationship between THg and proline. Seven out of sixteen analysed amino acids (histidine, threonine, arginine, serine, glutamic acid, glycine, and aspartic acid) were significantly negatively related to warmer and more productive lakes, while THg showed a positive relationship. GLM model indicated higher THg was found in higher trophic level pike with lower cysteine content and inhabiting warmer and more productive lakes with larger catchment containing substantial proportion of peatland area. In general, THg was not only related to the biological and environmental variables but also to amino acid content.


Subject(s)
Mercury , Water Pollutants, Chemical , Animals , Esocidae/metabolism , Mercury/analysis , Lakes/chemistry , Amino Acids/metabolism , Water Pollutants, Chemical/analysis , Fishes/metabolism , Environmental Monitoring
17.
J Fish Biol ; 103(5): 897-905, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37283200

ABSTRACT

Esox lucius (northern pike) is an invasive species in fresh water and causes extreme impacts in the local habitat. Northern pike easily replaces the local native species and disrupts the regional ecosystem. Traditionally, in connection with environmental monitoring, invasive species are identified using PCR through species-specific DNA. PCR involves many cycles of heating to amplify the target DNA and requires complex equipment; on the contrary, loop-mediated isothermal amplification (LAMP) entails isothermal amplification, which means the target needs to be heated to only one temperature between 60 and 65°C. In this study, the authors conducted a LAMP assay and a conventional PCR assay to determine which technique is less time consuming, more sensitive and reliable for use in real-time and on-site environmental monitoring. Mitochondrial gene cytochrome b, an essential factor in electron transport; histone (H2B), a nuclear DNA responsible for the chromatin structure; and glyceraldehyde 3-phosphate dehydrogenase involved in energy metabolism are taken as the reference genes for this article. The results show that LAMP is more sensitive and less time consuming than the conventional PCR, and thus it can be used for the detection of northern pike in aquatic ecosystems related to environmental monitoring.


Subject(s)
Ecosystem , Esocidae , Animals , Genes, Essential , Sensitivity and Specificity , Polymerase Chain Reaction , Nucleic Acid Amplification Techniques/methods , DNA/genetics , Environmental Monitoring
18.
Aquat Toxicol ; 257: 106458, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36863155

ABSTRACT

Silver nanoparticles (AgNPs) are antimicrobial additives in many consumer products with high potential for release into aquatic ecosystems. Though AgNPs have been shown to have negative impacts on fish in laboratory experiments, these effects are rarely observed at ecologically relevant concentrations or in situ in field settings. To evaluate ecosystem-level effects of this contaminant, AgNPs were added to a lake at the IISD Experimental Lakes Area (IISD-ELA) during 2014 and 2015. Mean total silver (TAg) concentrations in the water column were 4 µg L-1 during additions. The growth of Northern Pike (Esox lucius) declined, and their primary prey, Yellow Perch (Perca flavescens) became less abundant after AgNP exposure. Here, we used a combined contaminant-bioenergetics modeling approach to show that individual activity and both individual and population-level consumption of Northern Pike declined significantly in the lake dosed with AgNPs, which, combined with other evidence, suggests that observed declines in body size were likely a result of indirect effects (i.e., reduced prey availability). Further, we found the contaminant-bioenergetics approach was sensitive to modelled elimination rates of mercury, overestimating consumption and activity by 43% and 55%, respectively, when using the mercury elimination rate commonly used in these models versus field-derived estimates for this species. This study contributes to the growing evidence of potentially long-term negative impacts on fish from chronic exposure to environmentally relevant concentrations of AgNPs in a natural setting.


Subject(s)
Mercury , Metal Nanoparticles , Perches , Water Pollutants, Chemical , Animals , Lakes , Esocidae , Silver/toxicity , Ecosystem , Metal Nanoparticles/toxicity , Water Pollutants, Chemical/toxicity
19.
J Fish Biol ; 102(3): 643-654, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36602273

ABSTRACT

Introduced predators can have harmful top-down effects on their newly colonized system through competition with and direct predation on native species. Following an initial introduction of muskellunge in Lac Frontière, Québec in the 1970s at the headwaters of the Wolastoq/Saint John River, the species rapidly migrated downstream, expanding its range by ~500 km over ~20 years. Despite this expansive colonization and concern over possible threats to native species, little is known about the basic ecology of muskellunge in this system. The last downstream barrier is the hydroelectric facility, Mactaquac Generating Station (MGS), 150 km upstream of the sea. While there are no downstream fish passage facilities at MGS, adult muskellunge have been recorded downstream. In this study, muskellunge (n = 23) were surgically tagged with very-high-frequency (VHF) radio or combined acoustic radio telemetry (CART) tags and tracked over two spawning seasons. We sought to determine if there was a reproducing population downstream of MGS and tracked Tagged muskellunge over two spawning seasons. We tracked fish to locate and confirm spawning sites, and followed up with egg and/or juvenile sampling surveys. Tagged muskellunge (90%) moved upstream towards the MGS during the spawning period in each year (2016 and 2017), where they remained throughout the entire spawning period. No spawning or nursery sites were confirmed near MGS, but in 2016 three distinct spawning locations and six distinct nursery sites were confirmed 10-12 km downstream amongst a chain of flooded islands. In 2016, eggs, sac-fry and juveniles were collected and confirmed as muskellunge by genetic sequencing, providing the first empirical observation of successful spawning downstream of MGS.


Subject(s)
Esocidae , Fishes , Animals , New Brunswick , Canada , Quebec
20.
Dokl Biol Sci ; 506(1): 141-144, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36301421

ABSTRACT

This work reports the first data on the content of plutonium (239+240Pu) in the muscle tissues of the Northern pike (Esox lucius) and the Siberian dace (Leiciscus baicalensis) inhabiting the middle reaches of the Yenisey River in the vicinity of the radioactive discharge site. An increase in the content of 239+240Pu and radiocaesium (137Cs) in pike muscles followed an increase in the volume of controlled discharges of these radionuclides to the Yenisey in 2018. The content of 239+240Pu in the muscles of pike (2-11 mBq/kg dry weight) and dace (1-4 mBq/kg dry weight) of the Yenisey fall within the range of values obtained by other authors for the ichthyofauna from water bodies contaminated with radioactive discharges from nuclear power plants and spent nuclear fuel processing plants. The ratio of the activity concentrations 239+240Pu/137Cs in fish muscles, compared with the similar ratios in other hydrobionts, indicates a significantly lower bioavailability of plutonium for fish. The obtained preliminary results make it possible to consider the Northern pike as a more prospective indicator of biologically available plutonium in the Yenisey than the dace.


Subject(s)
Plutonium , Water Pollutants, Radioactive , Animals , Plutonium/analysis , Rivers , Prospective Studies , Fishes , Muscles , Esocidae
SELECTION OF CITATIONS
SEARCH DETAIL
...