Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.051
Filter
1.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731958

ABSTRACT

While organophosphorus chemistry is gaining attention in a variety of fields, the synthesis of the phosphorus derivatives of amino acids remains a challenging task. Previously reported methods require the deprotonation of the nucleophile, complex reagents or hydrolysis of the phosphonate ester. In this paper, we demonstrate how to avoid these issues by employing phosphonylaminium salts for the synthesis of novel mixed n-alkylphosphonate diesters or amino acid-derived n-alkylphosphonamidates. We successfully applied this methodology for the synthesis of novel N-acyl homoserine lactone analogues with varying alkyl chains and ester groups in the phosphorus moiety. Finally, we developed a rapid, quantitative and high-throughput bioassay to screen a selection of these compounds for their herbicidal activity. Together, these results will aid future research in phosphorus chemistry, agrochemistry and the synthesis of bioactive targets.


Subject(s)
Amino Acids , Esters , Herbicides , Organophosphonates , Herbicides/chemical synthesis , Herbicides/chemistry , Organophosphonates/chemistry , Organophosphonates/chemical synthesis , Amino Acids/chemistry , Esters/chemistry , Esters/chemical synthesis
2.
Org Biomol Chem ; 22(16): 3273-3278, 2024 04 24.
Article in English | MEDLINE | ID: mdl-38572769

ABSTRACT

Arylsulfonyl group-bearing α,ß-unsaturated enol esters were readily assembled via the Cs2CO3-mediated union of 2-bromoallyl sulfones and cinnamic acids. The overall transformation is equivalent to an sp2 carbon-oxygen coupling reaction, and therefore constitutes a formal vinylic substitution. Several of the products display promising levels of antiproliferative activities higher than that of the anticancer drug carboplatin. Thiophenol reacted with 2-bromoallyl sulfones under identical conditions to afford α-thiophenyl-α'-tosyl acetone via an apparent aerial oxidation.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Esters , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Esters/chemistry , Esters/pharmacology , Esters/chemical synthesis , Humans , Cell Proliferation/drug effects , Cell Line, Tumor , Drug Screening Assays, Antitumor , Molecular Structure , Sulfones/chemistry , Sulfones/pharmacology , Sulfones/chemical synthesis , Structure-Activity Relationship , Vinyl Compounds/chemistry , Vinyl Compounds/pharmacology , Vinyl Compounds/chemical synthesis
3.
Eur J Med Chem ; 271: 116433, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38678826

ABSTRACT

PD-1/PD-L1 pathway blockade is a promising immunotherapy for the treatment of cancer. In this manuscript, a series of triaryl compounds containing ester chains were designed and synthesized based on the pharmacophore studies of the lead BMS-1. After several SAR iterations, 22 showed the best biochemical activity binding to hPD-L1 with an IC50 of 1.21 nM in HTRF assay, and a KD value of 5.068 nM in SPR analysis. Cell-based experiments showed that 22 effectively promoted A549 cell death by restoring T-cell immune function. 22 showed significant in vivo antitumor activity in a 4T1 mouse model without obvious toxicity, with a TGI rate of 67.8 % (20 mg/kg, ip). Immunohistochemistry data indicated that 22 activates the immune activity in tumors. These results suggest that 22 is a promising compound for further development of PD-1/PD-L1 inhibitor for cancer therapy.


Subject(s)
Antineoplastic Agents , B7-H1 Antigen , Esters , Programmed Cell Death 1 Receptor , Humans , Animals , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/metabolism , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , Mice , Structure-Activity Relationship , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Molecular Structure , Esters/chemistry , Esters/pharmacology , Esters/chemical synthesis , Drug Screening Assays, Antitumor , Dose-Response Relationship, Drug , Cell Proliferation/drug effects , Mice, Inbred BALB C , Female , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/chemistry , Immune Checkpoint Inhibitors/chemical synthesis
4.
Molecules ; 29(8)2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38675600

ABSTRACT

The natural pesticide phenazine-1-carboxylic acid (PCA) is known to lack phloem mobility, whereas Metalaxyl is a representative phloem systemic fungicide. In order to endow PCA with phloem mobility and also enhance its antifungal activity, thirty-two phenazine-1-carboxylic acid-N-phenylalanine esters conjugates were designed and synthesized by conjugating PCA with the active structure N-acylalanine methyl ester of Metalaxyl. All target compounds were characterized by 1H NMR, 13C NMR and HRMS. The antifungal evaluation results revealed that several target compounds exhibited moderate to potent antifungal activities against Sclerotinia sclerotiorum, Bipolaris sorokiniana, Phytophthora parasitica, Phytophthora citrophthora. In particular, compound F7 displayed excellent antifungal activity against S. sclerotiorum with an EC50 value of 6.57 µg/mL, which was superior to that of Metalaxyl. Phloem mobility study in castor bean system indicated good phloem mobility for the target compounds F1-F16. Particularly, compound F2 exhibited excellent phloem mobility; the content of compound F2 in the phloem sap of castor bean was 19.12 µmol/L, which was six times higher than Metalaxyl (3.56 µmol/L). The phloem mobility tests under different pH culture solutions verified the phloem translocation of compounds related to the "ion trap" effect. The distribution of the compound F2 in tobacco plants further suggested its ambimobility in the phloem, exhibiting directional accumulation towards the apical growth point and the root. These results provide valuable insights for developing phloem mobility fungicides mediated by exogenous compounds.


Subject(s)
Alanine , Alanine/analogs & derivatives , Phenazines , Phenazines/chemistry , Phenazines/pharmacology , Phenazines/chemical synthesis , Alanine/chemistry , Alanine/pharmacology , Phytophthora/drug effects , Antifungal Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Phloem/metabolism , Phloem/drug effects , Ascomycota/drug effects , Ascomycota/metabolism , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemical synthesis , Fungicides, Industrial/chemistry , Drug Design , Esters/chemistry , Esters/pharmacology , Esters/chemical synthesis
5.
Chem Pharm Bull (Tokyo) ; 72(4): 413-420, 2024.
Article in English | MEDLINE | ID: mdl-38684408

ABSTRACT

A diazo-, metal-, and base-free multi-substituted hydrazone synthesis via a formal reductive N-H bond insertion reactions of hydrazones to α-keto esters has been developed. The protocol features a broad substrate scope and good functional group tolerance, providing N-H bond insertion products in moderate to excellent yields. Moreover, P(III)-mediated N-H functionalization of pharmaceutical containing hydrazone moiety was also successfully achieved.


Subject(s)
Esters , Hydrazones , Hydrazones/chemistry , Hydrazones/chemical synthesis , Esters/chemistry , Esters/chemical synthesis , Molecular Structure , Oxidation-Reduction , Ketones/chemistry , Ketones/chemical synthesis , Catalysis
6.
Int J Mol Sci ; 24(5)2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36902121

ABSTRACT

Pesticides play an important role in crop disease and pest control. However, their irrational use leads to the emergence of drug resistance. Therefore, it is necessary to search for new pesticide-lead compounds with new structures. We designed and synthesized 33 novel pyrimidine derivatives containing sulfonate groups and evaluated their antibacterial and insecticidal activities. Results: Most of the synthesized compounds showed good antibacterial activity against Xanthomonas oryzae pv. Oryzae (Xoo), Xanthomonas axonopodis pv. Citri (Xac), Pseudomonas syringae pv. actinidiae (Psa) and Ralstonia solanacearum (Rs), and certain insecticidal activity. A5, A31 and A33 showed strong antibacterial activity against Xoo, with EC50 values of 4.24, 6.77 and 9.35 µg/mL, respectively. Compounds A1, A3, A5 and A33 showed remarkable activity against Xac (EC50 was 79.02, 82.28, 70.80 and 44.11 µg/mL, respectively). In addition, A5 could significantly improve the defense enzyme (superoxide dismutase, peroxidase, phenylalanine ammonia-lyase and catalase) activity of plants against pathogens and thus improve the disease resistance of plants. Moreover, a few compounds also showed good insecticidal activity against Plutella xylostella and Myzus persicae. The results of this study provide insight into the development of new broad-spectrum pesticides.


Subject(s)
Anti-Bacterial Agents , Esters , Pesticides , Pyrimidines , Sulfides , Alkanesulfonates , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Esters/chemical synthesis , Esters/chemistry , Esters/pharmacology , Microbial Sensitivity Tests , Oryza/microbiology , Pesticides/chemical synthesis , Pesticides/chemistry , Pesticides/pharmacology , Plant Diseases/microbiology , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Pyrimidines/pharmacology , Sulfides/chemical synthesis , Sulfides/chemistry , Sulfides/pharmacology , Xanthomonas/drug effects
7.
Bioorg Med Chem Lett ; 76: 129018, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36209967

ABSTRACT

With the target to develop small molecules based anti-diabetic agents, we, herein, report the design, synthesis and biological studies on Lys-Pro and Gly-Pro esters, and a Phe-Pro-Phe tripeptide inhibiting the activity of glycoprotein dipeptidyl peptidase-4 (DPP-4). Since DPP-4 cleaves the glucagon like peptide (GLP-1) and glucose dependent insulinotropic polypeptide (GIP) hormones which are responsible for inducing insulin secretion, the results of present studies could be significant in making control over glycemia. The structural analysis of DPP-4 and its binding mode with the substrate as well as the reported inhibitors provided the background for the design of new molecules. Among the 17 compounds screened against DPP-4, 14 compounds displayed IC50 better than the known drug Sitagliptin. Collectively, a highly encouraging set of molecules was identified that may prove as the clinical candidates for the treatment of diabetes.


Subject(s)
Dipeptidyl-Peptidase IV Inhibitors , Drug Design , Hypoglycemic Agents , Oligopeptides , Blood Glucose/metabolism , Dipeptidyl-Peptidase IV Inhibitors/chemical synthesis , Dipeptidyl-Peptidase IV Inhibitors/chemistry , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Esters/chemical synthesis , Esters/chemistry , Esters/pharmacology , Gastric Inhibitory Polypeptide/metabolism , Glucagon-Like Peptide 1/metabolism , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Proline/chemistry , Sitagliptin Phosphate/chemistry , Sitagliptin Phosphate/pharmacology , Oligopeptides/chemical synthesis , Oligopeptides/chemistry , Oligopeptides/pharmacology
8.
Curr Med Chem ; 29(41): 6218-6227, 2022.
Article in English | MEDLINE | ID: mdl-35850648

ABSTRACT

The most relevant lipase-catalyzed strategies for the synthesis of pharmaceutically important cyclic and acyclic α-, ß- and γ-amino carboxylic acid enantiomers through hydrolysis of the corresponding amino carboxylic esters and lactams, over the last decade are overviewed. A brief Introduction part deals with the importance and synthesis of enantiomeric amino acids, and formulates the objectives of the actual work. The strategies are presented in the Main Text, in chronological order, classified as kinetic, dynamic kinetic and sequential kinetic resolution. Mechanistic information of the enzymatic transformations is also available at the end of this overview. The pharmacological importance of the enantiomeric amino acids is given next to their synthesis, in the Main Text, and it is also illustrated in the Conclusions and Outlook sections.


Subject(s)
Amino Acids , Carboxylic Acids , Esters , Lactams , Amines , Amino Acids/chemical synthesis , Amino Acids/chemistry , Amino Acids/pharmacokinetics , Amino Acids/pharmacology , Carboxylic Acids/chemical synthesis , Carboxylic Acids/chemistry , Carboxylic Acids/pharmacokinetics , Carboxylic Acids/pharmacology , Esters/chemical synthesis , Esters/chemistry , Esters/pharmacokinetics , Esters/pharmacology , Hydrolysis , Kinetics , Lactams/chemical synthesis , Lactams/chemistry , Lactams/pharmacokinetics , Lactams/pharmacology , Lipase/metabolism , Stereoisomerism , Pharmaceutical Preparations/chemical synthesis , Pharmaceutical Preparations/chemistry
9.
Proc Natl Acad Sci U S A ; 119(30): e2123022119, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35858422

ABSTRACT

The formation of carbon-carbon bonds from prebiotic precursors such as carbon dioxide represents the foundation of all primordial life processes. In extant organisms, this reaction is carried out by the carbon monoxide dehydrogenase (CODH)/acetyl coenzyme A synthase (ACS) enzyme, which performs the cornerstone reaction in the ancient Wood-Ljungdahl metabolic pathway to synthesize the key biological metabolite, acetyl-CoA. Despite its significance, a fundamental understanding of this transformation is lacking, hampering efforts to harness analogous chemistry. To address these knowledge gaps, we have designed an artificial metalloenzyme within the azurin protein scaffold as a structural, functional, and mechanistic model of ACS. We demonstrate the intermediacy of the NiI species and requirement for ordered substrate binding in the bioorganometallic carbon-carbon bond-forming reaction from the one-carbon ACS substrates. The electronic and geometric structures of the nickel-acetyl intermediate have been characterized using time-resolved optical, electron paramagnetic resonance, and X-ray absorption spectroscopy in conjunction with quantum chemical calculations. Moreover, we demonstrate that the nickel-acetyl species is chemically competent for selective acyl transfer upon thiol addition to biosynthesize an activated thioester. Drawing an analogy to the native enzyme, a mechanism for thioester generation by this ACS model has been proposed. The fundamental insight into the enzymatic process provided by this rudimentary ACS model has implications for the evolution of primitive ACS-like proteins. Ultimately, these findings offer strategies for development of highly active catalysts for sustainable generation of liquid fuels from one-carbon substrates, with potential for broad applications across diverse fields ranging from energy storage to environmental remediation.


Subject(s)
Aldehyde Oxidoreductases , Azurin , Esters , Multienzyme Complexes , Nickel , Origin of Life , Sulfur Compounds , Aldehyde Oxidoreductases/chemistry , Azurin/chemistry , Catalysis , Esters/chemical synthesis , Models, Chemical , Multienzyme Complexes/chemistry , Nickel/chemistry , Sulfur Compounds/chemical synthesis
10.
J Enzyme Inhib Med Chem ; 37(1): 451-461, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35012401

ABSTRACT

Different oleanolic acid (OA) oxime ester derivatives (3a-3t) were designed and synthesised to develop inhibitors against α-glucosidase and α-amylase. All the synthesised OA derivatives were evaluated against α-glucosidase and α-amylase in vitro. Among them, compound 3a showed the highest α-glucosidase inhibition with an IC50 of 0.35 µM, which was ∼1900 times stronger than that of acarbose, meanwhile compound 3f exhibited the highest α-amylase inhibitory with an IC50 of 3.80 µM that was ∼26 times higher than that of acarbose. The inhibition kinetic studies showed that the inhibitory mechanism of compounds 3a and 3f were reversible and mixed types towards α-glucosidase and α-amylase, respectively. Molecular docking studies analysed the interaction between compound and two enzymes, respectively. Furthermore, cytotoxicity evaluation assay demonstrated a high level of safety profile of compounds 3a and 3f against 3T3-L1 and HepG2 cells.HighlightsOleanolic acid oxime ester derivatives (3a-3t) were synthesised and screened against α-glucosidase and α-amylase.Compound 3a showed the highest α-glucosidase inhibitory with IC50 of 0.35 µM.Compound 3f presented the highest α-amylase inhibitory with IC50 of 3.80 µM.Kinetic studies and in silico studies analysed the binding between compounds and α-glucosidase or α-amylase.


Subject(s)
Enzyme Inhibitors/pharmacology , Esters/pharmacology , Oleanolic Acid/pharmacology , Oximes/pharmacology , alpha-Amylases/antagonists & inhibitors , alpha-Glucosidases/metabolism , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Esters/chemical synthesis , Esters/chemistry , Humans , Molecular Structure , Oleanolic Acid/chemical synthesis , Oleanolic Acid/chemistry , Oximes/chemical synthesis , Oximes/chemistry , Structure-Activity Relationship , alpha-Amylases/metabolism
11.
Angew Chem Int Ed Engl ; 61(1): e202113658, 2022 01 03.
Article in English | MEDLINE | ID: mdl-34734455

ABSTRACT

The site-selective C-H functionalization of heteroarenes is of considerable importance for streamlining the rapid modification of bioactive molecules. Herein, we report a general strategy for visible-light-induced ß-carbonyl alkylation at the C4 position of pyridines with high site selectivity using various cyclopropanols and N-amidopyridinium salts. In this process, hydrogen-atom transfer between the generated sulfonamidyl radicals and O-H bonds of cyclopropanols generates ß-carbonyl radicals, providing efficient access to synthetically valuable ß-pyridylated (aryl)ketones, aldehydes, and esters with broad functional-group tolerance. In addition, the mild method serves as an effective tool for the site-selective late-stage functionalization of complex and medicinally relevant molecules.


Subject(s)
Aldehydes/chemical synthesis , Esters/chemical synthesis , Ethers, Cyclic/chemistry , Ketones/chemical synthesis , Light , Pyridines/chemistry , Aldehydes/chemistry , Alkylation , Esters/chemistry , Ketones/chemistry , Molecular Structure , Salts/chemistry
12.
Bioorg Med Chem Lett ; 54: 128439, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34748937

ABSTRACT

O2-Phosphodiesterification of xanthosine has been achieved by a one-pot procedure consisting of the phosphitylation of the 2-carbonyl group of appropriately protected xanthosine derivatives using phosphoramidites and N-(cyanomethyl)dimethylammonium triflate (CMMT), oxidation of the resulting xanthosine 2-phosphite triesters, and deprotection. In addition, a study on the hydrolytic stability of a fully deprotected xanthosine 2-phosphate diester has revealed that it is more stable at higher pH.


Subject(s)
Esters/chemical synthesis , Organophosphates/chemical synthesis , Ribonucleosides/chemical synthesis , Xanthines/chemical synthesis , Esters/chemistry , Hydrogen-Ion Concentration , Molecular Structure , Organophosphates/chemistry , Phosphorylation , Ribonucleosides/chemistry , Xanthines/chemistry
13.
J Am Chem Soc ; 143(47): 19648-19654, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34793157

ABSTRACT

The installation of gem-difluoromethylene groups into organic structures remains a daunting synthetic challenge despite their attractive structural, physical, and biochemical properties. A very efficient retrosynthetic approach would be the functionalization of a single C-F bond from a trifluoromethyl group. Recent advances in this line of attack have enabled the C-F activation of trifluoromethylarenes, but limit the accessible motifs to only benzylic gem-difluorinated scaffolds. In contrast, the C-F activation of trifluoroacetates would enable their use as a bifunctional gem-difluoromethylene synthon. Herein, we report a photochemically mediated method for the defluorinative alkylation of a commodity feedstock: ethyl trifluoroacetate. A novel mechanistic approach was identified using our previously developed diaryl ketone HAT catalyst to enable the hydroalkylation of a diverse suite of alkenes. Furthermore, electrochemical studies revealed that more challenging radical precursors, namely trifluoroacetamides, could also be functionalized via synergistic Lewis acid/photochemical activation. Finally, this method enabled a concise synthetic approach to novel gem-difluoro analogs of FDA-approved pharmaceutical compounds.


Subject(s)
Acetamides/chemistry , Esters/chemical synthesis , Fluoroacetates/chemistry , Alkenes/chemistry , Alkylation , Catalysis/radiation effects , Ketones/chemistry , Ketones/radiation effects , Molecular Structure
14.
Int J Biol Macromol ; 192: 665-674, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34656534

ABSTRACT

Differently modified Lipozyme 435 (L435) (immobilized lipase B from Candida antarctica) preparations were used as biocatalysts in the esterification reaction to synthesize sugar fatty acid esters (SFAEs) from xylose (acyl acceptor) and lauric/palmitic acids (acyl donors) in methyl ethyl ketone (MEK) solvent. The L435 treatment with polyethyleneimine (PEI) (2; 25; and 750 KDa) prevented the enzyme leakage in the crude sugar ester reaction product. The 2 KDa PEI coating of this enzyme preparation produced the highest enzyme stability in MEK, buffer solutions (pHs 5 and 7), and methanol aqueous phosphate buffer at pH 7. Using an excess of the acyl donor (1:5 xylose: fatty acid molar ratio), high xylose conversions (70-84%) were obtained after 24 h-reaction using both, non-modified and PEI (2 KDa) coated L435, but the PEI treated biocatalyst afforded a higher xylose modification degree. After 5 reuse cycles with the L435 coated with PEI 2 KDa, the xylose conversions only decreased 10%, while with the non-treated biocatalyst they decreased by 37%. The formation of SFAEs was confirmed by mass spectrometry, which showed the presence of xylose mono-, di-, and triesters. They exhibited emulsion capacities close to that of a commercial sucrose monolaurate.


Subject(s)
Coated Materials, Biocompatible/chemistry , Esters/chemistry , Fatty Acids/chemistry , Lipase/chemistry , Polyethyleneimine/chemistry , Xylose/chemistry , Biocatalysis , Emulsions , Enzyme Activation , Enzyme Stability , Esters/chemical synthesis , Hydrolysis , Substrate Specificity
15.
Biomed Pharmacother ; 144: 112332, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34673422

ABSTRACT

Polysaccharides have anti-virus, anti-cancer, anti-oxidation, immune regulation, hypoglycemia and other biological activities. Because of their safety, fewer side effects and other advantages, polysaccharides are considered as ideal raw materials in food and drugs. The biological activity of polysaccharides can be improved by structural modification (such as sulfation, carboxymethylation, phosphorylation, etc.), and even new biological activity can be generated. In this review, the recent advances in the phosphorylation of polysaccharides were reviewed from the perspectives of modification methods, structures, biological activities and structure-activity relationships.


Subject(s)
Esters/chemical synthesis , Esters/pharmacology , Polysaccharides/chemical synthesis , Polysaccharides/pharmacology , Animals , Esters/toxicity , Humans , Molecular Structure , Phosphorylation , Polysaccharides/toxicity , Structure-Activity Relationship
16.
ChemistryOpen ; 10(9): 896-903, 2021 09.
Article in English | MEDLINE | ID: mdl-34499412

ABSTRACT

Research for innovative drugs is crucial to contribute to parasitic infections control and eradication. Inspired by natural antiprotozoal triterpenes, a library of 12 hemisynthetic 3-O-arylalkyl esters was derived from ursolic and oleanolic acids through one-step synthesis. Compounds were tested on Trypanosoma, Leishmania and the WI38 cell line alongside with a set of triterpenic acids. Results showed that the triterpenic C3 esterification keeps the antitrypanosomal activity (IC50 ≈1.6-5.5 µm) while reducing the cytotoxicity compared to parent acids. Unsaturation of the ester alkyl chain leads to an activity loss interestingly kept when a sterically hindered group replaces the double bond or shields the ester group. An ursane/oleanane C3 hydroxylation was the only important feature for antileishmanial activity. Two candidates, dihydrocinnamoyl and 2-fluorophenylpropionyl ursolic acids, were tested on an acute mouse model of African trypanosomiasis with significant parasitemia reduction at day 5 post-infection for the dihydrocinnamoyl derivative. Further evaluation on other alkyl/protective groups should be investigated both in vitro and in vivo.


Subject(s)
Esters/pharmacology , Triterpenes/pharmacology , Trypanocidal Agents/pharmacology , Animals , Drug Design , Drug Evaluation, Preclinical , Esters/chemical synthesis , Esters/toxicity , Female , Leishmania mexicana/drug effects , Mice , Parasitic Sensitivity Tests , Triterpenes/chemical synthesis , Triterpenes/toxicity , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/toxicity , Trypanosoma brucei brucei/drug effects
17.
Int J Biol Macromol ; 190: 763-768, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34530034

ABSTRACT

This study revealed that mixed chitin esters with long fatty and bulky acyl substituents were efficiently synthesized by acylation using acyl chlorides in the presence of pyridine and N,N-dimethyl-4-aminopyridine in an ionic liquid, 1-allyl-3-methylimidazolium bromide (AMIMBr), at 100 °C for 24 h. A stearoyl group was selected as the first substituent, which was combined with different long fatty and bulky acyl groups as the second substituents. In addition to IR analysis of the products, which suggested progress of the acylation, 1H NMR measurement was allowed for structural confirmation for high degrees of substitution (DSs) of the desired derivatives in CDCl3/CF3CO2H solvents. Crystalline structures and thermal property of the products were evaluated by powder X-ray diffraction and differential scanning calorimetry measurements, respectively. All the products showed film formability by casting from solutions in chloroform or chloroform/trifluoroacetic acid solvents. The occurrence of halogen exchange between acyl chlorides and AMIMBr in the present system was speculated to produce highly reactive acyl bromides in situ, which efficiently reacted with hydroxy groups in chitin to obtain high DS products.


Subject(s)
Chitin/chemical synthesis , Esters/chemical synthesis , Ionic Liquids/chemistry , Acylation , Allyl Compounds/chemistry , Calorimetry, Differential Scanning , Chitin/chemistry , Esters/chemistry , Imidazoles/chemistry , Proton Magnetic Resonance Spectroscopy , Spectrophotometry, Infrared , X-Ray Diffraction
18.
Eur J Med Chem ; 225: 113738, 2021 Dec 05.
Article in English | MEDLINE | ID: mdl-34425312

ABSTRACT

The search for new methods of antiviral therapy is primarily focused on the use of substances of natural origin. In this context, a triterpene compound, betulin 1, proved to be a good starting point for derivatization. Thirty-eight betulin acid ester derivatives were synthetized, characterized, and tested against DNA and RNA viruses. Several compounds exhibited 4- to 11-fold better activity against Enterovirus E (compound 5 EC50: 10.3 µM) and 3- to 6-fold better activity against Human alphaherpesvirus 1 (HHV-1; compound 3c EC50: 17.2 µM). Time-of-addition experiments showed that most of the active compounds acted in the later steps of the virus replication cycle (e.g., nucleic acid/protein synthesis). Further in-silico analysis confirmed in-vitro data and demonstrated that interactions between HHV-1 DNA polymerase and the most active compound, 3c, were more stable than interactions with the parent non-active betulin 1.


Subject(s)
Antiviral Agents/pharmacology , Dicarboxylic Acids/pharmacology , Drug Design , Esters/pharmacology , Triterpenes/pharmacology , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , DNA Viruses/drug effects , Dicarboxylic Acids/chemical synthesis , Dicarboxylic Acids/chemistry , Dose-Response Relationship, Drug , Esters/chemical synthesis , Esters/chemistry , Microbial Sensitivity Tests , Molecular Structure , RNA Viruses/drug effects , Structure-Activity Relationship , Triterpenes/chemical synthesis , Triterpenes/chemistry
19.
Carbohydr Polym ; 271: 118031, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34364545

ABSTRACT

Cellulose ester films were prepared by esterification of cellulose with a multibranched fluorinated carboxylic acid, "BRFA" (BRanched Fluorinated Acid), at different anhydroglucose unit:BRFA molar ratios (i.e., 1:0, 10:1, 5:1, and 1:1). Morphological and optical analyses showed that cellulose-BRFA materials at molar ratios 10:1 and 5:1 formed flat and transparent films, while the one at 1:1 M ratio formed rough and translucent films. Degrees of substitution (DS) of 0.06, 0.09, and 0.23 were calculated by NMR for the samples at molar ratios 10:1, 5:1, and 1:1, respectively. ATR-FTIR spectroscopy confirmed the esterification. DSC thermograms showed a single glass transition, typical of amorphous polymers, at -11 °C. The presence of BRFA groups shifted the mechanical behavior from rigid to ductile and soft with increasing DS. Wettability was similar to standard fluoropolymers such as PTFE and PVDF. Finally, breathability and water uptake were characterized and found comparable to materials typically used in textiles.


Subject(s)
Cellulose/analogs & derivatives , Esters/chemistry , Hydrocarbons, Fluorinated/chemistry , Membranes, Artificial , Propionates/chemistry , Cellulose/chemical synthesis , Esterification , Esters/chemical synthesis , Hydrocarbons, Fluorinated/chemical synthesis , Hydrophobic and Hydrophilic Interactions , Propionates/chemical synthesis , Tensile Strength , Wettability
20.
ChemMedChem ; 16(21): 3315-3325, 2021 11 05.
Article in English | MEDLINE | ID: mdl-34342141

ABSTRACT

Reversible acetylcholinesterase (AChE) inhibitors are key therapeutic tools to modulate the cholinergic connectivity compromised in several degenerative pathologies. In this work, four alkyl esters of homarine were synthesized and screened by using Electrophorus electricus AChE and rat brain AChE-rich fraction. Results showed that all homarine alkyl esters are able to inhibit AChE by a competitive inhibition mode. The effectiveness of AChE inhibition increases with the alkyl side chain length of the homarine esters, being HO-C16 (IC50 =7.57±3.32 µM and Ki =18.96±2.28 µM) the most potent inhibitor. The fluorescence quenching studies confirmed that HO-C16 is the compound with higher selectivity and affinity for the tryptophan residues in the catalytic active site of AChE. Preliminary cell viability studies showed that homarine esters display no toxicity for human neuronal SH-SY5Y cells. Thus, the long-chain homarine esters emerge as new anti-cholinesterase agents, with potential to be considered for therapeutic applications development.


Subject(s)
Acetylcholinesterase/metabolism , Cholinesterase Inhibitors/pharmacology , Esters/pharmacology , Picolinic Acids/pharmacology , Animals , Cell Line, Tumor , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Dose-Response Relationship, Drug , Electrophorus , Esters/chemical synthesis , Esters/chemistry , Humans , Models, Molecular , Molecular Structure , Picolinic Acids/chemical synthesis , Picolinic Acids/chemistry , Rats , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...