Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
1.
J Neurosci ; 43(24): 4513-4524, 2023 06 14.
Article in English | MEDLINE | ID: mdl-37160364

ABSTRACT

Corticotropin-releasing hormone (CRH) is a neuropeptide regulating neuroendocrine and autonomic function. CRH mRNA and protein levels in the hypothalamic paraventricular nucleus (PVN) are increased in primary hypertension. However, the role of CRH in elevated sympathetic outflow in primary hypertension remains unclear. CRHR1 proteins were distributed in retrogradely labeled PVN presympathetic neurons with an increased level in the PVN tissue in adult spontaneously hypertensive rats (SHRs) compared with age-matched male Wistar-Kyoto (WKY) rats. CRH induced a more significant increase in the firing rate of PVN-rostral ventrolateral medulla (RVLM) neurons and sympathoexcitatory response in SHRs than in WKY rats, an effect that was blocked by preapplication of NMDA receptors (NMDARs) antagonist AP5 and PSD-95 inhibitor, Tat-N-dimer. Blocking CRHRs with astressin or CRHR1 with NBI35965 significantly decreased the firing rate of PVN-RVLM output neurons and reduced arterial blood pressure (ABP) and renal sympathetic nerve activity (RSNA) in SHRs but not in WKY, whereas blocking CRHR2 with antisauvagine-30 did not. Furthermore, Immunocytochemistry staining revealed that CRHR1 colocalized with NMDARs in PVN presympathetic neurons. Blocking CRHRs significantly decreased the NMDA currents in labeled PVN neurons. PSD-95-bound CRHR1 and PSD-95-bound GluN2A in the PVN were increased in SHRs. These data suggested that the upregulation of CRHR1 in the PVN is critically involved in the hyperactivity of PVN presympathetic neurons and elevated sympathetic outflow in primary hypertension.SIGNIFICANCE STATEMENT Our study found that corticotropin-releasing hormone receptor (CRHR)1 protein levels were increased in the paraventricular nucleus (PVN), and CRHR1 interacts with NMDA receptors (NMDARs) through postsynaptic density protein (PSD)-95 in the PVN neurons in primary hypertension. The increased CRHR1 and CRHR1-NMDAR-PSD-95 complex in the PVN contribute to the hyperactivity of the PVN presympathetic neurons and elevated sympathetic vasomotor tone in hypertension in SHRs. Thus, the antagonism of CRHR1 decreases sympathetic outflow and blood pressure in hypertension. These findings determine a novel role of CRHR1 in elevated sympathetic vasomotor tone in hypertension, which is useful for developing novel therapeutics targeting CRHR1 to treat elevated sympathetic outflow in primary hypertension. The CRHR1 receptor antagonists, which are used to treat health consequences resulting from chronic stress, are candidates to treat primary hypertension.


Subject(s)
Essential Hypertension , Hypertension , Receptors, N-Methyl-D-Aspartate , Animals , Male , Rats , Adrenocorticotropic Hormone , Corticotropin-Releasing Hormone/metabolism , Essential Hypertension/metabolism , Hypertension/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Pituitary Hormone-Releasing Hormones/metabolism , Pituitary Hormone-Releasing Hormones/pharmacology , Rats, Inbred SHR , Rats, Inbred WKY , Receptors, N-Methyl-D-Aspartate/metabolism , Sympathetic Nervous System/physiology
2.
Yale J Biol Med ; 96(1): 95-105, 2023 03.
Article in English | MEDLINE | ID: mdl-37009199

ABSTRACT

Essential hypertension is caused by the interaction of genetic, behavioral, and environmental factors. Abnormalities in the regulation of renal ion transport cause essential hypertension. The renal dopaminergic system, which inhibits sodium transport in all the nephron segments, is responsible for at least 50% of renal sodium excretion under conditions of moderate sodium excess. Dopaminergic signals are transduced by two families of receptors that belong to the G protein-coupled receptor (GPCR) superfamily. D1-like receptors (D1R and D5R) stimulate, while D2-like receptors (D2R, D3R, and D4R) inhibit adenylyl cyclases. The dopamine receptor subtypes, themselves, or by their interactions, regulate renal sodium transport and blood pressure. We review the role of the D1R and D3R and their interaction in the natriuresis associated with volume expansion. The D1R- and D3R-mediated inhibition of renal sodium transport involves PKA and PKC-dependent and -independent mechanisms. The D3R also increases the degradation of NHE3 via USP-mediated ubiquitinylation. Although deletion of Drd1 and Drd3 in mice causes hypertension, DRD1 polymorphisms are not always associated with human essential hypertension and polymorphisms in DRD3 are not associated with human essential hypertension. The impaired D1R and D3R function in hypertension is related to their hyper-phosphorylation; GRK4γ isoforms, R65L, A142V, and A486V, hyper-phosphorylate and desensitize D1R and D3R. The GRK4 locus is linked to and GRK4 variants are associated with high blood pressure in humans. Thus, GRK4, by itself, and by regulating genes related to the control of blood pressure may explain the "apparent" polygenic nature of essential hypertension.


Subject(s)
Hypertension , Humans , Mice , Animals , Hypertension/genetics , Kidney/metabolism , Blood Pressure , Dopamine/metabolism , Essential Hypertension/genetics , Essential Hypertension/complications , Essential Hypertension/metabolism , Sodium/metabolism , G-Protein-Coupled Receptor Kinase 4/genetics , G-Protein-Coupled Receptor Kinase 4/metabolism
3.
Nephrol Dial Transplant ; 38(3): 586-598, 2023 02 28.
Article in English | MEDLINE | ID: mdl-35921220

ABSTRACT

BACKGROUND: The kidney is the main organ in the pathophysiology of essential hypertension. Although most bicarbonate reabsorption occurs in the proximal tubule, the medullary thick ascending limb (mTAL) of the nephron also maintains acid-base balance by contributing to 25% of bicarbonate reabsorption. A crucial element in this regulation is the sodium-hydrogen exchanger 1 (NHE1), a ubiquitous membrane protein controlling intracellular pH, where proton extrusion is driven by the inward sodium flux. MicroRNA (miRNA) expression of hypertensive patients significantly differs from that of normotensive subjects. The aim of this study was to determine the functional role of miRNA alterations at the mTAL level. METHODS: By miRNA microarray analysis, we identified miRNA expression profiles in isolated mTALs from high sodium intake-induced hypertensive rats (HSD) versus their normotensive counterparts (NSD). In vitro validation was carried out in rat mTAL cells. RESULTS: Five miRNAs involved in the onset of salt-sensitive hypertension were identified, including miR-23a, which was bioinformatically predicted to target NHE1 mRNA. Data demonstrated that miRNA-23a is downregulated in the mTAL of HSD rats while NHE1 is upregulated. Consistently, transfection of an miRNA-23a mimic in an mTAL cell line, using a viral vector, resulted in NHE1 downregulation. CONCLUSION: NHE1, a protein involved in sodium reabsorption at the mTAL level and blood pressure regulation, is upregulated in our model. This was due to a downregulation of miRNA-23a. Expression levels of this miRNA are influenced by high sodium intake in the mTALs of rats. The downregulation of miRNA-23a in humans affected by essential hypertension corroborate our data and point to the potential role of miRNA-23a in the regulation of mTAL function following high salt intake.


Subject(s)
Hypertension , MicroRNAs , Animals , Humans , Rats , Bicarbonates , Essential Hypertension/metabolism , Hypertension/metabolism , Kidney Medulla , MicroRNAs/metabolism , Sodium/metabolism , Sodium Chloride, Dietary , Sodium-Hydrogen Exchanger 1/metabolism , Sodium-Hydrogen Exchanger 3/metabolism
4.
Biochem Pharmacol ; 205: 115263, 2022 11.
Article in English | MEDLINE | ID: mdl-36174768

ABSTRACT

The development of essential hypertension involves several factors. Vascular dysfunction, characterized by endothelial dysfunction, low-grade inflammation and structural remodeling, plays an important role in the initiation and maintenance of essential hypertension. Although the mechanistic pathways by which essential hypertension develops are poorly understood, several pharmacological classes available on the clinical settings improve blood pressure by interfering in the cardiac output and/or vascular function. This review is divided in two major sections. The first section depicts the major molecular pathways as renin angiotensin aldosterone system (RAAS), endothelin, nitric oxide signalling pathway and oxidative stress in the development of vascular dysfunction. The second section describes the role of some pharmacological classes such as i) RAAS inhibitors, ii) dual angiotensin receptor-neprilysin inhibitors, iii) endothelin-1 receptor antagonists, iv) soluble guanylate cyclase modulators, v) phosphodiesterase type 5 inhibitors and vi) sodium-glucose cotransporter 2 inhibitors in the context of hypertension. Some classes are already approved in the treatment of hypertension, but others are not yet approved. However, due to their potential benefits these classes were included.


Subject(s)
Antihypertensive Agents , Hypertension , Humans , Antihypertensive Agents/pharmacology , Muscle, Smooth, Vascular/metabolism , Soluble Guanylyl Cyclase/metabolism , Neprilysin/metabolism , Nitric Oxide/metabolism , Essential Hypertension/drug therapy , Essential Hypertension/metabolism , Phosphodiesterase 5 Inhibitors/therapeutic use , Receptor, Endothelin A/metabolism , Hypertension/metabolism , Renin-Angiotensin System , Endothelins/metabolism , Endothelins/pharmacology , Endothelins/therapeutic use , Endothelin Receptor Antagonists/pharmacology , Receptors, Angiotensin/metabolism , Receptors, Angiotensin/therapeutic use , Glucose/metabolism , Sodium/metabolism , Sodium/pharmacology , Sodium/therapeutic use
5.
Front Biosci (Landmark Ed) ; 27(6): 191, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35748267

ABSTRACT

BACKGROUND: Although the mesenteric artery plays a key role in regulating peripheral blood pressure, the molecular mechanisms that underlie the development of essential hypertension are not yet fully understood. MATERIALS AND METHODS: We explored candidate genes for hypertension using three related strains of spontaneously hypertensive rats (SHRs) that mimic human essential hypertension. In this study we used DNA microarrays, a powerful tool for studying genetic diseases, to compare gene expression in the mesenteric artery of three SHR substrains: SHR, stroke-prone SHR (SHRSP), and malignant SHRSP (M-SHRSP). RESULTS: Compared to normotensive 6-week old Wistar Kyoto rats (WKY), higher blood pressure correlated with overexpression of 31 genes and with down regulation of 24 genes. Adam23, which negatively regulates potassium current, and the potassium channel genes, Kcnc2 and Kcnq5, were associated with the onset of hypertension. In addition, Spock2 and Agtrap were identified as strengtheners of hypertension by analyzing up and down regulated genes at 9-weeks of age. CONCLUSIONS: Adam23, Kcnc2 and Kcnq5 appear to be factors for the onset of hypertension, while Spock2 and Agtrap are as factors that strengthen hypertension. These findings contribute to our understanding of the pathophysiology of hypertension and to the development of treatment for this condition.


Subject(s)
Hypertension , Animals , Blood Pressure/genetics , Essential Hypertension/metabolism , Hypertension/genetics , Hypertension/metabolism , Mesenteric Arteries/metabolism , Oligonucleotide Array Sequence Analysis , Rats , Rats, Inbred SHR
6.
Bioengineered ; 13(2): 2597-2609, 2022 02.
Article in English | MEDLINE | ID: mdl-35001835

ABSTRACT

Essential hypertension (EH) represents a major risk factor for stroke, myocardial infarction, and heart failure. Dysregulated proliferation and migration of vascular smooth muscle cells (VSMCs) play an important role in pathogenesis of EH. This study aims to investigate the effect of Chromodomain Helicase DNA Binding Protein 1-Like (CHD1L) on Angiotensin II (AngII)-induced VSMCs injury and reveal the underlying mechanism. The expression of CHD1L in EH patients was determined by bioinformatics analysis, and then it was silenced in AngII-induced VSMCs to detect the changes in cellular functions including proliferation, migration, invasion and phenotypic switching via CCK-8, EDU staining, wound healing, transwell and Western blot assays, respectively. Inflammation and oxidative stress were also measured by detecting related markers via commercial kits. After confirming the binding sites between forkhead box O3A (FOXO3a) and CHD1L and their negative association by bioinformatics analysis, FOXO3a was further silenced, and the cellular functions were assessed again to reveal the underlying mechanism. Results showed that CHD1L was highly expressed in EH, and interference of CHD1L suppressed the proliferation, migration, invasion and phenotypic switching in VSMCs. Inflammation and oxidative stress were also restrained by CHD1L knockdown. After validating the negative role of FOXO3a in regulating CHD1L, it was found that FOXO3a abrogated the effect of CHD1L knockdown on the cellular functions of AngII-induced VSMCs. In conclusion, FOXO3a suppresses the proliferation and migration of AngII-induced VSMCs by down-regulating CHD1L.


Subject(s)
Angiotensin II/adverse effects , Cell Movement/drug effects , Cell Proliferation/drug effects , DNA Helicases/metabolism , DNA-Binding Proteins/metabolism , Forkhead Box Protein O3/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Angiotensin II/pharmacology , Cells, Cultured , DNA Helicases/genetics , DNA-Binding Proteins/genetics , Essential Hypertension/chemically induced , Essential Hypertension/genetics , Essential Hypertension/metabolism , Essential Hypertension/pathology , Forkhead Box Protein O3/genetics , Humans
7.
Int J Mol Sci ; 22(19)2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34638859

ABSTRACT

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), responsible for the coronavirus disease of 2019 (COVID-19) pandemic, has affected and continues to affect millions of people across the world. Patients with essential arterial hypertension and renal complications are at particular risk of the fatal course of this infection. In our study, we have modeled the selected processes in a patient with essential hypertension and chronic kidney disease (CKD) suffering from COVID-19, emphasizing the function of the renin-angiotensin-aldosterone (RAA) system. The model has been built in the language of Petri nets theory. Using the systems approach, we have analyzed how COVID-19 may affect the studied organism, and we have checked whether the administration of selected anti-hypertensive drugs (angiotensin-converting enzyme inhibitors (ACEIs) and/or angiotensin receptor blockers (ARBs)) may impact the severity of the infection. Besides, we have assessed whether these drugs effectively lower blood pressure in the case of SARS-CoV-2 infection affecting essential hypertensive patients. Our research has shown that neither the ACEIs nor the ARBs worsens the course infection. However, when assessing the treatment of hypertension in the active SARS-CoV-2 infection, we have observed that ARBs might not effectively reduce blood pressure; they may even have the slightly opposite effect. On the other hand, we have confirmed the effectiveness of arterial hypertension treatment in patients receiving ACEIs. Moreover, we have found that the simultaneous use of ARBs and ACEIs averages the effects of taking both drugs, thus leading to only a slight decrease in blood pressure. We are a way from suggesting that ARBs in all hypertensive patients with COVID-19 are ineffective, but we have shown that research in this area should still be continued.


Subject(s)
COVID-19/complications , Essential Hypertension/complications , Renal Insufficiency, Chronic/complications , COVID-19/metabolism , COVID-19/physiopathology , Computer Simulation , Essential Hypertension/metabolism , Essential Hypertension/physiopathology , Humans , Models, Biological , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/physiopathology , Renin-Angiotensin System , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology
8.
Clin Sci (Lond) ; 135(15): 1791-1804, 2021 08 13.
Article in English | MEDLINE | ID: mdl-34338771

ABSTRACT

Although numerous clinical and experimental studies have clearly identified a sexual dimorphism in blood pressure control, the mechanism(s) underlying gender differences in blood pressure remain unclear. Over the past two decades, numerous laboratories have utilized the spontaneously hypertensive rats (SHR) as an experimental model of essential hypertension to increase our understanding of the mechanisms regulating blood pressure in males and females. Previous work by our group and others have implicated that differential regulation of adrenergic receptors, the renin-angiotensin system, oxidative stress, nitric oxide bioavailability and immune cells contribute to sex differences in blood pressure control in SHR. The purpose of this review is to summarize previous findings to date regarding the mechanisms of blood pressure control in male versus female SHR.


Subject(s)
Blood Pressure , Essential Hypertension/physiopathology , Animals , Disease Models, Animal , Essential Hypertension/immunology , Essential Hypertension/metabolism , Female , Gonadal Steroid Hormones/metabolism , Humans , Inflammation Mediators/metabolism , Male , Oxidative Stress , Rats, Inbred SHR , Renin-Angiotensin System , Sex Characteristics , Sex Factors , Species Specificity , Sympathetic Nervous System/metabolism , Sympathetic Nervous System/physiopathology
10.
J Steroid Biochem Mol Biol ; 214: 105988, 2021 11.
Article in English | MEDLINE | ID: mdl-34464733

ABSTRACT

11ß-Hydroxysteroid dehydrogenase (11ß-HSD)-dependent conversion of cortisol to cortisone and corticosterone to 11-dehydrocorticosterone are essential in regulating transcriptional activities of mineralocorticoid receptors (MR) and glucocorticoid receptors (GR). Inhibition of 11ß-HSD by glycyrrhetinic acid metabolites, bioactive components of licorice, causes sodium retention and potassium loss, with hypertension characterized by low renin and aldosterone. Essential hypertension is a major disease, mostly with unknown underlying mechanisms. Here, we discuss a putative mechanism for essential hypertension, the concept that endogenous steroidal compounds acting as glycyrrhetinic acid-like factors (GALFs) inhibit 11ß-HSD dehydrogenase, and allow for glucocorticoid-induced MR and GR activation with resulting hypertension. Initially, several metabolites of adrenally produced glucocorticoids and mineralocorticoids were shown to be potent 11ß-HSD inhibitors. Such GALFs include modifications in the A-ring and/or at positions 3, 7 and 21 of the steroid backbone. These metabolites may be formed in peripheral tissues or by gut microbiota. More recently, metabolites of 11ß-hydroxy-Δ4androstene-3,17-dione and 7-oxygenated oxysterols have been identified as potent 11ß-HSD inhibitors. In a living system, 11ß-HSD isoforms are not exposed to a single substrate but to several substrates, cofactors, and various inhibitors simultaneously, all at different concentrations depending on physical state, tissue and cell type. We propose that this "cloud" of steroids and steroid-like substances in the microenvironment determines the 11ß-HSD-dependent control of MR and GR activity. A dysregulated composition of this cloud of metabolites in the respective microenvironment needs to be taken into account when investigating disease mechanisms, for forms of low renin, low aldosterone hypertension.


Subject(s)
11-beta-Hydroxysteroid Dehydrogenases/metabolism , Gene Expression Regulation, Enzymologic , Glycyrrhetinic Acid/pharmacology , Aldosterone/metabolism , Animals , Blood Pressure , Corticosterone/analogs & derivatives , Essential Hypertension/metabolism , Female , Gastrointestinal Microbiome , Glucocorticoids/metabolism , HEK293 Cells , Humans , Hydrocortisone/metabolism , Hydroxysteroid Dehydrogenases/metabolism , Inhibitory Concentration 50 , Male , Mineralocorticoids/metabolism , Plant Extracts , Protein Isoforms , Rats , Receptors, Glucocorticoid , Renin/metabolism , Steroids/metabolism
11.
Int J Mol Sci ; 22(9)2021 May 02.
Article in English | MEDLINE | ID: mdl-34063297

ABSTRACT

Our study aimed to examine the effects of hypertension and the chronic administration of the fatty acid amide hydrolase (FAAH) inhibitor URB597 on vascular function and the endocannabinoid system in spontaneously hypertensive rats (SHR). Functional studies were performed on small mesenteric G3 arteries (sMA) and aortas isolated from SHR and normotensive Wistar Kyoto rats (WKY) treated with URB597 (1 mg/kg; twice daily for 14 days). In the aortas and sMA of SHR, endocannabinoid levels and cannabinoid CB1 receptor (CB1R) expression were elevated. The CB1R antagonist AM251 diminished the methanandamide-evoked relaxation only in the sMA of SHR and enhanced the vasoconstriction induced by phenylephrine and the thromboxane analog U46619 in sMA in SHR and WKY. In the sMA of SHR, URB597 elevated anandamide levels, improved the endothelium-dependent vasorelaxation to acetylcholine, and in the presence of AM251 reduced the vasoconstriction to phenylephrine and enhanced the vasodilatation to methanandamide, and tended to reduce hypertrophy. In the aortas, URB597 elevated endocannabinoid levels improved the endothelium-dependent vasorelaxation to acetylcholine and decreased CB1R expression. Our study showed that hypertension and chronic administration of URB597 caused local, resistance artery-specific beneficial alterations in the vascular endocannabinoid system, which may bring further advantages for therapeutic application of pharmacological inhibition of FAAH.


Subject(s)
Amidohydrolases/drug effects , Amidohydrolases/metabolism , Benzamides/pharmacology , Carbamates/pharmacology , Endocannabinoids/metabolism , Essential Hypertension/metabolism , Essential Hypertension/therapy , Acetylcholine , Animals , Aorta , Arachidonic Acids , Hypertension/metabolism , Male , Mesenteric Arteries/drug effects , Nitroprusside , Polyunsaturated Alkamides , Rats , Rats, Inbred SHR , Rats, Inbred WKY , Receptors, Cannabinoid , Vasoconstriction , Vasodilation/drug effects
12.
J Cell Mol Med ; 25(8): 3714-3723, 2021 04.
Article in English | MEDLINE | ID: mdl-33635564

ABSTRACT

Genetic variations in the 3'UTR of mRNAs as well as sequences of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) can affect gene expression by interfering with the binding between them. In this study, we investigated the role of the following polymorphisms in the risk of hypertension: the 774T > C (rs17337023) polymorphism located in the EGFR 3' untranslated region (3'UTR), the rs884225 polymorphism located in the sequence of miR-214, and the single nucleotide polymorphisms (SNPs) rs325797437, rs344501106, rs81286029 and rs318656749 located in the promoter of lncRNA MEG3. Taqman genotyping assays and haplotype analysis tools were used to measure the MEG3 haplotypes and the rs17337023 and rs884225 polymorphisms genotypes. The relationship between MEG3, miR-214 and EGFR was validated using computational analysis and luciferase assays. Unlike other polymorphisms, only patients grouped according to their rs884225 genotypes exhibited varied EGFR mRNA and protein levels, which indicated that the rs884225 genotype is associated with the expression of EGFR mRNA and protein levels. MiR-214 was confirmed to bind to MEG3 and 3'UTR of EGFR by showing that the transfection of exogenous miR-214 significantly down-regulated the luciferase activity of A549 and H460 cells transfected with wild-type MEG3 or wild-type EGFR 3' UTR. Additionally, MEG3 overexpression inhibited miR-214 expression while elevating the EGFR mRNA and protein expressions. Meanwhile, MEG3 down-regulation demonstrated an opposite result, thus establishing the MEG3/miR-214/EGRF signalling pathway. Our study confirmed that the T > C substitution of rs884225 polymorphism located in miR-214 binding site in the 3'UTR of EGFR is associated with increased risk of primary hypertension.


Subject(s)
3' Untranslated Regions/genetics , Essential Hypertension/genetics , Gene Expression Regulation , MicroRNAs/metabolism , Polymorphism, Single Nucleotide , RNA, Long Noncoding/metabolism , Adult , Binding Sites , Case-Control Studies , ErbB Receptors/genetics , ErbB Receptors/metabolism , Essential Hypertension/metabolism , Essential Hypertension/pathology , Female , Genotype , Humans , Male , MicroRNAs/genetics , Prognosis , RNA, Long Noncoding/genetics
13.
Biomolecules ; 11(2)2021 02 10.
Article in English | MEDLINE | ID: mdl-33578816

ABSTRACT

The dopaminergic system can adapt to the different physiological or pathological situations to which the kidneys are subjected throughout life, maintaining homeostasis of natriuresis, extracellular volume, and blood pressure levels. The role of renal dopamine receptor dysfunction is clearly established in the pathogenesis of essential hypertension. Its associations with other pathological states such as insulin resistance and redox balance have also been associated with dysfunction of the dopaminergic system. The different dopamine receptors (D1-D5) show a protective effect against hypertension and kidney disorders. It is essential to take into account the various interactions of the dopaminergic system with other elements, such as adrenergic receptors. The approach to therapeutic strategies for essential hypertension must go through the blocking of those elements that lead to renal vasoconstriction or the restoration of the normal functioning of dopamine receptors. D1-like receptors are fundamental in this role, and new therapeutic efforts should be directed to the restoration of their functioning in many patients. More studies will be needed to allow the development of drugs that can be targeted to renal dopamine receptors in the treatment of hypertension.


Subject(s)
Dopamine/metabolism , Essential Hypertension/metabolism , Kidney Diseases/metabolism , Kidney/metabolism , Receptors, Dopamine/metabolism , Animals , Blood Pressure , Diabetes Mellitus/drug therapy , Glomerular Filtration Rate , Homeostasis , Humans , Hyperinsulinism/drug therapy , Oxidative Stress , Rats , Vasoconstriction
14.
Am J Physiol Heart Circ Physiol ; 320(4): H1486-H1497, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33577433

ABSTRACT

MicroRNAs (miRNAs) are small regulatory molecules that are involved in posttranscriptional modifications. These noncoding RNAs are usually ferried by extracellular carriers such as exosomes or other protein and lipid carriers inside a range of body fluids including plasma and urine. Due to their ability to withstand harsh external conditions, exosomal miRNAs possess enormous potential as noninvasive disease biomarkers for, notably hypertension, whereby exosomal miRNAs have been implicated in its pathophysiological processes. More importantly, alterations in the microenvironment as a result of disease progression can induce active and selective loading of miRNAs into exosomes. In this paper, we first review the mechanisms of miRNA loading into exosomes, followed by the roles of exosomal miRNAs in the development of hypertension, and the potentials of exosomal miRNAs as biomarkers in comparison with other free circulating miRNAs. Finally, challenges and future research surrounding exosomal miRNAs will also be discussed. This review will aid in the understanding of noninvasive biomarkers for the early diagnosis of hypertension and for probing therapeutic efficacy.


Subject(s)
Blood Pressure , Essential Hypertension/metabolism , Exosomes/metabolism , MicroRNAs/metabolism , Animals , Biomarkers/metabolism , Cellular Microenvironment , Essential Hypertension/genetics , Essential Hypertension/physiopathology , Exosomes/genetics , Gene Expression Regulation , Humans , Inflammation Mediators/metabolism , MicroRNAs/genetics , Oxidative Stress , Renin-Angiotensin System , Signal Transduction
15.
Hypertension ; 77(3): 740-750, 2021 03 03.
Article in English | MEDLINE | ID: mdl-33423524

ABSTRACT

Klotho has antiaging properties, and serum levels decrease with physiological aging and aging-related diseases, such as hypertension, cardiovascular, and chronic kidney disease. Klotho deficiency in mice results in accelerated aging and cardiovascular injury, whereas Klotho supplementation slows down the progression of aging-related diseases. The pleiotropic functions of Klotho include, but are not limited to, inhibition of insulin/IGF-1 (insulin-like growth factor 1) and WNT (wingless-related integration site) signaling pathways, suppression of oxidative stress and aldosterone secretion, regulation of calcium-phosphate homeostasis, and modulation of autophagy with inhibition of apoptosis, fibrosis, and cell senescence. Accumulating evidence shows an interconnection between Klotho deficiency and hypertension, and Klotho gene polymorphisms are associated with hypertension in humans. In this review, we critically review the current understanding of the role of Klotho in the development of essential hypertension and the most important underlying pathways involved, such as the FGF23 (fibroblast growth factor 23)/Klotho axis, aldosterone, Wnt5a/RhoA, and SIRT1 (Sirtuin1). Based on this critical review, we suggest avenues for further research.


Subject(s)
Aging , Essential Hypertension/genetics , Glucuronidase/genetics , Polymorphism, Single Nucleotide , Animals , Essential Hypertension/metabolism , Essential Hypertension/physiopathology , Fibroblast Growth Factor-23 , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/metabolism , Glucuronidase/metabolism , Humans , Insulin-Like Growth Factor I/genetics , Insulin-Like Growth Factor I/metabolism , Klotho Proteins , Mice, Knockout , Wnt Signaling Pathway/genetics
16.
Cardiovasc Res ; 117(5): 1372-1381, 2021 04 23.
Article in English | MEDLINE | ID: mdl-33053160

ABSTRACT

AIMS: A blood pressure (BP)-independent metabolic shift towards a catabolic state upon high sodium (Na+) diet, ultimately favouring body fluid preservation, has recently been described in pre-clinical controlled settings. We sought to investigate the real-life impact of high Na+ intake on measures of renal Na+/water handling and metabolic signatures, as surrogates for cardiovascular risk, in hypertensive patients. METHODS AND RESULTS: We analysed clinical and biochemical data from 766 consecutive patients with essential hypertension, collected at the time of screening for secondary causes. The systematic screening protocol included 24 h urine (24 h-u-) collection on usual diet and avoidance of renin-angiotensin-aldosterone system-confounding medications. Urinary 24 h-Na+ excretion, used to define classes of Na+ intake (low ≤2.3 g/day; medium 2.3-5 g/day; high >5 g/day), was an independent predictor of glomerular filtration rate after correction for age, sex, BP, BMI, aldosterone, and potassium excretion [P = 0.001; low: 94.1 (69.9-118.8) vs. high: 127.5 (108.3-147.8) mL/min/1.73 m2]. Renal Na+ and water handling diverged, with higher fractional excretion of Na+ and lower fractional excretion of water in those with evidence of high Na+ intake [FENa: low 0.39% (0.30-0.47) vs. high 0.81% (0.73-0.98), P < 0.001; FEwater: low 1.13% (0.73-1.72) vs. high 0.89% (0.69-1.12), P = 0.015]. Despite higher FENa, these patients showed higher absolute 24 h Na+ reabsorption and higher associated tubular energy expenditure, estimated by tubular Na+/ATP stoichiometry, accordingly [Δhigh-low = 18 (12-24) kcal/day, P < 0.001]. At non-targeted liquid chromatography/mass spectrometry plasma metabolomics in an unselected subcohort (n = 67), metabolites which were more abundant in high versus low Na+ intake (P < 0.05) mostly entailed intermediates or end products of protein catabolism/urea cycle. CONCLUSION: When exposed to high Na+ intake, kidneys dissociate Na+ and water handling. In hypertensive patients, this comes at the cost of higher glomerular filtration rate, increased tubular energy expenditure, and protein catabolism from endogenous (muscle) or excess exogenous (dietary) sources. Glomerular hyperfiltration and the metabolic shift may have broad implications on global cardiovascular risk independent of BP.


Subject(s)
Blood Pressure , Dietary Proteins/metabolism , Essential Hypertension/metabolism , Glomerular Filtration Rate , Kidney/metabolism , Metabolome , Muscle Proteins/metabolism , Sodium, Dietary/metabolism , Adult , Biomarkers/blood , Biomarkers/urine , Essential Hypertension/physiopathology , Female , Fluid Shifts , Humans , Kidney/physiopathology , Male , Metabolomics , Middle Aged , Natriuresis , Water-Electrolyte Balance
17.
Cardiovasc Res ; 117(8): 1859-1876, 2021 07 07.
Article in English | MEDLINE | ID: mdl-33258945

ABSTRACT

Obesity contributes 65-75% of the risk for human primary (essential) hypertension (HT) which is a major driver of cardiovascular and kidney diseases. Kidney dysfunction, associated with increased renal sodium reabsorption and compensatory glomerular hyperfiltration, plays a key role in initiating obesity-HT and target organ injury. Mediators of kidney dysfunction and increased blood pressure include (i) elevated renal sympathetic nerve activity (RSNA); (ii) increased antinatriuretic hormones such as angiotensin II and aldosterone; (iii) relative deficiency of natriuretic hormones; (iv) renal compression by fat in and around the kidneys; and (v) activation of innate and adaptive immune cells that invade tissues throughout the body, producing inflammatory cytokines/chemokines that contribute to vascular and target organ injury, and exacerbate HT. These neurohormonal, renal, and inflammatory mechanisms of obesity-HT are interdependent. For example, excess adiposity increases the adipocyte-derived cytokine leptin which increases RSNA by stimulating the central nervous system proopiomelanocortin-melanocortin 4 receptor pathway. Excess visceral, perirenal and renal sinus fat compress the kidneys which, along with increased RSNA, contribute to renin-angiotensin-aldosterone system activation, although obesity may also activate mineralocorticoid receptors independent of aldosterone. Prolonged obesity, HT, metabolic abnormalities, and inflammation cause progressive renal injury, making HT more resistant to therapy and often requiring multiple antihypertensive drugs and concurrent treatment of dyslipidaemia, insulin resistance, diabetes, and inflammation. More effective anti-obesity drugs are needed to prevent the cascade of cardiorenal, metabolic, and immune disorders that threaten to overwhelm health care systems as obesity prevalence continues to increase.


Subject(s)
Blood Pressure , Essential Hypertension/physiopathology , Inflammation/physiopathology , Kidney Diseases/physiopathology , Kidney/physiopathology , Obesity/physiopathology , Adiposity , Animals , Essential Hypertension/epidemiology , Essential Hypertension/metabolism , Hormones/metabolism , Humans , Inflammation/epidemiology , Inflammation/metabolism , Inflammation Mediators/metabolism , Insulin Resistance , Kidney Diseases/epidemiology , Kidney Diseases/metabolism , Obesity/epidemiology , Obesity/metabolism , Renin-Angiotensin System , Risk Factors , Sympathetic Nervous System/physiopathology
18.
Mol Cell Biochem ; 476(2): 767-773, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33070283

ABSTRACT

Worldwide, more than 1 billion people have elevated blood pressure, with up to 45% of adults affected by the disease. In 2016 the global health study report on patients from 67 countries was released in Lancet, which identified hypertension as the world's leading cause for death and disability-adjusted years since 1990. This paper aims to analyze the pathophysiological connection between hemodynamic inflammatory reactions through sodium balance, salt sensitivity, and potential pathophysiological reactions. Besides, we explore how sodium consumption enhances the expression of transient receptor potential channel 3 (TrpC3) mRNA and facilitates the release of calcium inside immune cell groups, together with elevated blood pressure in essential hypertensive patients.


Subject(s)
Essential Hypertension/etiology , Sodium Chloride, Dietary/adverse effects , Animals , Essential Hypertension/metabolism , Essential Hypertension/pathology , Humans , Salt Stress , Salt Tolerance
19.
Biosci Rep ; 40(12)2020 12 23.
Article in English | MEDLINE | ID: mdl-33245094

ABSTRACT

INTRODUCTION: Multiple studies have suggested an association between cytomegalovirus (CMV) infection and essential hypertension (EH). MicroRNAs (miRNAs) play a critical role in the development of EH by regulating the expression of specific target genes. However, little is known about the role of miRNAs in CMV-induced EH. In the present study, we compared the miRNA expression profiles of samples from normal and murine cytomegalovirus (MCMV)-infected C57BL/6 mice using high-throughput sequencing analysis. METHODS: We collected the thoracic aorta, heart tissues, and peripheral blood from 20 normal mice and 20 MCMV-infected mice. We identified differentially expressed miRNAs in the peripheral blood samples and predicted their target genes using bioinformatics tools. We then experimentally validated them using quantitative reverse transcription polymerase chain reaction (qRT-PCR) and the target genes with double luciferase reporter gene assay. RESULTS: We found 118 differentially expressed miRNAs, among which 9 miRNAs were identified as potential MCMV infection-induced hypertension regulators. We then validated the expression of two candidate miRNAs, mmu-miR-1929-3p and mcmv-miR-m01-4-5p, using qRT-PCR. Furthermore, the dual-luciferase reporter gene assay revealed that the 3'-untranslated region (UTR) of endothelin A receptor (Ednra) messenger RNA (mRNA) contained a binding site for mmu-miR-1929-3p. Collectively, our data suggest that MCMV infection can raise the blood pressure and reduce mmu-miR-1929-3p expression in C57BL/6 mice. Moreover, we found that mmu-miR-1929-3p targets the 3'-UTR of the Ednra mRNA. CONCLUSION: This novel regulatory axis could aid the development of new approaches for the clinical prevention and control of EH.


Subject(s)
Blood Pressure , Essential Hypertension/metabolism , Herpesviridae Infections/complications , MicroRNAs/metabolism , 3' Untranslated Regions , Animals , Binding Sites , Blood Pressure/genetics , Computational Biology , Disease Models, Animal , Essential Hypertension/genetics , Essential Hypertension/physiopathology , Essential Hypertension/virology , Gene Expression Regulation , Herpesviridae Infections/virology , High-Throughput Nucleotide Sequencing , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , Muromegalovirus/pathogenicity , NIH 3T3 Cells , Receptor, Endothelin A/genetics , Receptor, Endothelin A/metabolism , Signal Transduction
20.
Hypertension ; 76(6): 1980-1991, 2020 12.
Article in English | MEDLINE | ID: mdl-33012204

ABSTRACT

Hypertension remains a major health problem in Western Societies, and blood pressure is poorly controlled in a third of patients despite use of multiple drugs. Mitochondrial dysfunction contributes to hypertension, and mitochondria-targeted agents can potentially improve treatment of hypertension. We have proposed that mitochondrial oxidative stress produces reactive dicarbonyl lipid peroxidation products, isolevuglandins, and that scavenging of mitochondrial isolevuglandins improves vascular function and reduces hypertension. To test this hypothesis, we have studied the accumulation of mitochondrial isolevuglandins-protein adducts in patients with essential hypertension and Ang II (angiotensin II) model of hypertension using mass spectrometry and Western blot analysis. The therapeutic potential of targeting mitochondrial isolevuglandins was tested by the novel mitochondria-targeted isolevuglandin scavenger, mito2HOBA. Mitochondrial isolevuglandins in arterioles from hypertensive patients were 250% greater than in arterioles from normotensive subjects, and ex vivo mito2HOBA treatment of arterioles from hypertensive subjects increased deacetylation of a key mitochondrial antioxidant, SOD2 (superoxide dismutase 2). In human aortic endothelial cells stimulated with Ang II plus TNF (tumor necrosis factor)-α, mito2HOBA reduced mitochondrial superoxide and cardiolipin oxidation, a specific marker of mitochondrial oxidative stress. In Ang II-infused mice, mito2HOBA diminished mitochondrial isolevuglandins-protein adducts, raised Sirt3 (sirtuin 3) mitochondrial deacetylase activity, reduced vascular superoxide, increased endothelial nitric oxide, improved endothelium-dependent relaxation, and attenuated hypertension. Mito2HOBA preserved mitochondrial respiration, protected ATP production, and reduced mitochondrial permeability pore opening in Ang II-infused mice. These data support the role of mitochondrial isolevuglandins in endothelial dysfunction and hypertension. We conclude that scavenging of mitochondrial isolevuglandins may have therapeutic potential in treatment of vascular dysfunction and hypertension.


Subject(s)
Arterioles/physiopathology , Blood Pressure/physiology , Essential Hypertension/physiopathology , Lipids/analysis , Mitochondria/metabolism , Oxidative Stress , Angiotensin II , Animals , Antioxidants/metabolism , Arterioles/drug effects , Arterioles/metabolism , Essential Hypertension/chemically induced , Essential Hypertension/metabolism , Female , Free Radical Scavengers/pharmacology , Humans , Lipids/antagonists & inhibitors , Male , Mice, Inbred C57BL , Sirtuin 3/metabolism , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...